
Family PolymorphismErik ErnstDepartment of Computer ScienceUniversity of Aalborg, Denmarkeernst@cs.auc.dkAbstract. This paper takes polymorphism to the multi-object level.Traditional inheritance, polymorphism, and late binding interact nicelyto provide both exibility and safety|when a method is invoked on anobject via a polymorphic reference, late binding ensures that we get theappropriate implementation of that method for the actual object. Weare granted the exibility of using di�erent kinds of objects and di�er-ent method implementations, and we are guaranteed the safety of thecombination. Nested classes, polymorphism, and late binding of nestedclasses interact similarly to provide both safety and exibility at the levelof multi-object systems. We are granted the exibility of using di�erentfamilies of kinds of objects, and we are guaranteed the safety of the com-bination. This paper highlights the inability of traditional polymorphismto handle multiple objects, and presents family polymorphism as a wayto overcome this problem. Family polymorphism has been implementedin the programming language gbeta, a generalized version of Beta, andthe source code of this implementation is available under GPL.11 IntroductionImagine a hotel lobby with a few people standing around, waiting. The recep-tionist decides to get things going by asking a man \Are you a husband?" andasking a woman \Are you a wife?". Upon receiving two aÆrmative|thoughslightly ba�ed|answers, those two people are assigned to the same room, to-gether with the little girl who said \Erm, yeah, and I'm a daughter!"The reason why this might not be entirely appropriate is that those peoplemay very well be `husband', `wife', and `daughter', but it makes a big di�erencewhether or not they play these roles in the same family.Family polymorphism is a programming language feature that allows us toexpress and manage multi-object relations, thus ensuring both the exibility ofusing any of an unbounded number of families, and the safety guarantee thatfamilies will not be mixed. It is, in a sense, a programming language feature thatsolves problems with the same structure as the hotel room assignment problem.Traditional inheritance, polymorphism, and late binding of methods provideboth exibility and safety in the following sense. A polymorphic reference x mayat run-time refer to an object which is an instance of some class Ci chosen from1 http://www.cs.auc.dk/~eernst/gbeta/



a set of classes C = fC0 : : : Ckg. We may invoke a method m on x, typically us-ing syntax such as x.m(), and each of the classes may provide its own methodimplementation for m or inherit an implementation de�ned elsewhere. Late bind-ing ensures that the chosen implementation of m is the one associated with Ci(if any), i.e., the appropriate implementation for the actual object. Static typechecking may be used to ensure that there is indeed an implementation for everyinvocation.All in all, this provides the exibility of using several classes and severalmethod implementations, and the safety of ensuring that the chosen methodimplementation is always appropriate for the actual object. It is important tonote that the same call-site, x.m(), is reused with all those pairs consisting of aclass and a method implementation; that it does not depend on the exact classof x or the exact choice of implementation of m; and moreover that the set ofclass/method pairs is open-ended.Now consider the situation where two or more objects are involved, for in-stance where one object is given as an argument to a method on the otherobject, x.m(y). In this case, traditional object-oriented languages such as theJavatm programming language [2] and C++ [25] will only allow us to associatetwo compile-time constant classes with this expression, namely the staticallyknown class of x, Cx, and the statically known argument type of m, the class Cm.At run-time, x may refer to an instance of any subclass of Cx and y may referto an instance of any subclass of Cm. There is no way to ensure statically thata particular subclass C 0x of Cx is always paired up with a particular subclass C 0mof Cm.Note that multiple dispatch [5, 10, 23] solves a di�erent problem: With multi-ple dispatch it is possible to choose a method implementation based on the actualclasses of x and y|but we do not want to choose a method implementation foran arbitrary combination of classes, we want to ensure that the combinations ofclasses are not arbitrary.The fact is that the traditional notion of polymorphism is unable to capturerelations between several objects and their methods|it only handles the casewith one object and its methods, and multi-object relations are always speci�edin terms of a �xed number of compile-time constant classes, i.e., essentiallymonomorphically. As we shall see in Sect. 3, this means that we must give upeither exibility or safety, we cannot have both at the same time.We use the term family polymorphism to describe a generalized kind of poly-morphism that will allow us to statically declare and manage relations betweenseveral classes polymorphically, i.e., in such a way that a given set of classes maybe known to constitute a family|that family being characterized by having cer-tain relations between its members|but it is not known statically exactly whatclasses they are.The contributions of this work is the notion of family polymorphism, the un-derlying programming language mechanism, the associated static analysis tech-niques, and the implementation in the full-scale programming language gbeta [13].The notion of dependent types that makes family polymorphism possible has



been present in some form in the Beta [19] community for many years (it is de-scribed informally in [19]), but the static analysis and the implementation havenot been complete before gbeta.The rest of this paper is structured as follows: Section 2 argues that the multi-class perspective is becoming more and more important. Section 3 describes theproblems with current approaches in more detail, by means of a running examplein Java and C++. The way these problems are solved with family polymorphismis described in Sect. 4. Finally, Sect. 5 covers related work, and Sect. 6 concludes.2 We Need Class FamiliesTraditional object-orientation allows us to express a concept and several vari-ations and/or implementations thereof by means of the class and inheritancemechanisms. However, there are many signs that this single-class perspective isbecoming obsolete or at least insuÆcient.A main motivational point of generative programming [12] and software prod-uct line approaches (e.g. [4]) is that modern software engineering must supportvariability at a more global scale than the individual class. This means thatvariants must be composed consistently across an application.Languages and systems supporting advanced separation of concerns|such asaspect-oriented programming [14], composition �lters [1], and multi-dimensionalseparation of concerns [26]|often emphasize the handling of cross-cutting con-cerns, i.e., issues involving more than one class. This means that they add sup-port for the creation of class family variants.Even in more traditional languages like Java and C++ it is possible to expressclass families, and the momentum behind the abovementioned research e�ortssupports the claim that the multi-class perspective cannot be ignored.When a system contains more than one variant of a class family at the sametime, it becomes necessary to maintain consistency in the usage of family mem-bers, i.e., to avoid mixing the families inappropriately. In this case it is notsuÆcient to be able to choose variants statically, there must also be support formanagement of multiple class family variants at run-time. As described in thenext section, this causes a dilemma.3 Handling Graphs with Traditional PolymorphismIn this section we will present an example of a class family, and draw the attentionto an unfortunate choice between safety and exibility in reuse that we are forcedto make. It is a property of the type systems of Java and C++ that we cannot haveboth safety and reuse exibility at the same time, but this property is sharedwith more advanced type systems such as those of GJ [6] and Cecil [11, 15]. Wewill return to this topic in Sect. 3.3 and 4.2.Consider the concept of a graph, consisting of a set of nodes connected in someway by a set of edges. The graph concept plays the \organizing" role, o�ering a



