
Flexible Alias Protection

James Noble1, Jan Vitek2, and John Potter1

1 Microsoft Research Institute, Macquarie University, Sydney
kjx,potter@mri.mq.edu.au

2 Object Systems Group, Université de Genève, Geneva.
Jan.Vitek@cui.unige.ch

Abstract. Aliasing is endemic in object oriented programming. Because
an object can be modified via any alias, object oriented programs are
hard to understand, maintain, and analyse. Flexible alias protection is a
conceptual model of inter-object relationships which limits the visibility
of changes via aliases, allowing objects to be aliased but mitigating the
undesirable effects of aliasing. Flexible alias protection can be checked
statically using programmer supplied aliasing modes and imposes no run-
time overhead. Using flexible alias protection, programs can incorporate
mutable objects, immutable values, and updatable collections of shared
objects, in a natural object oriented programming style, while avoiding
the problems caused by aliasing.

1 Introduction
I am who I am; I will be who I will be.

Object identity is the foundation of object oriented programming. Objects are
useful for modelling application domain abstractions precisely because an ob-
ject’s identity always remains the same during the execution of a program —
even if an object’s state or behaviour changes, the object is always the same
object, so it always represents the same phenomenon in the application domain
[30].

Object identity causes practical problems for object oriented programming.
In general, these problems all reduce to the presence of aliasing — that a par-
ticular object can be referred to by any number of other objects [20]. Problems
arise because objects’ state can change, while their identity remains the same. A
change to an object can therefore affect any number of other objects which refer
to it, even though the changed object itself may have no information about the
other objects.

Aliasing has a large impact on the process of developing object oriented
software systems. In the presence of aliases, understanding what a program does
becomes more complex, as runtime information about topology of the system is
required to understand the effects of state changes. Debugging and maintaining
programs with aliasing is even more difficult, because a change to one part of a
program can affect a seemingly independent part via aliased objects.

In this paper, we present flexible alias protection, a novel conceptual model
for enforcing alias encapsulation and managing the effects of aliasing. Flexible

alias protection rests on the observation that the problems caused by aliasing are
not the result of either aliasing or mutable state in isolation; rather, problems re-
sult from the interaction between them, that is, when aliases make state changes
visible. We propose a prescriptive technique for enforcing flexible alias protection
based on programmer-supplied aliasing mode declarations which relies on static
mode checking to verify the aliasing properties of an object’s implementation.
The mode checking is modular, allowing implementations to be checked sepa-
rately, and is performed entirely at compile-time, with no additional run-time
cost.

Flexible alias protection is closely related to the work of Hogg [19] and
Almeida [2]. Our proposal differs from these in two main respects. Most im-
portantly, flexible alias protection allows objects to play a number of different
roles, which reflect the ways in which objects are used in common object oriented
programming styles. For example, a container’s representation objects may be
read and written, but must not be exposed outside their enclosing container,
while a container’s argument objects may be aliased freely, but a container may
not depend upon their mutable state. Flexible alias protection does not require
the complex abstract interpretation of Almeida’s Balloon types, and is thus more
intuitive for programmers and less sensitive to small changes in the implemen-
tations of the protected objects.

This paper is organised as follows. Section 2 presents the problems created
by aliasing in object oriented programs, and Section 3 discusses related work.
Section 4 then introduces the concepts underlying flexible alias protection, and
Section 5 presents a model for static mode checking. Section 6 discusses future
work, and Section 7 concludes the paper. We begin by describing the problem
caused by aliasing in object oriented programs.

2 Aliasing and Encapsulation

Aliases can cause problems for object oriented programs whenever a program
abstraction is implemented by more than one object in the target program. That
is, when there is one aggregate object representing the whole of an abstraction
and providing an encapsulated interface to it, and encapsulating one or more
other objects implementing the abstraction represented by the aggregate object.
We say the objects implementing the aggregate objects are members of the
aggregate object’s aliasing shadow 1.

Aliasing can cause problems whenever references into an aggregate object’s
shadow exists from outside the shadow. Messages can be sent to that shadow
object via the alias, bypassing the aggregate, and modify the state of the sub-
sidiary objects, and thus of the whole abstraction implemented by the aggregate
object, see Figure 1. References to an aggregate object’s shadow can arise in two

1 An aggregate object’s shadow is similar to Wills’ demesnes [41], or the objects in
an Island [19] or Balloon [2]. In this paper, we use the term shadow to denote the
intrinsic nature of this set of objects, and other terms to denote particular aliasing
control mechanisms

ways: either an object which is referenced from outside can be added into the
shadow, or a reference from within the shadow can be passed out.

a

size contents

d

i j k

Fig. 1. Unconstrained Aliasing. The hash table a has a shadow composed of represen-
tation objects size and contents, and some argument objects contained in the table, i,
j, and k. Both contents and k are seen from the outside by d. Thus, d is able to change
the state of a’s implementation without going through a.

The breaches of encapsulation caused by aliasing may affect correctness of the
aggregate objects, causing the program to err, or, perhaps even more seriously,
opening security holes in the application. We illustrate these problems with two
examples.

Consider an object implementing a simple hash table (see Figure 2). The hash
table object has two components: an array of table entries and an integer, stored
as variables named contents and size. The hash table object is an aggregate, its
shadow contains the integer, the array, and the table entry objects in the array.
If a reference to the contents array exists from outside the hash table object
(that is, if the array is aliased) the contents of the hash table can be modified
by sending a message directly to the array object, without sending a message to
the hash table object itself.

Aliases to the hash table’s elements can arise in a number of ways. For exam-
ple, if references to the key and item objects are retained outside the hashtable,
the hash table elements will be aliased. Alternatively, a hash table operation
(such as get) can directly return a reference to an object stored in a hash table,
and this will immediately create an alias.

Aliases to the array object making up the hashtable’s internal representation
may also be created. Typically, representation objects are created within the
aggregate object of which they are a part, and so preexisting references from
outside the aggregate are unlikely. An operation upon the aggregate can, how-
ever, return a reference to one of the internal representation objects just as easily

class Hashtable<Hashable,Item> {

private Array<HashtableEntry<Hashable,Item>> contents;

private int size;

public void put(Hashable key, Item val);

public Item get(Hashable key);

public Array<HashtableEntry<Hashable,Item>>

expose() {
return contents;

};
}

Fig. 2. A Simple Hashtable

as it can return a reference to one of the elements — for example, Figure 2 shows
how a hashtable could include an expose operation which would return the entire
array.

Exposing internal representation may have security implications if objects
are used as capabilities [13, 16]. Viewing an object’s interface as a capability is
appealing, because it leverages the safety property guaranteed by a strong type
system to turn it into a protection mechanism for implementing access control.
In effect, the type system prevents access to operations not explicitly listed in
an object’s interface. The danger with this model is that, as there are no strong
protection domains between entities, it surprisingly easy to open an aggregate
object to attacks [39]. Aliasing plays an important role here as it can be exploited
to gain access to the trusted parts of an abstraction. A case in point is the recent
defect in an implementation of SUN’s digital signatures for Java applets which
permitted any applet to become trusted, simply because an alias to the system’s
internal list of signatures was being returned, instead of a copy of that list.

This paper is concerned with a programming discipline which simultaneously
prevents aliases to the internal representation of an abstraction from escaping
the abstraction’s scope, and protects an abstraction from existing aliases to ob-
jects it receives as argument, while preserving many common object oriented
programming styles. We will start by reviewing known approaches to this prob-
lem.

3 Related Work

3.1 Aliasing and Programming Languages

The traditional solution adopted by programming languages to encapsulate ref-
erences (and thus aliases) is to provide access modes which control how names
can be used within programs. For example, consider the private and protected

modes of Java and C++ which restrict access to the names of variables and
methods.

