

Tool Evaluation – Lattix LDM
Mini Project

17-654 Analysis of Software Artifacts

April 2006

Team OverHEAD

Karim Jamal

Clinton Jenkins

Team OverHEAD Tool Evaluation

 2

Table of Contents

1. Background ... 4

1.1. Description of Tool ... 4

1.2. Version of Tool Used.. 4

2. Application to Software Projects .. 5

2.1. Projects.. 5

2.2. Measurements ... 7

3. Lessons Learned.. 12

3.1. Scope of Tool.. 12

3.2. Strengths ... 13

3.3. Weaknesses ... 15

4. Benefits ... 17

5. Application to Practicum .. 18

6. Conclusion .. 18

References... 20

Team OverHEAD Tool Evaluation

 3

Table of Tables

Table 1. Project Categories and SLOC... 5

Table 2. Quantitative Measurements .. 7

Table of Figures

Figure 1. DSM for the Trivial Project... 6

Figure 2. DSM for the ParkNPark Project .. 6

Figure 3. Semantic Dependencies for the A3 project. .. 9

Figure 4. Original DSM for the A1 Project .. 10

Figure 5. DSM for the A1 Project after applying the partitioning algorithm 10

Figure 6. Original DSM for the Crystal2 Project.. 11

Figure 7. DSM for the Cystal2 Project after applying the partitioning algorithm............ 11

Figure 8. Semantic Dependencies for the A3 project. (Identical to Figure 3) 13

Figure 9. Possible hole in lpsolve unit test class... 15

Figure 10. Tool-generated Architecture for the ParkNPark Project 16

Team OverHEAD Tool Evaluation

 4

1. Background

1.1. Description of Tool

The tool that we analyzed is Lattix LDM. This tool is used to analyze the

dependencies between software artifacts in a project. Unlike the more

common dependency analysis tools that use box-and-line diagrams to show

dependencies among components, Lattix LDM uses a structure called a

Dependency Structure Matrix (DSM; also called Design Structure Matrix).

The DSM approach to dependency analysis uses a matrix of rows and

columns to show how each component depends on the other components

within a project. It uses static analysis to compute the matrix. Unlike the box-

and-line diagrams, DSMs scale relatively well when used with large, complex

projects. For more information about DSMs, see [1]. The figures presented in

later sections show examples of DSMs in action.

At the time of this writing, Lattix LDM supports dependency analysis for

Java, C, and C++ projects. The projects that we analyzed with this tool were

written in Java. We did not analyze projects written in C/C++ because of the

extra setup and software required to do so, which is explained in a later

section.

This tool comes as a stand-alone application and as an Eclipse plug-in. We

used both of these as we evaluated the tool. (Eclipse is an open-source,

integrated development environment (IDE) for Java. For more information

about Eclipse, see [2].)

1.2. Version of Tool Used

There are a few different versions of this tool that are available. The version

that we used in order to evaluate the tool was the Community Version. This

version has the basic features of the tool. It does not, however, have design

rules and the ability to enforce dependency constraints between different

versions of the project. Nonetheless, due to the limited resources (i.e. time and

personnel) that we have available to evaluate the tool, we feel that the

Community Version will suffice for this evaluation. Additionally, since the

Community Version is free and has no expiration, we will be able to put it to

practical use within our practicum project; how we intend to use this in our

practicum project is discussed in a later section.

Team OverHEAD Tool Evaluation

 5

2. Application to Software Projects

2.1. Projects

As mentioned above, we used the tool to analyze dependencies in Java

projects. The breakdown of the projects we analyzed is as follows: one trivial

project, four mid-sized projects, and two large, complex projects. Table 1

shows the categories and the total source-lines-of-code (SLOC) for each

project.

Project Category Project Name SLOC

Trivial Trivial 15

A1 369

A2 530

A3 684

Mid-sized

lpsolve 509

Crystal2 4244 Large, complex

ParkNPark 6466

Table 1. Project Categories and SLOC

As can be seen from the above tables, our evaluation covered a broad range of

projects. Lattix LDM produced a DSM for each of these projects without any

problems. Figures 1 and 2 show the extremes of the DSMs produced by our

evaluation. Figure 1 shows the DSM for the Trivial project, which was the

smallest project we analyzed. Figure 2 shows the DSM for the ParkNPark

project, which was the largest project we analyzed. The tool constructs the

DSM for a project by analyzing the dependencies between the class files in

the project. In our case, the tool used the Java class files in the project.