common frame of reference under which the concept of node and the concept ofedge make sense. Moreover, there are many di�erent kinds of graphs|coloredgraphs, weighted graphs, labelled graphs, etc.In this context we will concentrate on a simple Graph and an OnOffGraph.The latter adds support for switching each edge on and o�, for instance to modelcommunication networks where individual links may now and then be broken.3.1 The Na��ve ApproachIt is not hard to express graphs by means of two families of classes as describedin the previous section. A de�nition of such class families in Java is given inFig. 1. The �rst family consists of the classes Node and Edge, and the secondfamily consists of the classes OnOffNode and OnOffEdge. An auxiliary class Maincontains code to show usage of these class families.class Node {boolean touches(Edge e) { return (this==e.n1) || (this==e.n2); }}class Edge { Node n1,n2; }class OnOffNode extends Node {boolean touches(Edge e) {return ((OnOffEdge)e).enabled? super.touches(e) : false;}}class OnOffEdge extends Edge {boolean enabled;OnOffEdge() { this.enabled=false; }}public class Main {static void build(Node n, Edge e, boolean b) {e.n1=e.n2=n;if (b == n.touches(e)) System.out.println("OK");}public static void main(String[] args) {build(new Node(), new Edge(), true);build(new OnOffNode(), new OnOffEdge(), false);build(new OnOffNode(), new Edge(), true); // ClassCastException!}} Fig. 1. Reuse: Yes { Safety: No



The method touches on Node tests whether or not a given Edge is connectedto the receiver Node. It would presumably be used to �nd paths through thegraph. In a simple Graph the answer only depends on the graph structure, butin an OnOffGraph it also depends on the enabledness of the Edge.The mainmethod in Main invokes a method build three times, with di�erentarguments. The method build expects to receive a Node and an Edge, both fromthe same class family. It then proceeds to connect the Node and the Edge, and�nally invokes the method touches on the Node with the Edge as an argument.The third argument to build is a boolean which shows the expected result.In the �rst two cases, build is used as it was intended, and it produces theexpected result. However, in the third case we break the \rules" and invoke buildwith two objects from di�erent class families. This causes a ClassCastExceptionat run-time.The third invocation is type correct, since an OnOffNode is-a Node and anEdge is-an Edge. And if the OnOffNode had only been known statically as a Node,the failing third invocation of build would have looked just like the successful�rst invocation, according to the type system.The problem is obviously that we have been unable to express the actualrequirements. As we can see in the implementation of touches in the classOnOffNode, the argument of type Edge must really be an OnOffEdge|otherwisethe dynamic cast will fail. Since method arguments in Java are in-variant, wemust use Edge as the argument type and then use a dynamic cast in the methodbody. Of course, we may then invoke the method with an instance of Edge asargument, and the error will only be detected at run-time. The type system willnot allow us to express the connection between the members of a class family, itwill only allow us to create a type hole such that all combinations of membersof these families, including the correct combinations, are allowed.It may be argued that this is not a \type hole", it is a dynamic cast, andthe people who use dynamic casts deserve what they get. The point is thatthe programmer is forced into writing a program with incomplete compile timetype checking because the discipline which should be imposed on the choice ofarguments cannot be expressed. So it is a type hole, even if it is one we haveexplicitly asked for.Apart from this, the example exhibits the very nice property that the methodbuild works both for a simple Graph and for an OnOffGraph. In other words,we are allowed to reuse the method build with several di�erent class families,without any static dependency on the actual choice of family.3.2 Working Out SafetyWe have the option of shifting the trade-o� in favor of safety, giving up on somereuse opportunities. An alternative expression of the class families is given inFig. 2, and it is obviously a bit less straightforward than the previous version.In this case we use the language C++, because Java does not (currently)support genericity and hence does not allow this kind of solution. For brevity, we



use the keyword struct and not class, thus avoiding the need for accessibilitydeclarations.In this approach, we use type parameters to establish \pre-families", i.e., setsof type parameterized classes such that mutually recursive families of classescan be created by template instantiation, as with Node and Edge, and withOnOffNode and OnOffEdge.In line with Fig. 1 there is a main function where the two class families areused, and the usage is expressed in two almost identical functions, build1 andbuild2. These two functions have the same functionality as the method buildin Fig. 1.The di�erence between the situation in Fig. 1 and the situation in Fig. 2 isthat the members of the class families are related in di�erent ways according tothe type systems.2 In Fig. 1, OnOffNode is a subclass of Node and OnOffEdge is asubclass of Edge. This is not the case in Fig. 2. In other words, in the �rst �gurethe families are related by a memberwise subclass relation, and in the second�gure the families consist of unrelated classes.Since there is no relation between a member of one family and a member ofanother family, there is no danger of mixing members of di�erent families. Hence,this closes the type hole|as we should also expect, given that the second exampleis expressed without dynamic casts. Statements mixing the two families, like thetwo function calls which are commented out in main, will cause the program tobe rejected at compile time.The result is that we have gained safety and lost reuse.Note that we could also have achieved the same trade-o� in Java by tex-tually copying the inherited material from Node to OnOffNode, and from Edgeto OnOffEdge, and then removing the `extends' clauses|except of course thattextual copying creates maintenance and comprehension problems.At this point, C++ programmers would immediately remark that the loss ofreuse is a non-problem: We could simply change build into a template functionwith the argument types being template arguments. That would make it possibleto write just one (template) function build with textually the same body asbuild1 and build2. We could then invoke it in place of both build1 and build2in main.The reason why this is not a solution is that each call-site for this build tem-plate function will be associated with a single, compile-time �xed choice of family.E.g., the �rst call-site in mainwould then be an invocation of build<Node,Edge>,and the second call-site an invocation of build<OnOffNode,OnOffEdge>, eventhough there is no need to explicitly write the part in angle brackets.In spite of the fact that the template function call would look very muchlike a function taking dynamically polymorphic arguments, the di�erence hasfar-reaching consequences:2 Since types and classes may be considered to coincide for the subset of Java and C++that we are concerned with, we will sometimes use expressions such as `the class X'where `the type associated with the class X' would have been more precise.