An aggregate object’s shadow can be stored within the aggregate object’s
protected local state, but this is not enough to protect the shadow objects from
aliasing [2, 19, 20]. As we have already seen, a method attached to an aggregate
object can return a reference to a shadow object. An aggregate object can also
store objects created outside itself into nominally private state, and these objects
may have been aliased before they become members of the shadow. An object’s
encapsulation barrier protects only that individual object, and that object’s pri-
vate local state: the members of an aggregate object’s shadow are not effectively
encapsulated. That is to say, access modes protect local state by restricting ac-
cess to the names of the local state, rather than to the objects to which the
names refer.

In practice, many programming languages do not provide even this level of
encapsulation. In languages such as C++ and Java, the language access modes
provide protection on a per-class basis, so any object can retrieve a private refer-
ence from any other object of the same class, thus instantly creating an alias into
another object’s shadow. Eiffel includes expanded types which are always passed
by value rather than reference. Unfortunately, subcomponents of expanded types
can be passed by reference, and so can be aliased.

Rather than rely on access modes, it is sometimes suggested that aliasing
can be controlled using private classes — that is, a private object should be an
instance of a private class, rather than stored in a private variable. Private classes
are not a general solution, however, since they also protects names rather than
objects. For example, private classes are typically shared among all instances of
the class where they are declared. More importantly, if a private class is to be
used with existing libraries or frameworks, it will have to inherit from a well
known public class, and so dynamic type casts can be used to access the private
class as if it were its public superclass.

Garbage collection (or at least a restricted form of explicit memory man-
agement) is required to support all forms of aliasing control. If a program can
delete an object while references to it are retained, and that object’s memory is
then reallocated to a new object, the new object will be aliased by the retained
pointers to the nominally deleted object.

In practice, then, careful programming and eternal vigilance are the only
defences against aliasing problems in current object oriented languages.

3.2 Full Alias Encapsulation

In recent years there have been a number of proposals to address aliasing in
object oriented languages. For example, expressions can be analysed statically to
determine their effects, described in terms of the memory regions they can change
or depend upon [35, 28], whole programs can be analysed directly to detect
possible aliasing [26, 10, 22], or hints may be given to the compiler as to probable
aliasing invariants [18]. Objects can be referred to by tracing paths through
programs, rather than by direct pointers, so that aliased objects will always have

the same name [3, 6, 5], or pointers can be restricted to point to a particular set
of objects [38]. Copying, swapping, destructive reads, or destructive assignments
can replace regular reference assignment in programs, so that each object is only
referred to by one unique or linear pointer [4, 8, 32, 17, 27]. Finally, languages
can provide an explicit notion of aggregation, object containment, or ownership
[19, 2, 9, 24, 11, 15]. Unfortunately, these proposals forbid many common uses of
aliasing in object oriented programs.

In this section, we review two of the most powerful proposals: John Hogg’s
Islands [19] and Paulo Sergio Almeida’s Balloons [2]. Although they differ greatly
in detail and mechanism — Islands use aliasing mode annotations attached solely
to object’s interfaces, while Balloons use sophisticated abstract interpretation —
both these proposals have a common aim, which we term full alias encapsulation.
Essentially, these proposals statically prevent external references into an object’s
shadow. This restriction ensures that Islands and Balloons can never suffer from
problems caused by aliasing — their representations cannot be exposed, they
cannot accept aliased objects from outside, and they cannot depend transitively
upon other aliased objects. These restrictions apply only at the interface between
Islands and Balloons and the rest of the system, so objects may be aliased freely
inside or outside a Balloon or Island. Similarly, aliasing of normal objects is
unrestricted within Islands and Balloons. This allows Islands and Balloons to
encapsulate complex linked structures while still providing aliasing guarantees
to the rest of the system.

Unfortunately, full encapsulation of aliasing is too restrictive for many com-
mon design idioms used in object oriented programming. In particular, an object
cannot be a member of two collections simultaneously if either collection is fully
encapsulated against aliases. A collection’s member is part of the collection’s
shadow, and as such cannot be part of another fully encapsulated collection.

Islands and Balloons have mechanisms which mitigate against this restriction,
generally by distinguishing between static and dynamic aliases — a static alias
is an alias caused by reference from a long-lived variable (an object’s instance
variable or a global variable) while a dynamic alias is caused by a short-lived,
stack allocated variable. Unfortunately, these distinctions also cause problems.
Both Islands and Transparent Balloons allow dynamic aliases to any member of
an aggregate object’s shadow. This allows collection elements to be acted upon
when they are within the collection, provided no static references are created.
Unfortunately, this also allows objects which are part of an aggregate’s private
internal representation to be exposed.

Islands restrict dynamic aliases to be read only, that is, Islands enforce en-
capsulation but not information hiding. Transparent Balloons impose no such
restriction, so in a transparent Balloon, an internal representation object can be
dynamically exposed and modified externally. Almeida also describes Opaque
Balloons which forbid any dynamic aliases. That is, transparent balloons con-
trol static aliasing, but provide neither information hiding nor encapsulation,
while opaque balloons completely hide and encapsulate everything they contain.

4 Flexible alias protection

Although aliasing has the potential to cause a great many problems in object ori-
ented programs, it is demonstrably the case that these problems do not manifest
themselves in the vast majority of programs. That is, although paradigmatic
object oriented programming style uses aliasing, it does so in ways which are
benign in the majority of cases.

This situation parallels that of programming in untyped languages such as
BCPL or assembler. Although untyped languages leave a wide field open for
gratuitous type errors, programmers can (and generally do) successfully avoid
type errors, in effect imposing a type discipline upon the language. Of course, it
is almost certain that type problems will arise over time, especially as programs
are maintained by programmers unaware of the uses and constraints of the types
in the program. As a result, more formal static typing mechanisms have evolved
to protect the programmer against type errors. The success and acceptance of a
type system in practice depends on the extent to which it supports or constrains
idiomatic programming style [25].

Our aim is to use techniques similar to type checking to provide guarantees
about programs’ aliasing properties, but without compromising typical object
oriented programming styles. In particular, we aim to support many benign uses
of aliasing, including objects being contained within multiple collections simul-
taneously, while still providing significant protection against aliasing problems.
This requires that some form of aliasing be permitted, but that aliasing must be
restricted to where it is appropriate.

Some objects can always be aliased freely without affecting the program’s
semantics. These objects are instances of value types which represent primitive
values, such as machine level integers, characters or booleans. Since instances
of value types are immutable (they never change, although variables holding
them can change) they cause no problems when they are shared between various
aggregate objects2. Functional languages have always used aliasing to implement
immutable referentially transparent values — the great advantage being that
precisely because these objects are immutable, any aliasing is completely invisible
to the programmer.

The observation that value types can be aliased indiscriminately without
compromising safety, because their state does not change, suggests an alter-
native formulation of the aliasing problem: the problem is not the presence of
aliases, but the visibility of non-local changes caused by aliases. This suggests a
different approach to dealing with aliasing: rather than trying to restrict aliases
by constraining the references between objects, we should restrict the visibility
of changes to objects. Aliasing can certainly be permitted, provided any changes
within aliased objects are invisible.

This bears out the experience that many object oriented programs have been
written in spite of aliasing — aliasing per se causes no problems for object

2 Almeida describes how value types can be implemented as a specialisation of Bal-
loons, and Hogg mentions immutable objects in passing.

oriented programming: the problem is the unexpected changes caused by aliasing.
Object oriented programs which employ aliasing must do so in ways which avoid
critical dependencies on mutable properties of objects.

