Carnegie Mellon University, School of Computer Science
Master of Software Engineering

Evaluation of AgitarOne

Analysis of Software Artifacts

Final Project Report
April 24, 2007

Edited for public release by Jonathan Aldrich.

Team members
Tadashi Tsuji

Ayo Akinyele

Fabian Hueppi

Ed Yampratoom

Irandi Upeka Bulumulla

Analysis of Software Artifacts

Table of Contents

INTRODUCTION 3
MOTIVATION FOR AGITARONE ...ttt ettt ettt eee e e e eaesee et eeeeeeeteeaeeseseeenesaseneetessesnens 3
DESCRIPTION OF AGITARONEeout oottt ettt ettt eee et et e e eeteeaeeaesesene et eteeseseesneseeeneenseneeseesaenne 3
CODE BASES. ..ttt ettt ettt ettt e et e et e e e e st et e et e et e st e ea e e et e et et e et e et et et e eteeaeeaaenas 3

JUNIT TEST GENERATION 3
LEGACY CODE.... et ettt ettt ettt eeaeeae st ea e et e et eeeeeaesesene et et et eseeeaeseeeneeaseneeseenaenns 3
EXPERIMENT DESCRIPTION ...ttt et eeteteeeeeeeeeeeueeeteeeeteseseeseaseseteseeeeesesensesseseeese et ensessensessesseeneeeeneeneennene 5
RESULTS OF THE EXPERIMENT. ... ettt eteeeteeeeeeeeeeeteeueeeeeeeteseseeseaseseeeseeeeensensessesseseeeseeesensensensesseseeeneeeenseseennene 6
EVALUATION .ottt ettt et eeeeee e e e e et et et e e e eeseesesateue et e seneeeeeaneseeeneeaeeaseseneenseseeeneeaeeeeeneennene 7

AGITATION 8
HOW AGITATION WORKS -ttt et et eeteeeeeeeeeeee et eeeteseeseeseaseseteseeeesesesseeseseeeseeesenseesensessesseeneeeenseseennene 8
EXPERIMENT DESCRIPTION ...ttt et eeteteeeeeeeeteeue st eeeeeeesesesseaseseeeseeeeeseseesenseseseseeeeenseesensessesseaneeeenseseennene 9
EXPERIMENT RESULTS ..ottt ettt et ettt e e et et et e s eeaeeaesesen e e e easeseeaeeneseseneeasenteseneesaesesensenseneeneennenns 9
EVALUATION ...ttt ettt ettt et ea e e e e e e et eat et e s eeaeseeeaeseeene et esesseeaeeaesaseneeeenseneean 10

CODE RULES 11
EXPERIMENT DESCRIPTION ...ttt et eeeeeteeteeee et e et et et eteeeeaeeeeeueseeeneesteesesseseeeseseseneentensensessessesasereesesenseneas 11
EXPERIMENT RESULT 1.ttt ettt et et ee e et et et eet e eeaeeaeeneseeene et ensesseseeesesesene et ensensessesnesaseneensenseneeas 11
EVALUATION ...ttt ettt et ettt ae e eeea e et et et et eeaeseeeaesaeene et eaessesaeeaesaseneenenseseean 13

MANAGEMENT DASHBOARD 13

CONCLUSION 15

Page 2 of 15

Analysis of Software Artifacts

Infroduction

Motivation for AgitarOne

Writing unit test cases manually is a fime-consuming task. The test cases that we have
written may not cover all invalid, unexpected inputs or call sequences. Moreover,
inspecting code for compliance and bugs is also time-consuming. Finally, collecting and
presenting test data is a fedious and error prone task that should be automated.

Description of AgitarOne

AgitarOne is a comprehensive and infegrated unit festing tool for Java. The main
feature of the tool is that it automatically generates JUnit tests that provide good code
coverage. These tests can complement hand-written tests that require deep application
knowledge.

AgitarOne includes a unique tool called Agitator which exercise code by testing them
with a wide range of inpufs and observe the code’s behavior. Agitator automatically
generates test data to exercise the code with a high level of coverage. Agitation results
are presented as a short list of observations, which are reviewed by the developer. These
observations can be turned intfo assertions that form the basis of regression tests for the
code.

AgitarOne also includes a set of code rules that can automatically detect common
coding errors and standards violation. These rules can be created and customized to suit
the project or organization’s requirements.

As a management tool, AgitarOne provides a project dashboard which summarizes the
project testing status at a glance. The project summary shows complexity, usage,
coverage, and test status over time. It also identifies ownership of classes.