template <class N, class E> struct NodeF;template <class N, class E> struct EdgeF { N *n1,*n2; };template <class N, class E> struct NodeF {virtual bool touches(E* e){ return (this==e->n1) || (this==e->n2); }};struct Edge;struct Node: public NodeF<Node,Edge> {};struct Edge: public EdgeF<Node,Edge> {};template <class ON, class OE>struct OnOffEdgeF: public EdgeF<ON,OE> {bool enabled;OnOffEdgeF(): enabled(false) {}};template <class ON, class OE>struct OnOffNodeF: public NodeF<ON,OE> {bool touches(OE* e) {return e->enabled? NodeF<ON,OE>::touches(e) : false;}};struct OnOffEdge;struct OnOffNode: public OnOffNodeF<OnOffNode,OnOffEdge> {};struct OnOffEdge: public OnOffEdgeF<OnOffNode,OnOffEdge> {};void build1(Node* n, Edge* e, bool b) {e->n1=e->n2=n;if (b == n->touches(e)) cout << "OK\n";}void build2(OnOffNode* n, OnOffEdge* e, bool b) {e->n1=e->n2=n;if (b == n->touches(e)) cout << "OK\n";}int main(int argc, char *argv[]) {build1(new Node(), new Edge(), true);build2(new OnOffNode(), new OnOffEdge(), false);// build1(new OnOffNode(), new Edge(), false); // type error// build2(new OnOffNode(), new Edge(), false); // type errorreturn 0;} Fig. 2. Safety: Yes { Reuse: No



1. First, whenever a node and an edge should be delivered to a template func-tion such as build via a number of intermediate functions, every functionin the entire call chain must be a template function, and the exact types ofthose objects must be known statically at the original call-site (either exactlyNode and Edge, or exactly OnOffNode and OnOffEdge, never anything like\any pair of classes that makes up a consistent subfamily of Graph").2. Second, a template function may be a member function, but it cannot be avirtual member function. This means that we must not only know the exacttype of every node and edge everywhere, we must also know statically whatmethods implementations of other classes are being used on them.3. Third, we cannot have lists, sets, hash tables, or other data structures con-taining nodes and edges belonging together. We can only have data struc-tures containing members of one, statically selected and then �xed family ofnodes and edges.4. Finally, it is perfectly reasonable to assume that a sub-family of Node andEdge would provide an implementation of an interface speci�ed by Nodeand Edge. When using this implementation sub-family in a large, complexsystem, the template based approach would make large parts of this complexsystem statically dependent on that sub-family, because all usages of nodesand edges would have to be performed in a context where the exact classesof the members of the sub-family are known statically. This would makethe system as a whole more fragile, as would any forced dependency onimplementation details.In short, the lack of dynamic polymorphism in multi-object settings causes thesame kinds of problems that would arise if we were to give up dynamic polymor-phism in the well-known single-object setting.3.3 The Scope of This ProblemIf the problems outlined in the previous sections were speci�c for the Java andC++ language designs and well-known solutions were available elsewhere, theissue would not be of much interest. We will therefore argue that those problemsarise in many di�erent language designs, and no good solutions are known tous|apart from the family polymorphism which is the main topic of this paper.An approach which is similar to the one taken in Fig. 2 can be used in otherlanguages with support for genericity based on type parameterization. In thefollowing we will consider the relation between these approaches.Many di�erent proposals have been made for the addition of genericity toJava based on parametric polymorphism [22, 6, 9, 24, and others]. Using F-bounds [8] it is possible to design the genericity mechanism in such a way thata type parameterized class may be type checked once and for all|as opposed toC++ templates where type checking must essentially be performed from scratchat each instantiation. Moreover, using a homogeneous translation scheme (as inGJ [6]) just one version of the code is generated for one generic entity, thusmaking it possible to support \virtual template methods" in Java (late binding