To address these aliasing issues and to develop a programming discipline that
may help preventing the problems described in previous section, we introduce the
notion of an alias-protected container as a particular kind of aggregate object
which is safe from the undesirable effects of aliasing. The remainder of this
section is devoted to specifying the characteristics of alias-protected containers.
The following section introduces alias mode checking which provides the means
to enforce alias protection in object oriented languages by using aliasing modes
and roles.

4.1 Alias-Protected Containers

We propose to protect containers from aliasing by dividing the elements of a
container’s shadow into two categories — the container’s private representation
and the container’s public arguments. A container’s representation objects are
private and should not be accessible from outside. A container may freely op-
erate upon (or depend upon) its representation objects — it may create new
representation objects, change their state, and so on, but never expose them.

A container’s arguments can be publicly accessed from elsewhere — in par-
ticular, an object can be an argument of more than one container. Because these
objects are available and modifiable outside the container, the container may
only depend upon argument objects inasmuch as they are immutable, that is,
a container can never depend upon any argument object’s mutable state. It is
important to realise that the dependency is on the interface presented by the
element objects to the collection. Provided all the operations in this interface
do not rely upon mutable state, no changes in the element object can be visible
to collection, and the element objects can be freely aliased and mutated outside
the collection. This restriction protects the container’s integrity against changes
in elements caused via aliases.

For example, a hash table typically depends on element objects understand-
ing a message which returns their hash code. If an element’s hash code changes
(presumably caused by another part of the program modifying the element via
an alias) the integrity of the hash table will be compromised, but if the hash
codes never change, the hash table will function correctly, even if other aspects
of the elements change frequently.

Because a container’s argument and representation objects have different
aliasing and mutability restrictions — representation objects must remain inside
the container, but can be read and written, while argument objects must be
treated as immutable but can be referenced from outside the container — the
implementation of the container needs to keep the two sets completely separate.
If a representation object is accidently treated as an argument, it can be exposed
outside the container, typically by being explicitly returned as the result of a
method. If an argument object is treated as part of the representation, the

containers implementation can become susceptible to problems caused by pre-
existing aliases to the argument. Figure 3 illustrates how the objects referred to
by a hash table (from Figure 2) are either part of the hash table’s representation
or arguments.

0

1

Array

2

3

4

item

5

Student
hashCode()

name(string)
Entry

mark(integer)
status()
finalise()

key

next

Entry

name()

key

next

number()

Student
hashCode()
number()
name()
name(string)

RawMark

RawMark
mark(integer)
status()
finalise()

Entry

item

key

next

Student
hashCode()
number()
name()
name(string)

item
RawMark
mark(integer)
status()
finalise()

put(key,item)
get(key)

size

table

Hashtable

3

Fig. 3. A hashtable’s internal Array and Entry objects are part of its representation
(dark grey) while student and RawMark objects are stored as the hashtable’s arguments
(light grey). Representation objects can only be referenced from within the hashtable
aggregate (solid arrows) while arguments objects can be referenced from outside (dotted
arrows).

Alias protected containers themselves may be aliased, in fact they may even
be mutually aliased. For instance, a container may be passed as argument to
itself. This does not cause problems, however, as a container cannot depend
upon the mutable state of its argument objects.

One very important aspect for the usability of any definition of alias-protected
containers is their composability — that is whether alias-protected containers
can be implemented out of simpler containers.

4.2 Composing Containers

Complex aggregate objects should be able to be composed from simpler objects
— that is, containers need to be able to use other objects as part of their im-
plementations. This is easily accommodated within our container model — a
container can certainly have another object (which could be a container) as part

of its representation. Provided the internal object does not expose its own rep-
resentation or depend upon its arguments, the composite container will provide
the same level of aliasing protection as an individual container object.

Sometimes, however, a composite container may need to use an internal con-
tainer to store some of its argument or representation objects. For example, a
university student records system may need to record the students enrolled in
each course and the raw marks each student has received. Each course object can
use a hash table to keep track of its students and their marks, however students
will be part of the course’s arguments (since a single student could be enrolled
in multiple courses) while each student’s raw marks will be part of the course’s
representation, since only weighted final marks should actually be presented to
students. As far as the internal hash table is concerned, both the student objects
and mark objects are its arguments — the students being the hash table’s keys
and the raw marks the hash table’s items. The hash table will also have its own
representation objects, which must be completely encapsulated inside it.

To maintain flexible alias protection, a container’s representation objects and
argument objects must be kept completely separate. This requirement holds no
matter how a container is implemented. When a container uses an internal col-
lection, this requirement must be enforced on the internal collection also. If a
representation object could be passed into the internal collection, then retrieved
and treated as if it were an argument, then the composite container’s represen-
tation could be exposed. Similarly, if an argument could be retrieved from an
inner collection and treated as part of the composite container’s representation,
the composite container would become susceptible to its arguments aliasing.

To avoid breaching encapsulation, composite containers have to be restricted
in how they can pass objects to internal objects. We consider that each object has
one or more argument roles, which describe how the object uses its arguments.
An object must keep its various argument roles separated — in particular, it may
only return an argument as a particular role from some message if the argument
was passed into the object as the same role. For example, a simple collection,
such as a set, bag, or list, will have only one argument role, while an indexed
collection, such as a hash table mapping keys to items, will have two roles, one
for its keys and one for its items. A composite container may only store one kind
of object (argument or representation) in any given inner object’s role. Thus, an
enclosing container can store part of its representation in an inner container and
retrieve it again, sure that the inner container has not substituted an argument
object or an object which is part of the inner container’s representation.

Reconsidering the university course example, the hash table will have a key
role and an item role. The course object stores its argument Student objects in
the hash table’s key role, and its representation objects representing the students’
marks in the hash table’s item role (see Figure 4).

4.3 Summary

We have introduced flexible alias protection to provide a model of aliasing which
supports typical object oriented programming styles involving aggregate con-

Hashtable

table

table

1

0

2

size

get(key)
put(key,item)

Array

Student
hashCode()

name()
name(string)

3

Entry

item

key

next

4

Entry5

key

number()

Student
hashCode()
number()
name()
name(string)

Student
hashCode()
number()
name()
name(string)

Entry

item

key

next

item

next

3

drop(student)

Course

lecturer

finalise
report
get(key)

enrol(student)

RawMark
mark(integer)
status()
finalise()

RawMark
mark(integer)
status()
finalise()

RawMark
mark(integer)
status()
finalise()

Lecturer
hashCode()
number()
name()
name(string)

Fig. 4. A Course uses a hashtable as part of its representation (dark grey) while Student
and Lecturer objects are the course’s arguments (light grey). The hashtable also stores
RawMark objects for each student, and these are arguments to the hashtable but part
of the Course’s representation (mid gray), so cannot be accessed from outside the
Course (dotted arrows).

tainer objects. Flexible alias encapsulation separates the objects within an ag-
gregate container into two categories — representation objects which can be
modified within the container but not exported from it, and argument objects
which can be exported from the container but which the container must treat
as immutable. Argument objects can be further divided into subcategories, each
representing a different argument role. Just as a container’s representation ob-
jects must be kept separate from its argument objects, so each role must be kept
independent.

These restrictions can be expressed in the following invariants:

– F1 No Representation Exposure — A container’s mutable representation
objects should only be accessible via the container object’s interface. No
dynamic or static references to representation objects should exist outside
the container.

– F2 No Argument Dependence — A container should not depend upon
its arguments’ mutable state. That is, a container should use arguments only
insofar as they are immutable.

– F3 No Role Confusion — A container should not return an object in one
role when it was passed into the container in another role.

In the next section we describe how aliasing modes ensure these three invari-
ants can be checked statically for a variety of container types.