The main reason for analyzing the Trivial project was to check the tool’s

behavior in a boundary case. We wanted to verify that, given a project with

only one Java file, the tool produces the appropriate matrix. The main reason

for analyzing the ParkNPark project was to determine how the tool responds

to large, complex projects. As can be seen from the figures, the tool did scale

well as the sizes of the projects increased.

Team OverHEAD Tool Evaluation

 6

Figure 1. DSM for the Trivial Project

Figure 2. DSM for the ParkNPark Project

Team OverHEAD Tool Evaluation

 7

2.2. Measurements

We gathered both quantitative data and qualitative data when performing the

evaluation of Lattix LDM. In terms of the quantitative data, we measured the

following:

1. The number of dependencies that the tool identified correctly

2. The number of dependencies that the tool failed to identify

3. The number of extraneous dependencies that the tool identified

We followed the following process when quantifying the data.

1. We computed the DSM for the project by hand

2. We used the tool to compute the DSM for the project

3. We went through each box (i.e. each intersection of row and column)

in the DSM and compared the result of the hand-computed DSM

against that of the tool-generated DSM

We followed this process for the trivial and mid-sized projects. We did not

perform this process for the large, complex projects due to the limited time

and personnel available to perform the tool evaluation. (See Table 1 for more

information about the projects in each category.)

Our results are shown in Table 2.

Project Category Project Name Dependency Measurements* Count

Identified Correctly 0

Failed to Identify 0

Trivial Trivial

Extraneously Identified 0

Identified Correctly 15

Failed to Identify 0

A1

Extraneously Identified 0

Identified Correctly 16

Failed to Identify 0

A2

Extraneously Identified 0

Identified Correctly 51

Failed to Identify 0

A3

Extraneously Identified 0

Identified Correctly 26

Failed to Identify 0

Mid-sized

lpsolve

Extraneously Identified 0
* The ‘Identified Correctly’ measurement doesn’t include a file’s dependency on itself

Table 2. Quantitative Measurements

Team OverHEAD Tool Evaluation

 8

As the table shows, the tool correctly computed all the syntactic dependencies

within the analyzed projects. Additionally, it did not report any false positives,

as can be seen in Table 1, which reports that no extraneous dependencies were

found in any of the projects. Thus, since no false positives were reported, the

tool seems to be precise. Additionally, since the tool found all the

dependencies in the project, as compared to our hand-computed DSMs, the

tool also seems to be sound. These results support the tool’s claim of being

able to correctly identify all of a project’s syntactic dependencies. This is

positive news, especially since this tool is a commercial product.

The time Lattix LDM took to compute the DSM for a project was not

calculated because the tool took less than thirty seconds to perform this

operation, even for the large, complex projects.

One type of qualitative data that was gathered was how well the tool arranged

the Java class files in the DSM. Lattix LDM supports a hierarchical structure

in the DSM. The highest level in the DSM is the project itself. The next levels

are Java packages (if they are present in the project) or Java class files. The

tool supports nested packages. These can be seen as the collapsible boxes in

the leftmost columns in Figure 2. For each project that we analyzed (including

the large, complex projects), Lattix LDM correctly computed the hierarchical

structure of the project and displayed it in the DSM. The only difference

between the actual layout of the hierarchy and the tool’s layout of the

hierarchy was that, if a Java package and a Java class file resided side-by-side

in the same parent Java package or project, then the class file was put into a

package named ‘*’. However, this is not a problem because Java packages

cannot be named ‘*’. Additionally, this has been documented in the tool’s

documentation.

Another type of qualitative measurement that was gathered was that of

semantic dependencies. We tried to determine how well the tool-generated

DSM would capture semantic dependencies that existed within the project.

We also performed experiments to check if the tool could discover semantic

dependencies that we injected into the project. One such example dealt with

polymorphism in the A3 project. We computed the DSM for the A3 project

before and after introducing polymorphism. Figure 3 displays a side-by-side

view of the resultant DSMs. For both the DSMs, the dependencies should be

almost the same. However, as can be seen from the figure, this is not the case.

Thus, the tool is not capable of identifying semantic dependencies very well.

This is further discussed in a later section.

Team OverHEAD Tool Evaluation

 9

Figure 3. Semantic Dependencies for the A3 project.