is by default used for all methods in Java, so an ordinary Java method wouldcorrespond to a virtual member function in C++). This is the approach taken inGJ. Hence, the problem with virtual template member functions is less seriousthan the other problems|it is a consequence of the macro-like nature of theC++ template mechanism.As described in [7], a somewhat more involved technique than the one usedin Fig. 2 must be employed in order to express families of mutually recursiveclasses with genericity based on F-bounds, but it is still possible.Note, however, that the C++ approach where each template instantiation isstatically analyzed separately is in a sense the maximally exible approach. Anykind of constraints that could be speci�ed on type parameters of a generic entityin order to enable type checking of the entity as such (and not per instantiation)would only be able to reduce the exibility, compared to the C++ approach.This is because constraints on the type arguments will only be suÆciently strictif every possible choice of type arguments will actually make the implementationtype safe, and in those cases the C++ style per-instantiation checking would alsosucceed. In other words, there is no hope that constrained type arguments coulda�ord us greater exibility at instantiation sites than what we have already seenin C++.On the other hand, it is possible in very advanced type systems such as theone used in Cecil [15] to explicitly declare that a given parameterized class is,e.g., co-variant in a given type argument and contra-variant in another typeargument. The problem is, however, that this would not help us. For instance,EdgeF<N,E> is in-variant in N, and NodeF<N,E> is contra-variant in E. Hence,any attempt to declare that NodeF<N,E> and EdgeF<N,E> are co-variant in Nand E would simply make their implementations type incorrect. So any approachbased on (possibly constrained) type parameterization of individual classes andmethods will not allow us to obtain polymorphism at the level of class families.This should not be a surprise, since any mechanism in a type system thatwould establish a memberwise subtyping relation between the members of classfamilies would also allow us to mix classes from di�erent families, as it was donein Fig. 1, in the last invocation of build. In other words, if we could do such athing, the type system in question would be unsound.In summary, the approach taken in Fig. 2 can be used in other languages withgenericity mechanisms based on type parameterization, but it does not solve theproblems associated with: excessive propagation of templatization; the lack oftype safe data structures for class family member instances (except for datastructures statically bound to one particular family); the widespread propaga-tion of static dependencies on implementation details; and the lack of dynamicpolymorphism.Hence, in order to achieve a safe and exible mechanism, we must strive forsomething other than memberwise subtyping. In the next section we shall seehow the notion of classes as attributes makes it possible to establish a safe anduseful kind of family polymorphism.



4 Handling Graphs with Family PolymorphismThe main problem in the approaches considered so far is that the family itself isnot represented explicitly. As long as the family is only implicitly present, it ishard to conceive of any other kind of polymorphism for families of classes thanthe one based on a memberwise subtype relationship.However, if we introduce the notion of classes as attributes of objects then itis suddenly possible to use an object as a repository of classes|a class family.If we moreover introduce the notion of late binding of such class attributesthen it becomes possible to specify a number of families of classes by meansof an ordinary inheritance network describing variants of the enclosing object,the family object. For each such family object it is statically known that it is arepository for some variant of the class family declared in the statically knowntype of the family object, but it is not statically known which class family it is.This is the approach taken in gbeta. The gbeta type system is consistentwith the type system design for Beta3 that is described informally in [19], butit is stricter than the actual implementation of type checking in the Mj�lnerimplementation of Beta [21]. In the languages gbeta and Beta, classes andmethods (and more) have been uni�ed into the single abstraction called a pattern.This means that we may use words like `class' and `method', but the denotedentities will in both cases be patterns, so these words are simply synonyms forthe word `pattern' with an added hint to the reader about how to understand therole played by that pattern in the given context. Consequently, class attributesare really pattern attributes and late binding of class attributes is late bindingof pattern attributes, normally designated as virtual patterns.To make this concrete, we will present and discuss a version of our classfamily example written in gbeta, as shown in Fig. 3.In the gbeta version of the class family example, the two class families aredeclared explicitly as the pattern Graph and the subpattern (think `subclass')OnOffGraph. Each instance of Graph or a subpattern of Graph will have two at-tributes named Node and Edge. These two attributes will be patterns (`classes'),and they are known to belong together, forming a family of mutually recursivepatterns (`classes'). That is, an object myGraph is known to contain a class familywhose members are accessible as myGraph.Node and myGraph.Edge, respectively.As we shall see below, the type system does not allow us to mix membersof di�erent class families|in other words, when myGraph and yourGraph arenot statically known to be the exact same object, the patterns myGraph.Nodeand yourGraph.Node are considered to be unrelated (unless of course they arestatically known, e.g., because of a type exact reference to the enclosing object,and those statically known patterns are related).To continue with the example, Node and Edge are speci�ed with the sameattributes as they were in Fig. 1 and Fig. 2, and the further-binding of Node andEdge in OnOffGraph, corresponding to the classes OnOffNode and OnOffEdge, are3 The gbeta type system is considerably more expressive than the Beta type system,but the Beta type system comes out as a special case.



(# Graph:(# Node:<(# touches:<(# e: ^Edge; b: @booleanenter e[]do (this(Node)=e.n1) or (this(Node)=e.n2) -> bexit b#);exit this(Node)[]#);Edge:< (# n1,n2: ^Node exit this(Edge)[] #)#);OnOffGraph: Graph(# Node::< (# touches::< !(# do (if e.enabled then INNER if)#)#);Edge::< (# enabled: @boolean #)#);build:(# g:< @Graph; n: ^g.Node; e: ^g.Edge; b: @booleanenter (n[],e[],b)do n->e.n1[]->e.n2[];(if (e->n.touches)=b then 'OK'->putline if)#);g1: @Graph; g2: @OnOffGraphdo (g1.Node, g1.Edge, true) -> build(# g::@g1 #);(g2.Node, g2.Edge, false) -> build(# g::@g2 #);(* (g2.Node, g1.Edge, false) -> build(# g::@g1 #); type error *)(* (g2.Node, g1.Edge, false) -> build(# g::@g2 #); type error *)#) Fig. 3. Reuse: Yes { Safety: Yesalso incrementally speci�ed in a similar manner as previously. The expressionsexit this(� � �)[] specify that the result of evaluating a Node or an Edge is areference to that object itself (in Beta and gbeta the evaluation semantics of aclass must be speci�ed explicitly).Finally, a method build is de�ned, one instance of each kind of graph isdeclared, and build is invoked twice, once with members of the Graph familyand once with members of the OnOffGraph family. The two last statements arecommented out; they demonstrate mixing of families, and if they are includedthe type system detects that they are not type safe.We have to clarify a few points about the example. First, argument passingto methods and functions, assignment, and other evaluations are expressed inBeta and gbeta with the `->' operator, and the direction of the dataow is left-to-right (where most other languages employ a right-to-left direction, opposite