5 Aliasing Modes

We have developed a set of aliasing modes and a simple technique, aliasing mode
checking, to statically ensure invariants F1. . .F3 hold, so that a container can
defend itself against possible aliasing problems. Aliasing mode checking aims to
preserve as much as possible of the paradigmatic object-oriented style, including
the benign use of aliasing, while making program’s aliasing properties explicit.
Aliasing mode checking is based on declarations of aliasing modes, which are
similar to the modes used in Islands [19] or the const mode used in C++ [36].
An aliasing mode is essentially a tag which annotates the definition of a local
name, and restricts the operations which can be performed upon objects through
that name. Modes are purely static entities, having no runtime representation.
Like the C++ const attribute, and unlike Island’s modes, our aliasing modes
can decorate every type constructor in a type expression, and are propagated
through the expressions in the program, just as types are. Also like C++ or
Islands’ modes, our modes are relational in that they restrict access only through
the name they annotate — if an object is aliased by another name, the aliases
may have different modes and allow different operations to be performed on the
object. Unlike C++’s const, modes may not be cast away.

Aliasing mode checking verifies an object’s aliasing properties to a similar
extent that a static type checker verifies an object’s typing properties. Work-
ing from declarations supplied by the programmer, an aliasing mode checker
propagates aliasing modes through expressions. The resulting modes are then
checked for consistency within the defining context. Like most type checking,
aliasing mode checking is conservative, so it should not accept programs which
do not have the required aliasing properties, but it may reject programs which
actually have the required properties if it cannot verify them statically. Also like
type checking, aliasing mode checking is enforced by a set of simple, local rules,
designed to be easy for programmers to understand and to debug. Note that
although they are similar, aliasing mode checking and type checking are com-
pletely orthogonal. An expression’s aliasing mode correctness implies nothing
about its type correctness, and vice versa.

The aliasing mode system comprises the following modes: arg, rep, free, var,
and val. These modes decorate the type constructors in a language’s type ex-
pressions, resulting in moded type expressions. The arg and var modes optionally
also have a role tag R, which is used to distinguish between similar modes which
play different roles. The first two modes, rep and arg, are the most important,
and identify expressions referring to the representation and argument objects
of containers. The free mode is used to handle object creation, the val mode is
syntactic sugar for value types, and the var mode provides a loophole for aux-
iliary objects which provide weaker aliasing guarantees. To separate argument
objects from representation objects and argument objects in other roles, differ-
ent modes are not assignment compatible, except that expressions of free mode
can be assigned to variables of any other mode (assuming type compatibility).

The modes attached to the parameters of the messages in an object’s interface
(including the receiver, self) determine the aliasing properties for the object as

a whole. For example, if an object uses only modes arg, free, and val, it will be a
“clean” immutable object, that is, it will implement a referentially transparent
value type. If all of an object’s method’s parameters and return values (except
the implicit self parameter) are restricted to arg, free, or val, the object will be
an alias-protected container with flexible alias protection, and if in addition it
has no variables of arg mode, the object will provide full alias encapsulation.
The modes of an object’s internal variables are used to check that the aliasing
properties of the object’s implementation match those of the declarations, as
follows:

rep A rep expression refers to an object which is part of another object’s repre-
sentation. Objects referred to by rep expressions can change and be changed,
can be stored and retrieved from internal containers, but can never be ex-
ported from the object to which they belong.

arg R A arg expression refers to an object which is an argument of an aggregate
object. Objects referred to by arg expressions can never change in a way
which is visible via that expression — that is, arg expressions only provide
access to the immutable interface of the objects to which they refer. There
are no restrictions upon the transfer or use of arg expressions around a
program.

free A free expression holds the only reference to an object in the system, so
objects referred to by a free expression cannot be aliased. In particular, the
mode of the return values of constructors is free. Expressions of mode free
can be assigned to variables of any other mode, provided that any given free
expression is always assigned to variables of the same other mode.

val A val expression refers to an instance of a value type. The val mode has the
same semantics as the arg mode, however, we have introduced a separate
val mode so that explicit arg roles are not required for value types. The
val mode is the only mode which implies a constraint upon the type of the
expression to which it is bound, and can be automatically attached to all
expressions of value types where no other mode is supplied.

var R The var mode refers to a mutable object which may be aliased. Expres-
sions with mode var may be changed freely, may change asynchronously, and
can be passed into or returned from messages sent to objects. This mode is
basically the same as the reference semantics of most object oriented pro-
gramming languages, or the var mode in Pascal, except that it obeys the
assignment (in)compatibility rules of the other modes.

Note that modes and roles are not specific to a particular object oriented
language, but do require a strong static type system. Our examples use an ide-
alisation of Java with parametric polymorphism, based on Pizza [34], For peda-
gogical reasons, in places we use more explicit role annotations on variables and
parameters than is strictly necessary.

5.1 Modes and Invariants

The purpose of aliasing modes is to enforce the flexible alias encapsulation in-
variants F1 to F3. The invariants are enforced by recasting them in terms of the

modes of expressions, rather than sets of objects, and then restricting the oper-
ations permissible on expressions of various modes. This results in three mode
invariants, each corresponding to one flexible alias encapsulation invariant. The
semantics of these invariants are implicit in the semantics of the modes described
above, but we will consider each separately, as follows:

– M1 No Representation Exposure — No expression containing mode rep
may appear in an object’s interface. An aggregate object’s representation
should remain encapsulated within that object. In the mode system, compo-
nent objects which make up an object’s representation will have mode rep,
so they should not be returned from that object. Expressions including mode
rep should not be accepted as arguments, due to the possibility of preexist-
ing aliases. We take an object’s interface to include all external variables or
functions visible within an object, so this restriction (together with the com-
position rules below, §5.4) also stops objects exposing their representation
through a “back door”.

– M2 No Argument Dependence — No expression of mode arg may be sent
a message which visibly changes or depends upon any mutable state. Objects
referred to by expressions of mode arg may be freely aliased throughout the
system, so containers may not depend upon their mutable state. To enforce
this restriction, we forbid messages sent to arg expressions which access any
mutable state. The only messages which may be sent to arg expressions are
those which are purely functional — we call them clean expressions. For the
same reason, arg expressions may only be passed to other functions as mode
arg.

– M3 No Role Confusion — No expression of any mode except free may be
assigned to a variable of any other mode. Objects subject to mode checking
must keep objects of different roles separate. This can be implemented fairly
simply by forbidding assignment between expression of different modes.

Immutable Interfaces Rule M2 for avoiding argument dependencies requires
that messages sent to expressions of mode arg should not depend upon mutable
state, or cause any side effects. We call these types of messages clean messages,
and they should be identified by an annotation on method declarations. One
simple definition of a clean message is that it is made up only of clean expressions,
where a clean expression either reads a variable of mode arg or val, or sends a
clean message — the only modes which may appear in a clean method definition
are arg, val, or free, and a clean method cannot modify variables. More complex
definitions of clean could be formulated to have the same effect, but with fewer
practical restrictions.

However it is defined, clean will impose restrictions on the way a container
can use its arguments, but these restrictions are not as severe as they may seem.
This is because aliasing mode checking distinguishes between clean interfaces
and clean objects. A clean interface provides access to the immutable properties
of an otherwise mutable object, while a clean object implements an immutable
value type. A mode arg reference to a mutable object restricts the use of that

object to the clean portion of its interface — if the object is aliased elsewhere
via rep or varmode, those references can make full use of the object. Completely
clean objects are only required when value semantics (mode val expressions) are
to be used, and should be identified by annotations on objects’ definitions.