(Left) DSM for the original project; (Right) DSM for the project with polymorphism

Another qualitative measurement was the quality of the tool’s partitioning

algorithm. The partitioning algorithm attempts to rearrange the rows in the

DSM such that the DSM forms a block-triangular structure. This means that

all the dependencies in the matrix either fall above or below the diagonal. If

all the dependencies fall below the diagonal, then this means that a specified

row only depends on rows that are above it. This can help architects determine

whether or not specified architectural styles, such as layers, are implemented

correctly. We used the tool’s partitioning algorithm on all the DSMs that were

produced by the tool. The results met our expectations. The tool was able to

form a block-triangular structure in almost every case; in the cases where it

could not do so, it was because a cyclic dependency existed, and thus, forming

a block-triangular structure was not feasible. Figure 4 shows the original DSM

for the A1 project. Figure 5 shows the DSM after the partitioning algorithm

was applied. Similarly, Figures 6 and 7 show the original DSM and the DSM

with the partitioning algorithm applied, respectively, on the larger Crystal2

project.

As the figures represent, the partitioning algorithm works very well, even for

large, complex projects.

Team OverHEAD Tool Evaluation

 10

Figure 4. Original DSM for the A1 Project

Figure 5. DSM for the A1 Project after applying the partitioning algorithm

Team OverHEAD Tool Evaluation

 11

Figure 6. Original DSM for the Crystal2 Project

Figure 7. DSM for the Cystal2 Project after applying the partitioning algorithm

Team OverHEAD Tool Evaluation

 12

3. Lessons Learned

3.1. Scope of Tool

The scope of the tool in the context of this report primarily describes the kinds

of projects that Lattix LDM would be applicable to and useful for. The

primary factors that will determine what types of projects Lattix LDM can be

used with are the fact that it only catches syntactic dependencies and that it

relies upon having access to .class files or generated .bsc files to analyze

projects.

Concerning the fact that Lattix LDM only catches syntactic dependencies, it

would not be as useful in a system with a lot of semantic dependencies. One

example of such a system would be a system that uses implicit invocation,

such as the A3 project displayed in Figure 3. In this system, components use

the event bus to interact with one another; they send events out onto the event

bus and also register to receive certain events from the bus. The ability of

Lattix LDM to track dependencies stops at the event bus. As Figure 3 depicts,

the handlers do not have any syntactic dependencies upon each other, even

though there are semantic dependencies between the handlers. It is possible to

manually mark the dependencies among the various handlers, so not all is lost;

however, this can be a tedious task, especially for large projects.

Overall, it would be difficult to use Lattix LDM in any project that is based

upon a lot of indirect communication, such as implicit invocation and shared

memory. The semantic dependencies would not be detected automatically by

the tool, which could give an inexperienced user or someone not familiar with

the system an unclear view of the dependencies in the system.

Another example where only tracking syntactic dependencies creates unusual

results deals with polymorphism. We injected polymorphism into the A3

project in the following manner:

Original Code:
ListAllStudentsHandler objCommandEventHandler1 =

 new ListAllStudentsHandler(

 db,
 new
 int[]{EventBus.EV_LIST_ALL_STUDENTS},

 EventBus.EV_SHOW);

.

.

.

Team OverHEAD Tool Evaluation

 13

Polymorphism-Injected Code:
CommandEventHandler objCommandEventHandler1 =

 new ListAllStudentsHandler(

 db,

 new

 int[]{EventBus.EV_LIST_ALL_STUDENTS},
 EventBus.EV_SHOW);

.

.

.

While this code is functionally identical and has the same dependencies, due

to the syntactic nature of Lattix LDM, the DSM diagrams generated by the

tool identify different dependencies, as can be seen in Figure 8 below.

Figure 8. Semantic Dependencies for the A3 project. (Identical to Figure 3)

(Left) DSM for the original project; (Right) DSM for the project with polymorphism

The dependence on having access to .class files for Java projects and a .bsc

file for C/C++ projects can also limit the applicability of Lattix LDM to a

project. Projects that use a significant amount of external libraries without

having access to the code or .class/.bsc files could be difficult to analyze with

the Lattix LDM tool. Also, the Lattix LDM C/C++ help instructions rely upon

having Microsoft’s Visual Studio to create .bsc files, which requires additional

software, and thus, can further limit the applicability of Lattix LDM to a

project.