to the reading direction). It might help to think of the `->' as similar to the pipesymbol used on the command line in many operating systems.Second, Beta and gbeta provide a kind of transparency : it is invisible inmany places whether a result is stored or computed. Thus, g1.Node denotes apattern, but when it is used in an evaluation context it gives rise to an objectinstantiation, and the new object is the result of the expression; in other words,a `new' operator is implicitly added to the expression.Third, build accepts four arguments, namely g, n, e, and b; n and e arereceived by reference, b is received by value, and g is a constant attribute ofeach invocation of build.There are many reasons why the di�erent argument modes are speci�ed syn-tactically the way they are (some of them historic), but for the purposes of thisdiscussion we will just mention that a syntactic form like the following mightwork better to communicate the actual semantics of the invocations of build;note that this is for illustration, it is not valid gbeta syntax:build(g1, new g1.Node(), new g1.Edge(), true);build(g2, new g2.Node(), new g2.Edge(), false);It is essential to ensure that the �rst argument to build (g1 and g2, respectively)is constant throughout the evaluation of the arguments and the execution of themethod. Only then is it known for sure that we are not mixing di�erent families.If we were to provide this argument as an ordinary (assignable) by-referenceargument, then the gbeta type analysis would not accept the implementation ofbuild as type safe.On the other hand, it makes no di�erence whether the graph given as anargument to build is an instance of Graph, of OnOffGraph, or of any othersubpattern of Graph. We just need to know that it is some kind of a repositoryfor a family consisting of Node and Edge, i.e., that it is an instance of a patternthat is less than or equal to Graph. This means that build can be reused withan unbounded number of di�erent subfamilies of Graph, and it means that eachinvocation is guaranteed to not mix up di�erent families. That amounts to theconclusion that the class family example has now been expressed with bothsafety and reuse opportunities preserved.4.1 Revisiting the ProblemsLet us reconsider the issues described near the end of Sect. 3.2, associated withthe template method based approach:1. Type checking with family polymorphism is based on an ordinary subtypeconstraint on the family object, so there is no need for exact static knowledgeabout any of the involved classes. The relations between the involved classesmust be captured, but that may be expressed by means of the identity ofthe family object.2. There are no special considerations about the methods of other classes|build could as well have been a virtual method. As mentioned, this problemcan also be solved in other ways.



3. Data structures may be constructed to hold nodes and edges from a familywhose family object is an instance of an arbitrary (not statically known)subpattern of Graph. Such data structures are `family polymorphic'.4. Since it is easy to hide the actual class of the family object by ordinary dy-namic polymorphism, there is no need to propagate static knowledge aboutevery subfamily of Graph to all usage points in a large system.For instance, if we wish to operate on a list of nodes and a list of edges belongingtogether in the same subfamily of Graph, then we may use the following datastructure:NodesAndEdges:(# g:< @Graph;nodes: @list(# element::g.Node #);edges: @list(# element::g.Edge #)#)This pattern is parameterized by the immutable object reference g, and it con-tains the list nodes with elements of type g.Node, and the list edges withelements of type g.Edge. In essence, it is a package containing two lists holdinginstances of members of a class family.We can create a subpattern of this data structure to hold some nodes andedges belonging to a family object myGraph which is an instance of a subpatternof Graph, say LabelledGraph:myGraph: @LabelledGraph;myNodesAndEdges: @NodesAndEdges(# g::@myGraph #)This declares myNodesAndEdges to be an object which is an instance of a subpat-tern of NodesAndEdges where the attribute g is immutably bound to myGraph.At this point we can pass myNodesAndEdges as an argument to methods such asthis one:listBuild:(# ne:< @NodesAndEdges;n: ^ne.g.Node; e: ^ne.g.Edgedo ne.nodes.head -> n[];ne.edges.head -> e[];(n,e,true) -> build(#g::@ne.g#)#)This method receives ne as a constant argument and thereby provides accessto a class family object|namely ne.g|and a list of nodes belonging to thatfamily|ne.nodes|and �nally a list of edges belonging to the same family|ne.edges. The method starts by calling head twice, extracting the �rst elementof the two lists (and omitting the check for an empty list. . . ) and then invokesbuild. Note that we could have threaded ne through any number of methodinvocations as an ordinary by-reference argument, known only as an instance ofa pattern that is less than or equal to NodesAndEdges. For example:



m1: (# ne: ^NodesAndEdges enter ne[] do listBuild(# g::@ne #)#);m2: (# ne: ^NodesAndEdges enter ne[] do ne[]->m1 #);m3: (# ne: ^NodesAndEdges enter ne[] do ne[]->m2 #)In this example, m3 calls m2 which calls m1, each time passing ne|known as aninstance of NodesAndEdges or a subpattern|to the next method. None of thesemethods depend on the exact classes in the class family and, of course, neitherdoes listBuild nor build. We could invoke it with ne[ ]->m3, where ne is anyreference whose declared type is NodesAndEdges or a subpattern thereof, e.g.,myNodesAndEdges[]->m3.This shows that we can package and re-package a family of classes and someinstances of those classes, and we can statically ensure that the classes belongto the same family and the objects belong to the classes|without knowingstatically what classes the family contains.4.2 Revisiting the AlternativeIn an approach based on parametric polymorphism, i.e., type parameterization,type safety in the management of class families is achieved by avoiding subtyp-ing relationships between families. This implies that every individual piece ofcode dealing with a class family is either monomorphic (statically tied to oneparticular class family) or it is inside a generic entity with the family membersas type parameters. In the �rst case, reuse opportunities are obviously lost. Letus consider the second case more closely.Any execution of code inside a type parameterized entity corresponds to aground instantiation of that entity|a direct or indirect instantiation havingactual type parameters all of which are types not containing type variables.This is enforced by the design of such type parameterization mechanisms: (1) aparameterized class is not a class, it is a function from types to classes, and it isonly possible to create objects as instances of classes, such as a parameterizedclass applied to some type arguments ; (2) a type parameterized method may becalled from another type parameterized method, but the call stack has �nitedepth and it does not start with a type parameterized method, so at some pointthe type parameters to the method are received from some other source thanthe caller-method, i.e., as ground types or depending on type parameters ofan enclosing parameterized class|which brings us back to the �rst case. Notethat if the types are type variables, they must be the type parameters of thesame enclosing generic entity for all members of the class family; otherwise theycannot be mutually recursive.This strict discipline is necessary for the soundness of the static analysis;if it were possible to have a mutable entity (an object) at run-time which isparametrically polymorphic (i.e., an instance of a type parameterized class whichhas not received all of its type arguments as ground types), then it would bepossible to interpret the \free type variable" di�erently at di�erent times andthereby destroy the overall type correctness of the program. This is well-known