5.2 Example: A Simple Hashtable

To illustrate the use of modes and roles Figure 5 shows a simple example of a
näıve hashtable class completely annotated with mode declarations — compare
with Figure 2. The hashtable is represented using an array of hashtable entries
which hold the keys and items stored in the table.

This example uses three modes — arg, val, and rep. Argument items to be
contained within the hashtable are declared as mode “arg k” or mode “arg i” —
that is, mode arg with role tag k for keys or i for items. The modes are identified
both in the declarations of method parameters and return values, and within
the definition of the table representation array. The representation array object
holding the hashtable entries is mode rep, because it needs to be changed by the
hashtable (to store and retrieve entries). The entries themselves are similarly
mode rep. Because the table contains argument objects (which are mode arg),
the table’s full moded type is rep Array<HashtableEntry<arg k Hashable,

arg i Item>>. Finally, integers are used to return size of the hashtable. Since
integers are value types, these are mode val.

class Hashtable<arg k Hashable, arg i Item> {
private rep

Array<rep HashtableEntry<arg k Hashable, arg i Item>>
contents;

private val int size;

public void put(arg k Hashable key, arg i Item value);

public arg i Item get(arg k Hashable key);

}

Fig. 5. A Hashtable with Aliasing Mode Declarations

5.3 Mode Checking

In this section we give an intuitive overview of mode checking, as a formal defini-
tion is beyond the scope of this paper. A method is mode checked by first deter-
mining the modes of its constituent expression’s terms, then propagating modes
through expressions. Determining the mode of the terms in an expression is gen-
erally quite simple — aliasing modes are attached to terms in the environment.
Propagating modes through compound subexpressions is more complicated, but

assuming moded type information for operators is available in the environment,
parameter modes can be checked against the environment definitions, and then
the operator’s result mode from the environment can be taken as the mode of
the whole subexpression.

Figure 6 shows the definition of the hashtable’s get method. The figure in-
cludes an arg k mode declaration on the method’s key parameter, and is anno-
tated with the modes of the most crucial terms in the method.

arg i Item get(arg k Hashable key) {
val int hash = key.hashCode();

val int index =
(hash & 0x7FFFFFFF) % contents.length;

rep HashtableEntry<arg k Hashable, arg i Item> e;

for (e = contents[index]; e != null ; e = e.next) {
// all rep HashtableEntry<arg k Hashable, arg i Item>

if ((e.key.hashCode() == hash) && e.key.equals(key)) {
// hashCode and equals must be clean

return e.item;

//...

Fig. 6. The Hashtable Get Method

The most important message send in the get method occurs on the first
line, in int hash = key.hashCode(). The mode of key is arg, and only clean
messages may be sent to expressions of mode arg. Provided the hashCodemethod
is clean, it may be sent to the key parameter object. Since hashCode returns
an integer, its return value has mode val and so can be assigned to a mode val
variable. The arithmetic on the second line is simple: arithmetic operators on
mode val expressions return mode val.

The expressions within the for loop are more complex to check, as these
involve a number of propagations. First, the mode of contents[index] must
be determined. This is a index operation on the contents array. Since the ar-
ray has the mode rep Array<rep HashtableEntry<arg h Hashable, arg i
Item>>, the result of an index operation will be the mode of the hash table
entries — rep HashtableEntry<arg h Hashable, arg i Item>. This is the
same as the mode of the e variable, so the assignment can proceed. Since this
is a rep mode, the fields of e (and other HashtableEntries which also have
mode rep) can be read and assigned to. The HashtableEntry objects have two
fields, key and item with modes arg k and arg i respectively. Since arg k objects
support clean hashCode and equals methods, these two sends can proceed even
though they are sent to the mode arg expression e.key. Finally, e.item can be
returned since it has mode arg i.

5.4 Composing Moded Types

Mode checking in the context of a single method is quite simple, and is adequately
covered by the rules and invariants described above. In fact, the above rules apply
within a single static type environment, such as a module or package, even if
this involves more than one class. For example, the hash table above actually
involves a number of objects (the hash table itself, its component array, and the
hash table entries) but does so solely from the perspective of the hash table.

Mode checking which crosses scope boundaries is somewhat more complex.
When an aggregate object is composed from a number of other objects, the
modes in the aggregate object must be unified with the externally visible modes
of its subsidiary objects — that is, the subsidiary objects’ arg and var roles.
We call this process aliasing mode parameter binding, and it is analogous to the
binding of type parameters when instantiating generic types. The complexity
arises when containers are composed inside other objects, as any mode must be
able to be bound to mode arg moded type parameters of encapsulated containers.

For example, imagine the hash table being used to represent the relationship
between Student objects and RawMark objects representing the enrolment in a
university course (see Figure 7). The Student objects have mode arg, because
they do not belong to the Course object — in particular, one student can be
enrolled in a number of courses. The RawMark objects are part of the Course

object’s representation (i.e. mode rep), to ensure that they are encapsulated
within the Course, and also so that they can be sent messages which change
their state to record each Student’s raw marks. These rep RawMark objects need
to be stored within the Hashtable, that is, passed to variables and retrieved as
results which were declared as mode arg (see Figure 5).

class Course<arg s Student> {
private rep Hashtable<arg s Student, rep RawMark> marks =

new Hashtable();

...

public void enrol (arg s Student s) {
rep RawMark r = new RawMark();

marks.put(s, r);

}
public void

recordMarkFor(arg s Student s, val String workUnit, val int mark) {
marks.get(s).recordMarkFor(workUnit, mark);

}
public void finalReport (arg s Student s) {

marks.get(s).finalReport();

}
}

Fig. 7. A Course represented by a Hashtable

Aliasing mode parameter binding occurs when generic types are instantiated
and their parameters bound. A sequence of actual moded types (containing the
client’s roles) must be bound to a sequence of formal moded types (containing
the server’s roles), resulting in a mapping from formal to actual moded type
parameters. Each moded type parameter is considered individually, in two stages.
First, the parameter roles are bound, and then the aliasing modes in the bindings
are checked.

Each formal role in the server must map to one actual role in the client.
One actual role may be mapped by more than one formal role, however. The
most important feature of these mappings is that they must be consistent, that
is there must be only one mapping for each object within any given scope, and
whenever parameters are passed to or results retrieved from a particular object,
the same mappings must be used.

The aliasing mode bindings in these mappings are then checked depending
upon the modes within the server’s formal parameters. Formal parameters may
have either mode arg or mode var (since mode rep is encapsulated within com-
ponents, and modes free and val are global so do not need to be bound). Formal
mode parameters of mode arg can be bound to any actual mode, and formal
parameters of mode var can be bound to any actual mode except arg.

These binding rules are designed to ensure that the flexible alias encapsula-
tion invariants of an outer container are maintained, assuming they are main-
tained by an inner container. The interesting cases occur when objects which
are parts of an outer container are passed to an inner encapsulated container,
since the basic rules encapsulate aliasing in each individual container.

The outer container’s representation is protected against exposure (F1 is
maintained) because the inner container can only return the outer container’s
representation objects back to the outer container, as the inner container is part
of the outer container’s representation. An inner container cannot depend upon
any of the outer container’s arguments, because the outer container’s arguments
can only be bound to mode arg in an inner container. Thus F2 for the whole
container is supported by M2 in the inner container.

Similarly, the role binding rules and M3 in an inner container ensure that the
enclosing container’s roles are not confused, maintaining F3. Each formal role in
the inner container can only be bound to at most one of the outer container’s
roles, so objects cannot be inserted into the inner container under one outer
container role and retrieved as another. Several inner container roles may be
bound to one outer container role, but this simply means the inner container
makes a finer distinction within the outer container’s roles.