Code Bases

We will evaluate AgitarOne by running it on a number of code bases.

e Serendipity’'s code base: This is the sensor placement configuration tool developed
by Serendipity team for last year's Studio project that we have to enhance.

e Crystal Analysis

e DWP: A statfic analysis tool built on Crystal.

e Board Game: The code provided as a test bed for our assignment.

JUnit Test Generation

AgitarOne’s test generation features can be used as regression suites for legacy code or
for developers to learn about their code. In this experiment we evaluate the
effectiveness of AgitarOne for regression testing.

Legacy code

AgitarOne is ideal for performing regression testing on legacy code. The generated tests
can provide a safety net that developers can use to ensure that their refactoring
activities don’t have unintended side effects.

The first step for using AgitarOne on legacy code is to generate the tests on the existing

code. As mentioned, in a legacy code scenario the intent of the generated tests is to
prevent breaking the original behavior of the code. So AgitarOne assumes that the

Page 3 of 15

Analysis of Software Artifacts

legacy code is correct and thus creates tests by inspecting the functionality of the code.
Therefore, all test cases pass. These tests can be best described as characterization tests!.
They are based not on what the code is supposed to do, but what it actually does.

After the tests are generated, the programmer can start with refactoring and modifying
the original code base. The generated tests should be rerun after every modification to
check if the tests fail. These generated tests can also be included into a regression test
suite.

3 suggestions for bosch.ca.jess.devicePositioner.Utilities
-~ Warning: There was an exception in the static initializer of javax.media.j3d.VirtualUniverse.

1. If VirtualUniverse depends on specific environment conditions, create a SetupHelper to initialize the environment correctly.

- AgitarOne found one or more sections of your code where the same inputs resulted in different behavior. These tests have been discarded as
unreproducible but they would have covered 15.4% more of the target dass.

1. Tt is possible the tests were not reproducible due to dependencies on external static state. Refactoring to use the Dependency Injection (Inversion of Control)
design pattern generally results in more testable code.

2. Consider adding a SetupHelper with an implementation for setupTestCase() that restores the environment to a known state between every test sequence.

- There were lines and conditions in Utilities that AgitarOne could not exercise. 2.2% of the class could not be covered.

1. Write a test data helper that creates parameters that Utilities needs. Create the parameters in the states needed to reach the uncovered sections.

Suggestions| User Log | Support Info

Figure 1: If AgitarOne can’t cover all the code, it provides advice on how to help improving the
coverage.

I http://en.wikipedia.org/wiki/Characterization_Test

Page 4 of 15

Analysis of Software Artifacts

Experiment description

The objective of this experiment was to evaluate how effective AgitarOne is at catching
bugs that are introduced into Serendipity’s code base. In this experiment, we used
AgitarOne as is recommended for legacy code and made no modifications to the test

cases.

We ran the test generation for two classes in the code base. These two classes are
described in the tables below.

Name
Description

Methods in original class:
Generated test methods:

Initial test coverage:
Comment:

Table 1: Data of Utilities.java

Name
Description

Methods in original class:
Generated test methods:

Initial test coverage:

bosch.ca.jess.devicePositioner.Utilities.java

This class does calculations in a 3D coordination system. For
example it has methods that calculate the new location of
a point if it is moved a certain distance with a certain angle.

10
47
93%

Since the original code does many calculations, the bugs
we infroduced were mostly about tampering with some of
the intermediate values in the calculation:

bosch.ca.jess.JessManager.java

This class manages all operations related to Jess. For
example, it has methods for registering objects in Jess,
managing the rule engine’s focus when it is running etc.

20
7
37%

Table 2: Data of JessManager.java

Page 5of 15

Analysis of Software Artifacts

Results of the experiment
We intfroduced the following bugs into the code and got the following results.

bosch.ca.jess.devicePositioner.Utilities.java

Bug 1

Bug 2

Bug 3

Bug 4

Bug 5

In a method that calculates the slope between two points, we just
added a random number to the result.

Result: 6 tests failed

This method was used in many of the other test methods and thus the
change was reflected in many failures.

One method needs to find the room in which an object is located. For
this the method accepts the object as a parameter and refurns the
room object. We changed the method so that it returns just a new
room object.

Result: 1 test failed

In another test we just changed a call from Math.tan(param) to
Math.cos(param) in one of the branches of an if statement.