from functional languages with mutable references, such as Standard ML [20]and Caml [29].This means that every run-time call-chain of methods passing instances ofmembers of a class family as arguments or looking them up in their receiverobject includes a call-site which is monomorphic in the class family, and anymethod which is type parameterized by the family is eventually called from sucha monomorphic site. In other words, a call chain can only access a class familypolymorphically after a certain point where the access is monomorphic.Now compare this to the well-known case of traditional dynamic polymor-phism used with single objects (not families). Consider for example the casewhere we have an inheritance hierarchy rooted in GraphicalObject, containingsubclasses such as Circle and Rectangle, and supporting a (virtual) methoddraw. With this design it is possible to create a number of instances of varioussubclasses of GraphicalObject, and to store them all in a List whose ele-ments are typed as GraphicalObject. Now we may traverse the list and executedraw on each element. Note that the call-stack in this case does not include amonomorphic access before the polymorphic access. In fact, there may not existany pointers typed by the actual class to each object in the list in the entire pro-gram execution state (a this pointer typed by the actual class may be createdlater, in the execution of the draw method).This makes a big di�erence.The big di�erence is not unlike the e�ects of manual memory management|it is a global phenomemon. In systems without garbage collection, it is necessaryto design intricate, global management schemes such that the following questioncan be answered correctly at certain points: \Is it possible that there existsanother live pointer to this object?" If the answer is incorrectly \No!" therewill be dangling pointers, and if the answer is incorrectly \Yes!" there may bememory leaks. In a similar fashion, to be able to perform an operation on a groupof objects which are instances of some members of a class family, it is necessaryto design management schemes to ensure that there is at least one monomorphicpointer to each of those objects somewhere in the system, and we must be ableto �nd that pointer in order to initiate a (possibly parametrically polymorphic)call-chain that will perform the operation.In the single-object case, we can collect GraphicalObjects in a polymorphicdata structure and then forget about their precise classes, and the de�nition andusage of the data structure is strictly isolated from static dependencies on theindividual subclasses such as Circle etc.But in the multi-object case, we cannot create a similar polymorphic col-lection of nodes and edges and perform operations on them without creatingdependencies on their actual classes. This means that we will have to change ourcollection every time we want to put objects from a new sub-family into it.One possible approach would be to use wrapper classes like NodesAndEdges|the di�erence is that, with parametric polymorphism, creation of these objectsand insertion of nodes and edges would have to happen monomorphically. Wecould then have lists of these wrapper objects etc. However, it would be neces-



sary to rediscover the exact actual subclass of NodesAndEdges for each wrapperin such a list we intend to use, because the contained nodes and edges canonly be made accessible with monomorphic access. The rediscovery could beachieved with instanceof or similar means, but the rediscovery site would de-pend speci�cally on each class family that it is capable of rediscovering. Add anew subfamily, and this piece of source code must be changed.Hence, even though there seems to be only a subtle di�erence between theapproach based on parametric polymorphism and the approach based on familypolymorphism, we claim that the di�erence has far-reaching consequences, espe-cially for large scale systems where the propagation of static dependencies havethe most devastating e�ects.As mentioned, in the approach based on family polymorphism we exploitthe features of virtual patterns in gbeta, which are a generalization of virtualpatterns in Beta [18, 19]. The next section discusses some properties of theunderlying type system.4.3 Aspects of the gbeta Static AnalysisIt has been claimed that virtual types are inherently not type safe [7]. Thereason why this opinion has emerged is probably that the community behindvirtual patterns has not expressed with suÆcient clarity that virtual patternsare attributes of objects, not attributes of classes. Consequently, virtual typesare not attributes of types. In particular, this point was not emphasized in [27],where a design of virtual types in Java is proposed, inspired by the notion ofvirtual patterns in Beta. Also, virtual patterns may have been confused withunchecked covariance. However, virtual patterns have a kind of existential type,so potential covariance|in the type of a method argument, say|is always knownstatically, at all call-sites.Let us briey outline why it would be unsound to let virtual types be at-tributes of types. Assume that a type system for a language with virtual at-tributes (be it virtual classes or virtual patterns) would have the following prop-erty: If an object x is known to have type T and V is a virtual attribute associatedwith T and declared to have type TV , then x:V has the type T:V ; T:V would bean existential type such as 9T 0V �TV : T 0V , i.e., a type T 0V that is a characteristicof T , but only known by its upper bound TV . If this type T 0V is assumed to bea property of the type of the enclosing object, T , then two di�erent objects xand y both having type T would have the same virtual type, i.e., x:V and y:Vwould have the same type. That would obviously be unsound in a type systemwith subsumption, since x could be an instance of a class having most speci�ctype T , and y could be an instance of a subclass whose virtual V could be fur-therbound to a strict subtype T yV of TV . An assignment from a reference x:r to areference y:r referring to the same declaration of r, having the type of V , wouldthen be an assignment from a reference of type TV to a reference of type T yV (astrict subtype of TV ), i.e., the assignment would be type incorrect|but such atype system would consider it to be an assignment between references havingthe same type.