5.5 Choice of Modes

Our choice of aliasing modes may seem somewhat idiosyncratic. While some
of the modes (var, rep, val) are hopefully noncontroversial, and others taken
directly from previous work (free from Islands [19]), the arg mode is novel.
We have also omitted several modes from other work, including read and unique
modes [19, 2]. This section presents some of the rationale for our choice of modes.

Mode val The val mode is in a strict sense redundant, as its semantics are
essentially the same as arg mode, and could be replaced by arg mode without
weakening the system. We have retained val mode for a number of reasons,
foremost of which is that we share a sense of the overall importance of value
types [2, 29, 23].

A separate val mode provides an additional cue to the programmer when
used to describe a component of a container’s representation. Reading the moded
type declaration rep Foo<arg a Shape> a programmer can conclude that the
arg a components of Foo are “real” arguments which may be aliased elsewhere.
In contrast, the similar declaration rep Foo<val Shape> makes clear that the
Shape components are pure value types. More practically, an explicit val mode
greatly reduces the number of roles programmers must consider when designing
objects, because all expressions which handle clean objects can have mode val.

The Restrictions on Mode arg The restrictions we have placed on mode
arg are particularly tight. Mode arg combines the restrictions of modes like
C++’s const, which prevents modifications to objects, and a strong transitive
sense of referential transparency, so no changes are visible through arg mode
references. The second part of this restriction is certainly necessary to guarantee
the flexible aliasing encapsulation invariants, in particular F2. The first part of
this restriction is less necessary, because the aliasing invariants implicitly assume
that a container’s arguments may be changed asynchronously via aliases at any
time, so no mode safety would be lost by allowing changes via an arg reference
(at least in sequential systems). We have imposed this restriction as a matter of
taste, to keep the mode system as simple as possible, and because widespread
use of a writeonly mode seems quite counterintuitive [37].

read and unique Modes Islands [19] make great use of a read mode, which
can be seen as a transitive version of C++’s const. These read mode expressions
cannot be used to change mutable state, and cannot be stored in object’s instance
variables, but are not referentially transparent, so the objects upon which they
depend may be changed “underfoot” via aliases.

We have omitted a read mode for three reasons. First, read expressions are
used to dynamically expose objects which are part of Islands. Since argument
objects within flexibly encapsulated containers can be statically or dynamically
aliased outside, a read mode is much less necessary. Second, to be useful, a
read mode must constrain Islands’ clients, and we have tried to avoid modes
which propagate upwards, out of containers into their context. Third, especially
because of the restrictions on storing read expressions into objects’ variables,
read does not fit well with typical object oriented programming styles.

Islands also introduced a unique mode [19], and similar ideas are used in
Balloons [2] and have been proposed by others [32, 8, 17]. A unique variable is
linear — it holds the only reference to an object [4]. We have not introduced
a unique mode for much the same reasons we have omitted read. Like a read
mode, a unique mode is useful in some cases, for example, a unique mode allows

objects to be inserted to and removed from encapsulated containers without
copying or aliasing. Like a read mode, a unique mode extends its protection
“upwards”, requiring respect from containers’ clients. Also, a unique mode may
not provide as much protection as might be imagined, since unique objects can
be shared via non-unique “handle” objects [32]. Unfortunately, making effective
use of unique objects seems to require programming language support, such as
a destructive read [19], copy assignment [2], or swapping [17]. Finally, our free
mode reduces the need for a unique mode, although at the cost of requiring extra
object copying in some circumstances.

Upwards and Downwards Mode Restrictions Most of our aliasing modes
are anchored at a particular object, and propagate downwards into the imple-
mentation of that object, restricting the ways it can use other objects. This is in
contrast to modes like read and unique which work upwards, giving rise to re-
strictions on objects’ clients, Mode arg is a downward mode par excellence — arg
imposes a great many restrictions on a container’s implementations, but none
on a container’s client. We prefer downward modes to upward modes for several
reasons. We assume objects with flexible alias encapsulation will form part of
a traditional, alias-intensive object oriented system, and we aim to support a
paradigmatic object oriented programming style, so we cannot make assump-
tions about programs’ global aliasing behaviour. We don’t want programmers
to have to rewrite code to conform to mode restrictions. We imagine aliasing
modes infiltrating the systems bottom up — our flexible alias encapsulation is
particularly suitable for describing properties of existing collection libraries, for
example. Containers with flexible alias encapsulation must defend themselves
against aliasing problems: they cannot rely on the rest of the program “doing it
for them” by obeying mode restrictions.

The only assumption we do accept about the “rest of the program” is that
any methods or expressions claiming to be clean or free are in fact clean or
free. In a way, this constraint also flows downwards, from the interface of the
external objects to their implementation, rather than upwards out of a container
to its elements. We view clean and free as descriptions of the properties of
external objects in the program, which restricts the operations which flexible
alias encapsulated containers can do with those external objects, rather than
restrictions on the external objects.

5.6 Object Oriented Idioms

We conclude the presentation of aliasing modes by showing how they can be
used to capture the aliasing properties of a number of common object oriented
programming idioms.

Flyweights as clean objects Flyweight objects [12] contain no mutable intrin-
sic state, that is, a Flyweight object is an instance of a value type. A Flyweight
can be described using the mode system as a clean object, that is, an object

which provides only a clean interface. A clean object is restricted to expres-
sions of modes arg, free, and val — in particular, the mode of self is arg, which
prevents assignment to any instance variables. For example, a simple Glyph
flyweight could be implemented as a clean object:

clean class Glyph {
private val Font font;

private val int size;

public free Glyph(val Font font, val int size) {
font = font; size = size;

//...

Although clean objects cannot normally access mutable state, they must still
be constructed and initialised. Aliasing modes model construction explicitly, by
treating constructors as special methods which return mode free. This allows ob-
jects’ instance variables to be initialised within constructors, because free does
not have the clean-message only restriction of mode arg. A clean object’s vari-
ables could even be initialised after construction, for example to cache the results
of a clean method, modelling language constructs such as Java’s blank finals [14]
or Cecil’s per-object field initialisers [7].

Collections and Facades with Full Alias Encapsulation Collections and
Facades are usually modelled as containers with flexible alias protection, that
is, as objects where only arg, val, and free modes may appear in their method
interfaces (including constructors) and any variables with scope larger than an
object may only be read as mode arg. Aliasing modes can enforce the kind of full
alias encapsulation provided by Islands [19] or Balloons [2]. In addition to the
restrictions for flexible alias protection, instance variables of fully encapsulated
containers may not have mode arg subcomponents. This allows aliased objects
to be passed into a container, but not stored directly within it — to store an
object it must first be copied, producing a free object which can then be passed
to a mode free parameter and assigned to a mode rep variable. For example,
a fully encapsulated TupperwareSet could be implemented using a Set with
flexible alias protection as follows:

class TupperwareSet {
private

rep Set<rep Object> storage; // no arg subcomponents.

public
void add(free Object o) {

rep Object o; // for clarity

o = o.; // assign free copy to rep
storage.add(o);

}
If the o argument was mode arg rather than mode free, it could not be added

to the rep storage set.