3.2. Strengths

A strength of the Lattix LDM tool is the support that it has for hierarchical

structures, such as packages and classes in Java. Having this hierarchical

Team OverHEAD Tool Evaluation

 14

nature displayed with the DSM structure is very useful, as discovering the

dependencies among packages can be quite useful without having all of the

details concerning the classes cluttering up the diagram. Being able to analyze

dependencies at various levels within the project is very useful as certain

information can be abstracted away to focus on pertinent portions of the

system. For example, a developer of a certain class can check the

dependencies of his class file in order to ensure that it has no dependencies on

certain packages.

Another good aspect of the tool is the use of the DSM partitioning algorithm

that the tool utilizes to reorganize the diagram. We used this to organize the

diagram into logical subsystems based upon their dependencies. Qualitatively,

the algorithm seems quite good and the subsystems that it identified seemed

reasonable. Using the partitioning algorithm is also quite useful as it

transforms the diagram into a more familiar form in which certain

architectural styles or deviations can rapidly be identified; this is especially

useful in identifying how well the system conforms to the layered style.

The speed of the tool is also another strength. Loading a project into Lattix

does not take a significant amount of time in our experience. During our

evaluation, even the largest projects took less than thirty seconds to be loaded

into the tool. However, the help documentation for C/C++ use mentions that

.bsc files take longer to load into the tool than do Java .class files.

Specifically, the documentation says that it can take 2+ hours for a system

with 10000-20000 files to be loaded into the tool. The partitioning algorithms

also execute quite rapidly. The speed of the partitioning algorithm is

particularly pleasing because an architect that is going through and making

changes to dependencies can quickly see the reorganization of identified

subsystems as incremental changes are made to the project and the

corresponding DSM.

A somewhat tangential use of the tool is that it can also be used to identify

holes in code coverage for a test suite. We noticed this with the lpsolve

project, as, within a set of unit tests, there was a class with a missing

dependency, which indicated that the class might not be tested. This is shown

in Figure 9. Thus, using this tool could be a good way to get a quick overview

of how well a test suite covers the classes within a project.

Team OverHEAD Tool Evaluation

 15

Figure 9. Possible hole in lpsolve unit test class.

3.3. Weaknesses

The primary weakness that is present in the Lattix LDM tool is the lack of

support for semantic dependencies. While it is understandable that this is a

much more difficult analysis problem, it is a significant blind spot in the tool.

As described in the Scope section of this report, the weakness in discovering

dependencies in an implicit invocation system; a system containing

polymorphism; or in any other system where indirect communication methods

are used can easily lead to a misunderstanding of the system, even for an

experienced user. However, to the tool’s credit, it explicitly states in the

OOPSLA [1] paper that the tool only identifies syntactic dependencies in a

system.

Another issue dealing with semantic dependencies is transitive dependencies.

An example would be that A depends on B, and B depends on C. A indirectly

depends on C, but this dependency does not show up in the diagram, which is

understandable. (Having all transitive dependencies displayed on the diagram

would likely lead to a really messy diagram in which many components would

seem to depend on many other components.) It’s possible to trace the

transitive dependencies by hand on the diagram, but this can be quite tedious.

It would be nice to have an option to select a single row on the diagram and to

then show all of the “dependency chains” that it are involved with that row.

It’s likely that this kind of information might be easier to understand in a more

traditional box-and-line-type architectural description.

An annoyance and scaling issue with the tool is that the DSM partitioning

algorithm can only be applied to a single package at a time. This means that

the DSM partitioning algorithm cannot be applied to the entire DSM at once,

which can lead to a lot of tedious work in a large project.

Team OverHEAD Tool Evaluation

 16

While the tool claims to support C/C++ projects, there is a significant

dependence on outside tools to generate the .bsc files that are necessary to run

the Lattix LDM tool on such projects. The help file details using Microsoft’s

Visual Studio to create the .bsc file, which may not be possible for some

users. Having some other way to generate the .bsc files within the tool would

be quite useful as it would allow the tool to be used with any C/C++ project,

instead of just those created with Microsoft’s tools.