Result: 3 tests failed

One method refurns a Point object. We fried to switch the X and Y
coordinates of this return value.

Result: 1 test failed

We changed the calculation so that the Z value of the refurn object
from Bug 4 deviates from its infended value.

Result: Bug wasn't found.

Reason: For all the methods that did calculations on a point object, the
generated tests only asserted the X value. Any changes on other
members of the object weren't reflected in failed tests.

Table 3: Bugs in Utilities.java

Page 6 of 15

Analysis of Software Artifacts

bosch.ca.jess.JessManager.java

Bug 1 JessManager is a singleton class, and therefore should only be
initialized through the getinstance() method. We changed this so that
a new instance of JessManager is created each time the constructor is
called.

Result: Bug wasn't found

Bug 2 If intializeEngine() method is run more than once it will cause an
exception. As such, infializeEngine() is run from inside the constructor
only. We changed the code so that this is no longer called from within
the constructor.

Result: 1 test failed
Agitar was able to identify this and generate a negative test case for it.

Table 4: Bugs in JessManager.java

Evaluation
Benefits

Exploring branches: From the tests for Utilities class, we can summarize that the Agitar
tests could find changes in the mathematical calculations even if they were in
nested if statements. Agitar created enough tests to cover most of the branches in a
method.

Negative test cases: In Bug 2 for our JessManager class, AgitarOne was able to
identify that the initializeEngine() method should not run more than once. Therefore, it
created a negative test case which ran this method ftwice.

Save resources: AgitarOne can be very beneficial because creating a regression test
suite manually would take up much more resources.

No false positives: Since the tool checks whether results match their expectations, it is
unlikely that tests will fail, if the behavior of the code didn’t change.

Small learning curve: It needs little knowledge to start using the tool, and quickly
creates a good baseline for the festing. Also the creation of the helper classes does
not seem to be difficult and AgitarOne already provides a wizard for creating them.

Limitations

Handling complex return objects: The problem was that for methods that retfurned a
complex object, only certain members of that object were tested for correctness
(see Bug 5 in the Utilities class). This can result in many false negatives.

Non deterministic number of test cases: Upon regeneration of test cases for the same
class, we received files containing different numbers of test cases. This is a
disadvantage because the optimized coverage may not be achieved on the first
generation of test cases. The user might have to generate the test cases several
times and may not know if the next generation will achieve a higher coverage than
the current one.

Page 7 of 15

Analysis of Software Artifacts

o Usability for new user: Newly generated tests override the existing tests. This might be
cumbersome for new users, since they have to remember to save their existing test
cases before regenerating new ones.

¢ Handling external programs (Jess): Based on the stafistics that we collected about
the two classes (see tables 1 and 2), Agitar did not comprehensively test the
JessManager class, which is a manager for the external Jess rules engine.

Bottom Line

Overall the unit tests generated by AgitarOne create a security net for legacy code that
can help make developers aware of unintended effects of their modifications. The test
cases also provide a framework that can be extended by the developer to achieve
better results. The techniques that AgitarOne provides for this are Test data helpers and
Assertion helpers. AgitarOne also has its own set of annotations that can be added to
the test cases. Although the generated tests are not perfect they provide a very good
starting point. Writing all these test cases manually for already existing code is a huge
time investment that most projects can't afford.

So, for a large legacy code base without test cases, the only reason for not using the ool
is its cost. The project would need to evaluate if the tfime saved for not writing fests
manually is bigger than the acquisition cost. Even if the developer needs to add
additional helper classes fo enhance the tests, the time saved may still be significant.

Another alternative would be to not use unit testing at all, and just do peer-reviews for all
the changes. This variant however seem to be difficult to apply since the legacy code
may be unknown and the effects of changes can’t be assessed easily. Also in this case
the project would need to make a trade-off between the invested time for the reviews
and the cost of AgitarOne.

An additional factor in the evaluation of a buy decision, of course is that the tool can be
reused in other projects, so that the investment would make sense from an organizational
perspective, even if it isn't worthwhile for one project.

If we can continue to use this tool, we will use it to create a regression test suite for our
legacy code, and then use it during our implementation stage to make sure that our
new code does not break any existing functionality.

Agitation

AgitarOne’s agitation feature automatically generates test input data and enables the
developer to observe the code’s behavior. In this section, we briefly describe how this
feature performs this automatic testing; we describe two experiments that we applied
this feature to and the results in ferms of bugs that were identfified. Finally, we evaluate
the feature based on our experience with if.