Iterators for Collections Iterators [12] are commonly used to provide sequen-
tial access to collections. Unfortunately, by their very nature, iterators must alias
the collections they iterate over, indeed, iterators often need direct access to
containers’ private implementations for efficiency reasons. This aliasing is made
explicit in the moded type declarations, where an extra var role is required to
indicate that implementations and iterators are aliased.

class FastVector<var a Array<arg i Item>> {
private

var a Array<arg i Item> table; // note var

public
free FastVectorIterator<var a Array<arg i Item >>

newIterator() {
FastVectorIterator(this.table);

// hand in internal table

}
}

class FastVectorIterator<var a Array<arg i Item>> {
public

free FastVectorIterator<var a Array<arg i Item>>
FastVectorIterator(var a Array<arg i Item >>) {
// direct access to Array implementation

// via var parameter inside constructor ...

class IteratorClient {
private

var FastVector<var a Array<rep Elem e>> arr;

public
void iterate() {

var FastVectorIterator<var a Array<rep Elem e>> it;

rep Elem e;

for (it=arr.newIterator(); it.hasNext; e = it.next) {
e.use();

//...

In the example, the iterator and vector have mode var in their moded
types, so they cannot be exported from the IteratorClient object, if the
IteratorClient is to be an alias-protected container.

6 Discussion

In this section we discuss further aspects of flexible alias protection and aliasing
mode checking, and describe the current status of our work.

6.1 Usability

Because object identity is such a fundamental part of the object orientation
paradigm, problems with aliasing cannot really be “solved”. Any attempt to
address the aliasing program for practical object oriented programming must be
evaluated as an engineering compromise: how much safety does it provide, at
what cost, and, most importantly, how usable are the mechanisms by typical
programmers doing general purpose programming.

The crucial question is how natural (or how contrived) a programming style
is required by the proposed aliasing mode checking. Obviously aliasing mode
declarations impose a syntactic overhead, but this at most doubles the cost of
the kind of static type declarations used in Eiffel or C++, even if all type dec-
larations must be annotated with modes. In return for the extra syntax, flexible
alias encapsulation imposes significantly weaker restrictions on program design
than other types of alias encapsulation [2, 19, 24], while still providing protection
against common aliasing problems. In particular, flexible encapsulation allows
container arguments to be aliased, permitting many programming idioms which
cannot be used when aliases are fully encapsulated.

Making aliasing modes explicit has advantages when checking aliasing modes
and reporting aliasing errors. Like type checking, aliasing mode checking only
needs information which is in the scope of the expression to be checked. Methods
can be checked individually and incrementally, and because alias modes are
visible to the programmer in the program’s text, errors can be reported in terms
which programmers should be able to understand.

This is in contrast to the sophisticated static analysis required to check Bal-
loon types, which may need to check the implementation of a number of different
classes as a unit, and which reports errors in terms of possible runtime aliasing
states, rather than syntactic properties of the program [2].

The ability to present comprehensible error messages points towards an im-
portant secondary benefit of programmer-supplied aliasing declarations. Making
alias modes explicit should help provide a conceptual language within which
programmers can think about the aliasing properties of their programs and de-
signs, in the same way that type systems promote awareness of program’s type
properties.

6.2 Inheritance and Subtyping

Aliasing issues are generally considered to be orthogonal to subtyping and inher-
itance [19, 2], so alias mode checking should be orthogonal to type checking and
subtyping. In practice, there can be interplay between objects’ aliasing proper-
ties, subtyping, and inheritance.

Subtyping is defined by the substitution principle — that an instance of
a subtype can be used wherever an instance of a supertype is acceptable [1].
Considering aliasing, substitution requires that a subtype’s aliasing guarantees
cannot be weaker than its supertype’s. The precise rules can be derived from the
aliasing mode invariants (particularly M3), expressed in the mode binding rules

in section 5.4. A subtype’s aliasing modes must be able to be bound wherever
its supertype’s modes can be bound. The main consequence of this rule is that
a type’s clean interface must be a subtype of its supertype’s clean interface, for
all types in the program.

Alias mode checking depends upon inheritance, at least, it treats objects as if
inheritance had been flattened. Modes introduce dependencies which make sub-
classes more dependent upon details of their superclasses, exacerbating the frag-
ile base class problem. As with typing, visibility declarations can offer subclasses
some protection against changes to superclasses mode definitions, by restricting
the scope of the changes. If inheritance is used for code reuse, a subclass may
require different modes to its superclass, giving rise to inheritance anomalies
similar to those found in concurrent systems [31].

6.3 Concurrency

Flexible alias protection and aliasing modes provide a good foundation within
which object oriented languages can support concurrent execution. Flexibly en-
capsulated objects can be units of concurrency control, that is, a container can
manage concurrent access to itself and its representation objects. The M1 in-
variant guarantees that no process is able to access a rep object without first
passing through its enclosing container, and thus being subject to the container’s
concurrency control regime. Containers and their rep objects can be internally
multi-threaded (providing intra-object concurrency) and they must manage this
concurrency internally.

The accessing modes map particularly well onto the Aspects of Synchroni-
sation model of concurrency control [21]. This model divides concurrency con-
straints into three aspects — exclusion constraints which protect objects against
conflicting threads, state constraints which allow access to an object only when
is it in a particular state, and coordination constraints which can depend upon
multiple unrelated objects. Exclusion and state constraints are local to individual
objects, that is, a container and any rep subcomponents. Transaction constraints
involve multiple independent objects, so apply to objects which use mode var
expressions.

Finally, clean objects and interfaces do not require any form of concurrency
control, because they do not involve mutable state. This is particularly useful
in conjunction with flexible alias encapsulation, because multiple concurrent
processes and multiple concurrent containers can safely store and access shared
elements via mode arg or mode val without any concurrency control, because
arg and val mode references only provide access to clean interfaces.

6.4 Mode Polymorphism and Inference

Our system of aliasing modes is more restrictive than it needs to be. This is
because the programmer is forced to choose a specific mode declaration for every
argument and variable, even though more than one declaration may be consistent
within the context of the whole program. Unfortunately, once a mode has been

chosen for a particular method or variable, other uses of that method which
would require different modes are rejected by aliasing mode checking.

What is required here is some form of mode polymorphism — a single def-
inition of a method, variable, object, or interface needs to be interpreted with
different generic bindings for modes, in the same way a type-generic module
can be instantiated with different concrete types. In our development of aliasing
mode checking to date, we have not investigated mode polymorphism deeply.

Aliasing mode inference could also reduce the need for programmers to be
overly specific about their program’s aliasing modes. By analogy with type in-
ference, aliasing mode inference would infer possible aliasing modes by analysing
the source text of the program, automatically adding mode declarations to pro-
grams without them. We have only addressed inference in as much as mode
checking’s propagation of modes through expressions is the basis for inference.

6.5 Immutability and Change Detection

Our aliasing mode system is also restrictive because it is based around immutable
properties of objects — properties which are set when objects are created (or
initialised lazily) but do not subsequently change. Some objects’ otherwise “im-
mutable” state may remain unchanged for long periods of time, but then change
on rare occasions. For example, a student’s name is generally immutable, but
may be changed by deed poll or marriage. If names may possibly change, they
cannot be part of the student objects’ clean interface, so student objects cannot
be sorted or indexed based upon their names. Rather, some other attribute of
students must be used to access them. Most academic institutions introduce stu-
dent numbers for just this purpose, of course, and these typically meet the all the
requirements for being part of a clean interface. The use of aliasing modes sup-
ports the practice of assigning these kind of “account numbers” during program
analysis and design [40].

Alternatively, dynamic change detection techniques could be employed to
handle changes in objects which would otherwise be treated as immutable. In this
approach, the programming language or runtime system is extended to detect
when a container depends upon the properties of one of its arguments, that
is, when a container sends a message to another object through a mode arg
reference. When such a dependency is detected, it can be recorded by the change
detection system, which can then monitor the state of the “subject” object which
is being depended upon. Using a mechanism such as the Observer pattern, when
the subject’s state changes, the dependent container can be notified of the change
and can update its internal state [12]. We plan to extend our previous work on
dynamic change detection to incorporate flexible alias protection and aliasing
modes [33].