Conversely, if a virtual V declared in a class having type T should be anexistential type 9T 0V �TV : T 0V that is treated is such a way in the type analysisthat no assignments between references of type T:V were allowed|thus avoid-ing the abovementioned type hole|then it would be impossible to write usefulimplementations involving virtual types. For instance, a method accepting anargument of type V would not be able to invoke another method accepting anargument of type V as an invocation on the current receiver object (a \self-send").Of course, neither of these approaches is used in gbeta. In fact, as it was al-ready stated very clearly for Beta in [19, p. 133], a pattern declaration Q insideanother pattern declaration P declares a distinct Q pattern for each instance ofP . This means that the static analysis of Beta and gbeta must consider pat-tern attributes, including virtual pattern attributes, as having composite types,consisting of two kinds of information. The space constraints do not permit adetailed description of the gbeta type system here; please refer to Chap. 13 andApp. E of [13] for more details. We will however extract some salient features ofthis type system, in order to support the claims made about its properties.The �rst kind of information in a gbeta type is the usual kind of staticrepresentation of object types: maps from names to types, indicating that anyinstance having the given type will have attributes with some speci�ed nameshaving speci�ed types. The second kind of information is a relative representationof an enclosing object of a pattern, represented as a path leading from the currentobject to that enclosing object of the pattern. Moreover, every gbeta type ischaracterized as being exact, or known by upper bound only, or known by upperand lower bound. Types which are known by upper bound could be characterizedas existential types, but it should be noted that they are also dependent types,depending on their enclosing objects.We should mention that if Q is a pattern attribute of two objects a and b, itis often the case that a:Q and b:Q are indeed statically known to be the samepattern|gbeta and Beta would hardly be practically useful otherwise. But a:Qand b:Q generally cannot be assumed to be the same pattern if any of them areonly known by upper bound, not even if a and b are known to be instances ofthe same pattern.Both patterns and objects have types in gbeta. Two pieces of syntax denotingpatterns have di�erent types if they are not known to be associated with theexact same maps from names to types and the same enclosing objects, and twopieces of syntax denoting objects have di�erent types unless they are guaranteedto denote the exact same object at run-time. It is not suÆcient to know thattwo objects are exactly an instance of the same pattern, they would still havedi�erent types if they might be di�erent objects.To put this into context of the examples given above, the virtuals x:V andy:V discussed above would be known to have certain attributes (declared in thestatically known maps from names to types), and they would moreover be knownto be the V virtual of exactly the object denoted by x and the object denotedby y, respectively. In the (typical) case where x and y are not guaranteed to be



the exact same object, x:V and y:V will generally have assignment incompat-ible types|no subtyping relation exists between them, they are just possiblydi�erent.Note that this means that a virtual pattern known only by upper bound whichis reached via a mutable reference is \not even equal to itself"; for instance, if z isa mutable reference then two di�erent occurrences of z may refer to two di�erentobjects|not even ow analysis could have guaranteed that no assignments toz will happen between two usages of z, because there could be other threadshaving access to the current object.In practical Beta and gbeta programming it is very often the case thata virtual pattern occurs as an attribute of an object that is accessed via animmutable reference. As described in [28], virtual types can be changed intoordinary types (whose structure is known completely at compile-time) by meansof so-called �nal bindings. This is possible in Beta and gbeta, but an immutablereference to the enclosing object is an equally valid and more common way tomake references with virtual types assignable. Note that the approach basedon an immutable reference works both when the virtual in question is knownexactly and when it is known only by upper bound. Actually, an example of thelatter is the element types of the lists in NodesAndEdges.A special case is the source code in a pattern declaration P containing avirtual pattern declaration V , i.e., the code executed in a context where V isan attribute of an enclosing object (think: V is an attribute of `this'). Anenclosing object is accessed via an immutable reference, usually implicit at thesource code level, but available as this(X) for an appropriate identi�er X. Thismeans that the name V used on its own has a type that is the same everywherein the declaration of P .4 This in turn means that it is both dynamically safeand recognized as type safe by the static analysis to assign between di�erentreferences having the type of V .Hence, a virtual attribute V of a pattern P can inside P be treated in muchthe same way as a constrained type argument inside a type parameterized class:The statically known upper bound of the virtual yields a certain available inter-face and allows for assignment to all non-existentially typed references havingsupertypes of the upper bound of the virtual, and the virtual is known to be\equal to itself" such that assignments between references with the type of V arealso allowed. This makes it safe and convenient to program patterns containingvirtuals.Finally, we can apply this knowledge about the typing of gbeta in generaland gbeta virtuals in particular to the example shown in Fig. 3 and the methodlistBuild shown near the end of Sect. 4.1. Whenever an immutable referenceto an object is established (e.g., with a constant argument like g:<@Graph), allreferences to virtual attributes in that object are then known to be the virtuals ofexactly that object. This means that references declared to have the same virtualtype, i.e., the type of the same virtual pattern, are assignment compatible. Forinstance, the elements of ne.nodes in the method listBuild are known to have4 For those who know that this isn't quite true: In the enclosing MainPart.



the type of ne.g.Node, exactly like the local attribute n of listBuild. Hence, itis safe to assign an element from ne.nodes to n, even though we have no staticknowledge about the exact pattern of which ne is an instance. Similarly, n maysafely be given to build as an argument, because that argument is declared tohave type g.Node|and g is known to be the same object as ne.g, because ofthe binding g::@ne.g in the invocation of build.In this description we have used the term `type' to denote the knowledgeestablished by static analysis about each of the entities|patterns and objects|accessible in the run-time environment (patterns are, at least conceptually, avail-able at run-time).In particular, the type of a virtual pattern is a compile-time description thatrestricts the possible actual patterns denoted by a given virtual attribute toa well-de�ned (but generally unbounded) set of patterns. This description isparameterized by a run-time context; in other words, it is a function that mapsa run-time context into a run-time entity, in this case a pattern.From this notion of the type of a virtual pattern it might be possible toderive a notion of virtual types, de�ned without referring to virtual patterns orsimilar concepts. There is an ongoing debate as to whether `virtual X' should be`virtual types' or `virtual classes', also touched upon in [7]. The approach takenin gbeta is a kind of `virtual classes' approach, because patterns may (also) beconsidered as classes.The main di�erence between virtual patterns and (pattern-less) virtual types,considered from a practical point of view, would be that virtual types can not beused to create new instances, whereas virtual classes/patterns can be used justlike other classes/patterns to create objects. As a result it is, e.g., possible tocreate nodes and edges in a given subfamily of Graph, and to compose them intoa graph, again without having any static dependency links between the graphcreation code and the exact Graph subfamily being used. It is our experiencethat the constructive use of virtual patterns is extremely useful. It is also yetanother example of a situation where it is possible to use (in this case enlarge orcreate) a Graph without creating monomorphic dependencies; with an approachbased on type parameterization or even virtual types, it would be necessary torefer to the exact classes of one particular class family in order to create newnodes and edges.5 Related WorkThe language gbeta has been developed as a generalized version of Beta, sothe design of Beta is an immensely important starting point for gbeta, and thecommunity around Beta has provided lots of valuable feed-back. Moreover, asmentioned in Sect. 4, the informal understanding of types in Beta as describedin [19] matches the actual type system of gbeta quite well, apart from the factthat the basic concepts are more general in gbeta. However, the implementationof gbeta is very di�erent from the implementation of Beta. In particular, thestatic analysis of virtual patterns in Beta|as described in [17]|does actually