How agitation works

The agitation feature starts out by creating instances of classes from the code. Then, it
automatically performs method calls with those instances using a wide variety of input
data. The input data is based on the types of the class and method parameters. This is
called “exercising” or “agitating” the classes and upon completing this process, results
are produced. Results include observations and assertions, which are the behavior of the
classes and methods it recorded while exercising with different inputs. In addition, it also

Page 8 of 15

Analysis of Software Artifacts

shows unexpected behavior —i.e., when a specific input causes one’s code to throw an
exception, and this exception was not caught. Essentially, the results produced through
agitation are facts about the classes and methods, it is then left up to the developer to
decide whether the observations are what were intended.

Experiment description

The objective of our experiments was to evaluate how effective agitation is at catching
bugs in an ongoing project and the Othello board game. In these experiments we
applied agitation giving some assistance to the input data to the first project and without
assistance to the second.

DWP Experiment

In the first experiment we applied agitation to DWP, which is a project that applies formal
methods to reason about properties and behavior of Java programs. This application
uses Dijkstra’s Weakest Precondition (DWP), where given a desired post-condition and
the source code, a pre-condition is generated. This resulting pre-condition represents
what the source code must satisfy so that when it executes, its final state satisfies the
desired post-condition.

Within the code base of this application, there are two parts in which we applied
agitation, a parser and an analyzer. The parser uses Crystal to implement the translation
of source code to DWP notafion. While the analyzer implements the application of the
DWP method to the franslated source code.

Othello Board Game experiment

The second experiment was to apply agitation to the Othello Board game project. This
project is an implementation of the board game in which we will agitate all of its classes
and see if there are unexpected behavior and errors in the code.

Experiment Results

DWP Parser

In agitating the parser class, a NullPointerException was identified in the constructor. This
uncaught exception is a verified bug.

In order to test that the parser is actually translating the source code properly, we need
to use the factory feature. We were able to use an existing random factory object to
create input data for the IAssignmentExpressionNode type (method parameter). This
small and limited test did not reveal any issues about the method implemented within this
class. Nonetheless, Agitator observed not-null preconditions on field variables in some
methods (e.g., this.x I= null). These are useful and valid observations that were then
turned into assertions for regression tests.

DWP Analyzer
We agitated several classes from the analyzer with the following results.

Total Warnings Identified 27
Actual Bugs 17
False Positive 10
Time to run test 20 seconds

Agitator identified 17 instances of uncaught exceptions which are either a null pointer
exception or an array index out of bound exception. These are valid bugs that we

Page 9 of 15

Analysis of Software Artifacts

somehow overlooked while writing the code. They are all located within a specific part
(data repository) of the analyzer. We consider the severity of these bugs to be medium.
In addition, there were 10 issues that the tool warned about, but we were not concerned
with them because they were not real issues.

Agitator made several observations that we consider valid such as not-null preconditions
on field variables in some methods (e.g., this.x I= null). These observations can be turned
info assertions for regression fests. Agitator also observed some relationships that were
valid but foo weak. For example, it observed that -100 <= iChildNumber <= 100 while
DWP notation allows only up to 3 children nodes. However, we are able to edit this
observation and turn it intfo a stronger assertion.

Othello Board Game
The results of agitating BoardGame are shown in the following table.

Total Warnings Identified 47
Actual Bugs 30
False Positive 17
Time spent to run test 30 seconds

Agitator identified 30 instances of uncaught exceptions of 8 distinct types (NullPointer,
Runtime, AssertionError, NumberFormat, NoSuchElment, ArraylndexOutOfBounds, and
ClassCast). These are valid bugs that were scattered throughout the project. We
consider the severity of these bugs to be medium.

The tool was not able to test all classes in the project due to fimeout issues, especially for
the AlThread class. The AgitarOne server timed out when generating the tests because
they fook too long to compute. The figures in the table could have been higher if we
could have agitated the AlThread class successfully.

Evaluation

Benefits

¢ Unexpected behavior: The tool uncovers unexpected behavior more effectively than
human methods (i.e., manual unit testing) through its ability to test classes and
methods with a variety of inputs. For instance, it was able to identify null pointer
exceptions in a crifical part of the analyzer, and this was very useful because we
overlooked that exception when writing those parts.

e Efficiency: The tool identified valid observations and possible assertions about the
code within a short amount of time. Basically, it identifies what the code actually
does rather than what we intended the code to do.