6.6 Current Status

In this paper, we have presented a conceptual model of flexible alias protection.
We have also developed formal models of flexible alias protection which are

not presented here due to space restrictions. We are currently working on an
extension of the Pizza compiler [34] to extend Java with aliasing modes and
mode checking — indeed, all the examples in this paper are written using our
moded Pizza (mmmPizza) syntax. Because aliasing mode checking is carried
out purely at compile time, mmmPizza generates exactly the same code as the
original Pizza compiler. We considered building a preprocessor to implement
aliasing mode checking, however we believed it would be easier to modify an
existing compiler than to build a mode checker from scratch. We are also working
on the implementation of alias protected class libraries which we shall use in real
applications. At that point, we will be able to asses more precisely the impact
of aliasing modes on programming style.

7 Conclusion
One man’s constant is another man’s variable.

Alan Perlis, Epigrams on Programming.

Aliasing is endemic in object oriented programming. Indeed, given that object
oriented programming is based strongly on object identity, perhaps alias oriented
programming would be a better term than object oriented programming! We
have presented flexible alias encapsulation, a conceptual model for managing
the effects of aliasing, based on the observation that aliasing per se is not the
major problem — rather, the problem is the visibility of changes caused via
aliases. This model uses explicit aliasing modes attached to types to provide
static guarantees about the creation and use of object aliases. As a result, the
model prevents exposure of object’s representations, limits the dependence of
containers upon their arguments, and separates different argument roles.

Acknowledgements

We would like to thank Doug Lea for his pertinent comments on various drafts,
Eydun Eli Jacobsen for his observation on protecting names versus protecting ob-
jects, David Holmes for his comments on aliasing and concurrent object systems,
David Clarke for his perspectives from the evolving formal theory and implemen-
tation, John Boyland for his discussions about modes and promises, and Martin
Odersky for the Pizza compiler. We also thank Bjorn Freeman-Benson and the
anonymous reviewers for their careful consideration. This work was supported
by Microsoft Pty. Ltd., Australia.

References

1. Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. Paulo Sérgio Almeida. Balloon Types: Controlling sharing of state in data types.

In ECOOP Proceedings, June 1997.
3. Pierre America and Frank de Boer. A sound and complete proof system for SPOOL.

Technical Report Technical Report 505, Philips Research Laboratories, 1990.

4. Henry G. Baker. ’Use-once’ variables and linear objects – storage management,
reflection and multi-threading. ACM SIGPLAN Notices, 30(1), January 1995.

5. Edwin Blake and Steve Cook. On including part hierarchies in object-oriented
languages, with an implementation in Smalltalk. In ECOOP Proceedings, 1987.

6. Alan Borning. The programming language aspects of ThingLab, a constraint-
oriented simulation laboratory. ACM Transactions on Programming Languages
and Systems, 3(4), October 1981.

7. Craig Chambers. The Cecil language: Specification & Rationale. Technical Report
Version 2.7, University of Washington, March 1997.

8. Edwin C. Chan, John T. Boyland, and William L. Scherlis. Promises: Limitied
specifications for analysis and manipulation. In IEEE International Conference on
Software Engineering (ICSE), 1998.

9. Franco Civello. Roles for composite objects in object-oriented analysis and design.
In OOPSLA Proceedings, 1993.

10. Alain Deutsch. Interprocedural May-Alias Analysis for Pointers: Beyond k-limiting.
In Proceedigns of the ACM SIGPLAN’94 Conference on Programming Language
Design and Implementation, June 1994.

11. Jin Song Dong and Roger Duke. Exclusive control within object oriented systems.
In TOOLS Pacific 18, 1995.

12. Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Pat-
terns. Addison-Wesley, 1994.

13. T. Goldstein. The gateway security model in the Java electronic commerce frame-
work. Technical report, Sun Microsystems Laboratories – Javasoft, December 1996.

14. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996.

15. Peter Grogono and Patrice Chalin. Copying, sharing, and aliasing. In Proceedings
of the Colloquium on Object Orientation in Databases and Software Engineering
(COODBSE’94), Montreal, Quebec, May 1994.

16. Daniel Hagimont, J. Mossière, Xavier Rousset de Pina, and F. Saunier. Hidden
software capabilities. In 16th International Conference on Distributed Computing
System, Hong Kong, May 1996. IEEE CS Press.

17. Douglas E. Harms and Bruce W. Weide. Copying and swapping: Influences on
the design of reusable software components. IEEE Transactions on Software En-
gineering, 17(5), May 1991.

18. Laurie J. Hendren and G. R. Gao. Designing programming languages for analyz-
ability: A fresh look at pointer data structures. In Proceedings of the IEEE 1992
International Conference on Programming Languages, April 1992.

19. John Hogg. Islands: Aliasing protection in object-oriented languages. In OOPSLA
Proceedings, November 1991.

20. John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and Richard Holt. The
Geneva convention on the treatment of object aliasing. OOPS Messenger, 3(2),
April 1992.

21. David Holmes, James Noble, and John Potter. Aspects of synchronisation. In
TOOLS Pacific 25, 1997.

22. Neil D. Jones and Steven Muchnick. Flow analysis and optimization of LISP-like
structures. In Steven Muchnick and Neil D. Jones, editors, Program Flow Analysis:
Theory and Applications. Prentice Hall, 1981.

23. Stuart Kent and John Howse. Value types in Eiffel. In TOOLS 19, Paris, 1996.
24. Stuart Kent and Ian Maung. Encapsulation and aggregation. In TOOLS Pacific

18, 1995.

25. Brian Kernighan. Why Pascal is not my favourite programming language. Tech-
nical Report 100, Bell Labs, 1983.

26. William Landi. Undecidability of static analysis. ACM Letters on Programming
Languages and Systems, 1(4), December 1992.

27. K. Rustan M. Leino and Raymie Stata. Virginity: A contribution to the spec-
ification of object-oriented software. Technical Report SRC-TN-97-001, Digital
Systems Research Center, April 1997.

28. John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Proceed-
ings of the Eighteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, January 1988.

29. B. J. MacLennan. Values and objects in programming languages. ACM SIGPLAN
Notices, 17(12), December 1982.

30. Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kirsten Nygaard. Object-
Oriented Programming in the BETA Programming Language. Addison-Wesley,
1993.

31. S. Matsuoka, K. Wakita, and A. Yonezawa. Sychronisation constraints with inher-
itance: What is not possible? — so what is? Technical report, Dept. of Information
Science, University of Tokyo, 1990.

32. Naftaly Minsky. Towards alias-free pointers. In ECOOP Proceedings, July 1996.
33. James Noble and John Potter. Change detection for aggregate objects with alias-

ing. In Australian Software Engineering Conference, Sydney, Australia, 1997. IEEE
Press.

34. Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into prac-
tice. In Proc. 24th ACM Symposium on Principles of Programming Languages,
January 1997.

35. John C. Reynolds. Syntatic control of interference. In 5th ACM Symposium on
Principles of Programming Languages, January 1978.

36. Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.
37. Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.
38. Mark Utting. Reasoning about aliasing. In The Fourth Australasian Refinement

Workshop, 1995.
39. Jan Vitek, Manuel Serrano, and Dimitri Thanos. Security and communication

in mobile object systems. In J. Vitek and C. Tschudin, editors, Mobile Object
Systems: Towards the Programmable Internet., LNCS 1222. Springer-Verlag, April
1997.

40. William C. Wake. Account number: A pattern. In Pattern Languages of Program
Design, volume 1. Addison-Wesley, 1995.

41. Alan Cameron Wills. Formal Methods applied to Object-Oriented Programming.
PhD thesis, University of Manchester, 1992.