not suÆce to handle family polymorphism correctly. The problem is that thisstatic analysis in too many cases considers a virtual pattern in two di�erentobjects to be the same pattern. Even though the author had used Beta foryears at this point, this problem with the static analysis of Beta only becameapparent after a close inspection of [17]. This underscores the importance offormalizing the semantics and static analysis|a task which has unfortunatelynot yet been completed. However, the gbeta static analysis is the �rst one tosolve this problem in the static analysis of Beta, and moreover it handles theadded generality of gbeta.In Sect. 3.3 and 4.2 it has already been discussed in what ways and to whatextent parametric genericity can provide both type safety and reuse opportu-nities with class families. Our general conclusion is that either safety or reuseopportunities must be compromised, and in particular the almost-solution basedon type parameterized methods will cause widespread static dependencies on theexact class families being managed. We should mention that the proposal in [7]is based on having type exact references to the members of a class family, thusmaking family polymorphism impossible at the outset.In the area of functional languages there is a large body of work concernedwith dependent types (see, e.g. [30]). A dependent type is a type that is allowedto depend on run-time values in program executions, and it is typically used toexpress and prove detailed properties of the outcome of computations, such as\reverse is a function that accepts an argument of type 'a list(n) and returnsa result of type 'a list(n)", meaning that it returns a list of the same type andlength (n) as the argument. Often, dependent types are made less useful becausesupport for general usage of program values in types makes type checking unde-cidable (as in Cayenne [3]), and often it is required that programmers provideproofs manually, using some kind of theorem prover.The gbeta type system has not yet been proved correct, but the implementa-tion certainly does not require manual intervention. This type system employsdependent types in that it is part of each pattern type that this pattern is de�nedin one particular run-time context, and the type system only accepts two patterntypes as being equivalent if they are associated with the same run-time context,in addition to having the same attributes with the same types, of course. No owanalysis is made to discover what expressions will denote the same object|wedo not consider ow analysis to be an acceptable tool as part of type checking|so object `sameness' is only detected in the case where the object is accessedvia equivalent paths of immutable references. This approach seems to work verywell in practice, so there are no immediate plans to extend the analysis in orderto discover further occurrences of object sameness.Finally, it is instructive to compare the usage of objects in gbeta as classrepositories with the usage of structures, signatures, and functors in SML [16]to provide packages of types and values. A structure in SML is a package oftypes and values which may be created at top-level and referred to by meansof structure names (they are not �rst class values). A signature is a structurespeci�cation, listing required names and kinds of types, and names and types



of values. By applying a signature to a structure, it may be ensured that thestructure conforms to the given speci�cation, and all parts of the structure notspeci�ed in the signature will thereafter be invisible outside the structure. Fi-nally, a functor is a function from structures to structures (again: not a �rst classfunction). It may take a structure constrained by a signature as an argument,and it will itself have a signature. An application of the functor to a structurewhich matches the required signature will then produce a structure with thepromised resulting signature.Tentatively, the following concepts are related: A gbeta object is similar toan SML structure; subtype polymorphism performs a similar role in gbeta assignatures in SML; and a gbeta mixin may play a role similar to the one playedby a functor in SML.The �rst di�erence between gbeta objects and the SML module system is thatgbeta objects are (partially) mutable, �rst-class entities, whereas SML structuresare immutable entities that may only be used at top-level, in their own, separatename space. Moreover, it causes di�erences at many levels that the SML typesystem is oriented toward structural equivalence, whereas the gbeta type systemdistinguishes between two di�erent declarations of the same name, except wherethese two declarations are explicitly declared to be related.On the other hand, subsumption (subtype polymorphism) makes it possiblefor a gbeta object to present a subset of the actually implemented interface, sim-ilar to a structure with a declared signature. A mixin may be used to enhance apattern which may then be instantiated, yielding an object which is an enhancedversion of the object that the original pattern would have produced; when theobject is used as a class repository, this is similar to the e�ect of applying afunctor to a structure. Note that this may happen at run-time in gbeta.In summary, the basic concepts in the SML module system may be usefulas a starting point for the understanding of the usage of gbeta objects in themanagement of class families. However, there are so many and so deep di�erencesthat the analogy should not be taken too far.6 ConclusionThis paper has presented the notion of family polymorphism. It has been demon-strated that traditional notions of polymorphism|dynamic, single-object sub-sumption and parametric polymorphism, with or without F-bounds|do notallow us to treat groups of objects belonging to mutually recursive families ofclasses in a safe manner without causing widespread dependencies on the exactclasses involved, thereby prohibiting reuse with other families of classes.The virtual pattern mechanism in gbeta supports polymorphic access to suchgroups of objects based on a notion of types depending on the identity of objectsused as class repositories. This solves the abovementioned problems with safetyand loss of reuse opportunities, and it only requires the explicit passing of theclass family repository object together with the instances of members of thatclass family.
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