
Project Paper: Java Safety Analysis Tool

Team: THEORACTICE
Member: Sangjin Han
 Kangwoon Hong
 Hyungchoul Kim
 Andrew O. Mellinger

1. Introduction

1.1 Motivation
Our team’s studio project is based on Java programming language. In addition,
we want to check implementation even if the implementation is not completed
but partially developed. In particular, we are interested in the sequence of
method invocations because we consider our sequence diagrams as one of the
most significant design documents.

Thus, the goal of this project was to develop a static Java source code analyzer
that could easily find the behavioral inconsistency between design and
implementation. This goal led to a few specific requirements:

1) Information should be derived from user specifications. Design intent is
not explicit in programming languages such as Java, C, and C++.
Therefore, without annotations or rules defined by programmers, an
analysis tool could not analyze the consistency between design and
implementation with assurance.

2) Specifications should be lightweight and easy to write. If the rules for
specification are complex and burdensome to users, the users will be
reluctant to use the analysis tool. At the worst case, time for specification
may be much larger than time for manual code inspection.

3) Just by modifying specifications, without accessing source code,
different kinds of property analyses should be available.

Table 1 shows that only ESC/JAVA and Fluid can analyze java source code
statically according to specifications written by users.

Analysis

Tool
Analysis

Target
Static /

Dynamic
Specification

by User
Java

∧ Static
∧ User Spec.

ESC/JAVA Java code Static Required True
Fluid Java code Static Required True
PREfix C/C++ code Static Not Required False
Metal C/C++ code Static Required False
Fugue C#, VB.Net,

Managed C++
code

Static Required False

Daikon C/C++ code Dynamic Not Required False
Blast C/C++ code Static Required False

Table 1: Analysis Tools Comparison

Even though these two tools can satisfy the aforementioned goal, they cannot
satisfy the aforementioned three requirements; in particular, requirement 3).
ESC/JAVA and Fluid combined user annotation into java source code.

Our tool separated user specification from source code. In addition, for user
convenience, we used the terms and concepts used in UML statechart diagram:
event, guard, and action.

1.2 JSAT (Java Safety Analysis Tool)

Java Source Code. This is the target source code to be checked.
Specification. This is written by users being separated from the source code.
Syntax Analyzer. This is abstract syntax tree creator included in Crystal2
framework.
Parser. This reads user specifications, which are *.jsat files, and stores those
into newly designed data structures.
Safety Checker. This analyzes the target source code to check its consistency
with the specifications; this was built on Crystal2 framework and uses dataflow
analysis.

Figure 1: JSAT system architecture

1.3 Theoretical Background

JSAT performs a static and modular analysis to provide a set of analysis
messages. The analysis is static because it inspects the program’s source code,
without any instrumentation to perform checks during execution. In addition, the
analysis is modular in that, at a method call site, the analysis inspects the
callee’s declaration and not its body [1].

JSAT allows users to specify state machine protocols. Using a state machine
protocol, the user can constrain the order in which methods can be called to the
transitions of a given state machine [1].

Moreover, JSAT uses dataflow analysis implemented in Crystal2. Therefore, we
defined new lattice, tuple lattice, and flow function.

2. Safety Property Specification

2.1 Core specification syntax

::
| ,

:: ,
| ,
| , ,

::

::
| & &

::
| !
|
|
|
|

::

StateVariable a
a StateVariable

Event Pattern Guard
Pattern Action
Pattern Guard Action

Pattern MethodInvocation

Guard Predicate
Predicate Guard

Predicate a e
a e
a e
a e
a e
a e

Action As

=

=

=

=

= ==
=
<
>
<=
>=

=
| ,

::

::
|

signment
Assignment Action

Assignment a e

e a
c

variable a
value c

= =

=

Figure 2: Core specification syntax

2.2 Informal description of syntax
As we mentioned, our specification is based on the UML statechart diagram and
similar to the specification of the BLAST [2].

State variable. This is definition of single variables prefaced by the keyword
global; for example, global int lockStatus = -1;.

Events. These are used to change global state and verify properties based on
the execution of method invocations. An event consists of the keyword event
followed by a sequence of sub-directives within braces.

Pattern. This specifies which possible program statements, which are method
invocation at this time, activate an event. A pattern consists of the keyword
pattern followed by a method invocation statement enclosed in braces. An event
will be activated for any method invocation statements that match the pattern.

Guard. This can be used as pre- condition for a method invocation. If the guard
expression is true, the specified action code is run. If the guard is false, it
means the inconsistency between specification and implementation. A guard
consists of the keyword guard followed by predicates inside braces.

Action. This can be used as post- condition for a method invocation. An action
consists of the keyword action followed by sequences of assignment statements
inside braces.

Figure 3 shows an example of specification, which reflects full specification
syntax.

global int lockStatus = -1;

event {
 pattern { smInit(); }
 guard { lockStatus == -1 }
 action { lockStatus = 0; }
}

event {
 pattern { smLock(); }
 guard { lockStatus == 0 }
 action { lockStatus = 1; }
}

event {
 pattern { smUnlock(); }
 guard { lockStatus == 1 }
 action { lockStatus = 0; }
}

Figure 3: Simple Lock & Unlock specification example

lockStatus == -1 lockStatus == 0
smInit

smLock

lockStatus == 1

smUnlock

smLock

smUnlock
smInit

smUnlock smInit
smLock

Figure 4: State machine for simple Lock & Unlock example

2.3 Implementation

We implemented a parser that can read specifications and a checker that can
check the specifications for consistency with the implementation. Our
implementation can handle three examples, which are JSATSample1.java,
JSATSample2.java, and JSATSample3.java. We implemented new data
structures to save the specifications. In addition, we implemented new lattice,
tuple lattice, and flow function to use the concept of data flow analysis.