Limitations
e Coverage: The tool did not have 100% code coverage for classes because it could
not generate input data for some methods to test it properly.

e Learning curve: For agitation to be useful in most cases, one will have to write
factories to assist the agitation process, so that it guides the creation of input data.
However, writing good factories requires some upfront work in learning the factories
API. Therefore, given more time to use this tool, we could implement some factories
to make the most of applying it to a complex code base like Crystal.

Page 10 of 15

Analysis of Software Artifacts

Bottom Line

The agitation feature provided by AgitarOne gives you the ability to assess the quality of
your code with concrete evidence. Through some up front work in developing factories
to guide agitation, one can benefit later in testing and catching bugs in one’s code. In
addition, despite this features limitations, it proves to be more effective over manual unit
testing because of the difficulty in coming up with a variety of inputs fo test methods
thoroughly with unit testing. Thus, if we continue to use this tool, we will create factories
for testing our code, and then use it for agitation throughout implementation.

Code Rules

AgitarOne’s code rules can inspect code automatically to ensure compliance with
standards and detect many simple errors as well. In this experiment we evaluate how
useful are the code rules for existing legacy code bases.

Given that software applications are not usually maintained for their entire lifetimes by
the original authors, the code should follow standards and conventions that improve the
readability and reduce the possibility of errors.

Code Rules are graded into 4 categories of decreasing severity: error, warning, info, and
ignore. The rules are also classified into different groups such as:

e Coding and naming conventions

Formaftting — not selected as default rules, would be useful in an organization sefting.
Metrics — such as complexity, length, and method counts

Object oriented programming best practices

Possible bugs — these are important since they may indicate hidden bugs

Unused code

Specialized rules (for J2EE, JUnit, and Javadoc)

Experiment description

The objective of the experiment was to evaluate how useful AgitarOne code rules are at
finding improperly written code in the Serendipity code base. In this experiment we used
AgitarOne default selection of code rules.

Experiment result

Serendipity code base

Although the code base is significant (20 KSLOC), we felt that AgitarOne should not
flagged it down too much since we have been assured by indicators such as customer
acceptance, test results, and the attention paid to quality. The result from running Code
Rules mostly confirmed our priori judgment.

There are 34 errors, 506 warnings, and 7 infos. Most of these are of the same categories,
however. We will describe notable findings as follows.

Errors
All 34 errors are due to 3 code rules.
¢ Combining assignment within an if condition

For example,
if ((error = Native.deleteSensor (svSensorID)) != 0) {

These are not actually errors, but can be confusing.

Page 11 of 15

Analysis of Software Artifacts

e A clone method does not call super.clone()
Again, these are not actually errors.

e A class overrides equals() but does not override hashCode()
This is a possible source of bug because we may lose data if the class is used as the
key in a hash table. Currently, none of these flagged classes are used as hash table
keys. Nonetheless, it is a good preventative measure to override their hashCode()
methods.

Warnings

Most of the warnings are due to unused methods, fields, parameters, and local variables.
These dead codes are not bugs, but can create confusion for maintainers. The rest of
the warnings belong to the following categories:

e Exceeding metrics
o Too many cases (> 10) in a switch statement
o Cyclomatic complexity > 15
o A method makes more than 100 method calls

These flags indicate a place where we may want to refactor the code, but are
not actually bugs. The very complex method that makes more than 100 method
calls is a method that creates icons for components in a tool palette. Since there
are many components, there are many calls. The methods with high cyclomatic
complexity are all user interface handling codes.

¢ Using == to compare objects, instead of using equails()
Some of these comparisons are not a problem since they compare statically
created objects against one another. On the other hand, there are some
comparisons that may cause trouble and we should correct them.

¢ Interface implementations should be abstract or non-trivial
Codes flagged by these simply have empty implementation (do nothing or return
null). Some of them are not bugs but some of them are classes that were not
finished due to time constraint. All unfinished works that we have known about
before running the tool are correctly flagged with this rule.

e Using StringVar.equals(“String literal”) instead of “String literal”.equals(StringVar)
This can be a problem if the string variable is null, resulting in NullPointerException.

Infos

All infos are due to empty catch blocks. Some of them have comments which note that
the catch block should exist without doing anything other than catching the exceptions.
But some of them do not have comments, which may mean the implementation is not
finished.

Crystal

We also ran Code Rules on the Crystal code base to see if we can get the same resulis.
Code Rules issued 5 errors, 367 warnings, and 4 infos for Crystal. Most of the issues are
similar fo the ones we found in Serendipity’s code base, with two notable additional
issues:

Page 12 of 15

Analysis of Software Artifacts

e Class inheritance hierarchy deeper than 5
This flag indicates that Crystal class hierarchy is very complex, which is probably
warranted.

e Subclassing RuntimeException instead of normal (checked) Exception
We don't know enough about Crystal implementation to determine whether this
is a mistake or an intentional violation of convention.

Evaluation

Benefits

The tool is fast and does not consume much resource. The resulting output provides us
with possible location of bugs, dead code, and areas with high complexity. Most of the
possible bugs are easy fo fix.

Limitations

The false positives rate can be very high if the chosen rules do not match the coding
standards followed by the developers. This problem can be “fixed” by turning off that
specific rule.

Bottom Line

The Code Rules feature provided by AgitarOne is useful for legacy code. The rules can
point out not only the possible location of bugs but also where we should focus the effort
of refactoring. The dead code and the methods with high complexity should be priority
targets for refactoring.

If we can continue to use this tool, we will use it to complement inspection by forcing
developers to check against Code Rules before submitting the code for inspection. This
automated tool can help increase inspection efficiency.

Management dashboard

The management dashboard is a view which collects results of tests and shows the
summary of the project. Because we did not have data collected over a period of fime,
we were unable to perform an experiment using this feature. However, because it is a
key part of Agitar, we try to evaluate it here.

Features:

Analyzes the results of JUnit Tests and agitation

Reports on code-rule violations

Works with existing Ant build/test scripts or AgitarOne project files
Automatically associates test classes to project classes

Assigns fest points for JUnit and AgitarOne assertions

Let’s you set targets for testing and coverage metrics

Shows progress over time

Sends executive summary email

Sends customized email reports with each developer’s status

Page 13 of 15

Analysis of Software Artifacts

B por Wew [
@b 800

it ot [HEAD] - Maeils Fir elem

i -ty TR Coni i T B o AR COn FNVEO0S L0 LY BT MM & @ oo |G

Fupgrits A e) gt ol Tk, & (1 daitr Soltwers Fons S By fahool

Anmayze - Cevelopers

Packages Classes

A i el
Cwicarss Falwns
Anle Ermy

Tast Fallaros

Gl (hps’ Tagt

[0 B nin s
Tout Paric BT o ;o
s s wilh Toak Puisin Lk oo %
ittt b Tiewl Posts 4% oo R
18
T i = T
[i ; = e
Hem 1 o]
5 e a o "
i i 1] £
Exhsmn -} [aal
ke Eacha mm |] B
#
m “I..Il-lllll T PR IR O TEM IR
Ot [
B = g % Claswes with Test Fainta
Tt sl Ha s i Bt i 1] [t}
Pcmc Wty an 1] .
Tust Watradn =m] w
Piecd Eweof bt Linps H:A 4]
Tost Emrd ekl Ly e 1 =
0
| eessica | o
Copid [»n
iy wiboat Task Parde i 1] ”'_
Echbed Olmiss]] Faguman wpm owus aa e a
o - -) o @

Figure 1: This is an example the project summary view of the management dashboard?

Benefits
o Useful for project management: This is because it summarizes the project’s testing

status at a glance. The project summary shows complexity, usage, coverage, and
test status over time.

Limitations
e Server: It needs a dedicated server to run it.
¢ Employee morale: Manager may use test performance to evaluate employees.

Bottom Line

If we can use this tool to manage our projects, we can use it to collect metrics since we
are process-oriented.

2 “Using the Agitar Management Dashboard”, Version 4.1, March 2007

Page 14 of 15

Analysis of Software Artifacts

Conclusion

From the evaluation of each of the features we can conclude that AgitarOne provides
many benefits for a project.

The test generation feature is especially useful when used in conjunction with a large
legacy code base that doesn’t have unit tests. It spans a security net that can catch
many side effects of refactoring activities. For new development, the Agitation function
provides benefits with the intensive test input generation. It helped us to spot some
possible problems such as a null pointer exception that could led to an application crash
during the production phase. Additional features such as the code rules validation can
find further potential problems or inconsistencies. This also can save a lot of manual work
during code reviews. The management dashboard is a big plus for projects that want to
have good fracking quality assurance. The automated gathering of these metrics adds
to accuracy and can largely reduce the time spent to manually elicit this data from the
system. Although all these features also have their drawbacks and should not be used
blindly, the benefits in our opinion outweigh.

Page 150of 15