The parser consists of the following files:

Event.java
GlobalType.java
PatternType.java
GuardType.java
ActionType.java
SpecParser.java
LinkedListNode.java

The checker consists of the following files:

JSATAnalysis.java
JSATAnalysisDefinition.java
JSATDataModel.java
JSATLatticeElement.java
JSATTupleLatticeElement.java

As we mentioned, we wrote three examples:

JSATSample1.java
JSATSample2.java
JSATSample3.java

Sample1.jsat is specification for JSATSample1.java, Sample2.jsat is for
JSATSample2.java, and Sample3.jsat is for JSATSample3.java.

3. Lessons Learned

The initial implementation of JSAT tried to emulate the pattern matching idea in
Metal/Blast which leads to some interesting properties. Pattern matching
against method names means that state is coupled to a global state not a per
object basis. (Unless the pattern is design to match an exact variable name, this
still has problems with aliasing of course.) While this may not seem desirable, it
does hold true to the Metal paradigm. In the future, we think that the
specification syntax should be extended to have support to indicate that
patterns are method signatures and should be track on a per object basis. The
global usage behavior can be seen clearly in the Sample3 code.

We had also intended to support regular expressions with the engine, but ran
into specification syntax issues. It is nice to be able to specify a basic method
pattern without having to escape parenthesis. Parenthesis show up frequently in
code, but are special symbols in regular expressions.

The first implementation was intended to match against any code and not just
method names. This was not implemented because of the difficulty of limited the
pattern match to just the code exclusive to the node. Being a tree, the code
associated with a node, may also be associated with a child node. There is no
simple way to determine at what level a particular piece of source should be
matched, and how to transfer values. This is not a trivial problem.

We implemented three sample cases. The first was the trivial state locker used
in the presentation, the second was the test code used in the BLAST
assignment (ported to Java), and the third was the SimpleProtocol test code
used in the protocol assignment. While using these we found an interesting
property of the test. The Crystal2 flow analysis did not provide branch-merger
code as expected on the BadDriver case. In this example, two if statements
exists (not an if-else) and both can be entered during execution of the method.
It appears that the flow analysis did not enter both in the same code path an
attempt to merge the results. Due to time constraints, an analysis of the flow
analysis tool was not done, and we do not know why this test case did not
behave as expected.

4. Implementation Details: Analysis Engine

The implementation has three major components: a parser, a data model, and
the analysis engine. The parser and resulting data model are straightforward
modularized engineering tasks. The analysis engine, which relies heavily on the
Crystal2 framework, was implemented in the following ways:

JSATLatticeElement.java

This was modified to track the value of a specific global variable. Unlike
previous analysis (i.e. mapping ASTNodes to particular values), Strings were
mapped to integer values. As with the protocol analysis assignment, explicit
values were not known at compile time, so a map was used to hold all the
possible values with corresponding element objects. The object references were
kept in the lattice so the join and alap (atLeastAsPrecise) logic, which are
references based, would not have to be changed.

JSATTupleLatticeElement.java

This class was updated to work with the node types (String not ASTNode) used
in the JSATLatticeElement. Additionally a routine was added to be able to
identify if a node existed in the lattice. If the value of a global is not in the lattice,
we pull it from the initialized values in the specification. Normally we would
trigger off the lattice's default value, but since the values were implemented as
an open range of integers, there isn't a simple way to signify a unique default
value.

JSATAnalysisDefinition.java

The code holds the transfer function for the MethodInvocation which executes
the actions. All events are matched against each MethodInvocation. If a match
is made, then the actions are executed for each.

JSATAnalysis.java

This holds the code that kicks off the specification parser and the visit function
that is called for every MethodInvocation. All events are matched against each
MethodInvocation. If a match occurs, all guard conditions are checked and
errors generated as needed.

5. Future Works

These areas are ripe for future development:

1) Understand how to make the flow analysis engine produce the correct

behavior in Sample2.
2) Implement regular expression matching.
3) Apply pattern matching against all code not just against MethodInvocation.
4) Extend the specification language to work with 'captures' or values allowing

for globals to reflect actual program values, not only states defined in the
specification.

5) Extend the flow analysis engine for interprocedural calls and reachability
analysis.

6. Usage Notes

A full system path to the specification must be passed into the JSATAnalysis
object when constructed. However, it is parsed when the tool is run in the
Eclipse Debug session. Thus, the specification can be modified without having
to recompile/relaunch the eclipse debug session.

References
[1] R. DeLine and M. F¨ahndrich. The fugue protocol checker: Is your software
baroque? Technical Report MSR-TR-2004-07, Microsoft Research, 2004.
[2] BLAST tutorial. October 2005.
http://embedded.eecs.berkeley.edu/blast/doc/blast.pdf.