Concerning box-and-line-type architectural descriptions, Lattix LDM provides

an option to generate an architectural diagram. This part of the tool is not

ready for heavy use. The diagram generated for the ParkNPark project (Figure

10) is displayed below. It is quite a complicated architectural diagram that is

made worse by the fact that the fonts seem way too large for each of the

boxes. Expanding the boxes with the “+” sign also causes some boxes on the

diagram to start overlapping other boxes, further obscuring the diagram. In the

tutorial portion of the tool’s “Help” section, it says of the conceptual

architecture diagram that “the positioning is suggestive of dependencies and

conforms to our intuition.” Further along in the tutorial, it indicates that the

horizontal splits indicate layering and the vertical splits indicate independence

of components from each other. However, this is not very clear from the

figure. This portion of the tool does not seem as useful as the DSM-centric

portions.

Figure 10. Tool-generated Architecture for the ParkNPark Project

Team OverHEAD Tool Evaluation

 17

4. Benefits

Using this tool in a software project has many benefits. One of the main

benefits is that of scalability. In a real-world software project environment,

projects can get very large, very complex, very quickly. Having a tool that can

scale well with the size of the project is very beneficial in this case. For

example, if a project team loses track of the intra-project dependencies

because the software project is growing at a rapid pace, the Lattix LDM tool

can be used to obtain the dependency information. Additionally, since it is

based on the DSM approach, even if the project gets very large, the

dependencies can still be displayed in a very clear and clean manner. On the

other hand, if box-and-line diagrams were used to represent dependencies,

then, as the project became larger, these diagrams would turn into a chaotic

mess that would be very difficult to comprehend and analyze.

The tool also provides the benefit of allowing users to quickly analyze

dependencies at different levels of the project. Since the tool supports

hierarchical structures in DSMs, it allows users to quickly analyze

dependencies between packages. If a user then wants to delve deeper to figure

out why a dependency exists, then she can expand the package structure to see

what components within the package are responsible for that dependency.

This abstraction is very conducive to the user’s efforts because it doesn’t

plague her with details that she doesn’t care about. For example, if she wants

to deploy the software project, then she can look at the dependencies between

packages in order to determine how best to deploy the packages over a

distributed environment; if she cares about performance, then packages that

have a lot of dependencies on one another would be deployed on machines

that are physically close to one another, and packages that don’t have a lot of

dependencies on one another could be deployed on machines that are

geographically distant.

Another benefit that the tool provides is that of architectural discovery. The

DSM could be used to determine how well the software project supports

certain architectural styles. The partitioning algorithm that Lattix LDM

provides greatly helps with this process. After applying the algorithm, the

DSM is rearranged such that it is as close to a block-triangular structure as

possible. For example, if the algorithm succeeds in forming such a structure,

then the users know that the software project supports a layered-like

architectural style. Additionally, if the dependencies appear such that a row

only depends on the row immediately above it, then it shows that the project

supports a pure layered style. The DSM could also be used to decide how best

to group components into modules so as to reduce the number of

dependencies between the components; this can help make the system more

modular, and thus, more modifiable and maintainable.

Team OverHEAD Tool Evaluation

 18

5. Application to Practicum

Having the Community Version of this tool is quite handy as it will allow us

to use it on our practicum project. The Decision Support System for Efficient

Aid Distribution (DSS4EAD) is further described at [3], but the primary

purpose of the system is to allow the centralized collection of information

about communities and to then use that information to determine the most

efficient use of aid funds to maximize social benefit. We are implementing

this system with quite a few open-source components, and one of the main

architectural drivers is to keep the system modifiable for future developers.

It will be possible to use the Lattix LDM tool as we will be implementing the

system in Java. Using the tool will allow us to track dependencies to ensure

that the components that we create do not have multiple dependencies upon

the open-source components that we use. This will allow future developers to

have clean breakpoints within the architecture where they can remove certain

open-source components and insert their own or other commercial

components; this will allow them to achieve certain quality attributes, such as

performance. Having a clean layering implementation and avoiding cyclical

dependencies, except where absolutely necessary, will allow us to deliver a

modifiable system to our customer.

Because of these benefits, we do plan to use Lattix LDM on our practicum

project. More specifically, we will use the DSM functionality of the tool. We

will use the tool to compute the DSM for our project at every milestone in

order to ensure that the implementation is in accordance with the design

considerations. We may also use it in between milestones for the purpose of

sanity checks. It may also be useful when determining how design tradeoffs

affect the architecture (e.g. we don’t want to introduce dependencies that will

break conformance to the architectural style). Additionally, as the Conceptual

Architecture functionality of the tool did not seem to be very helpful to us, we

do not plan to use that functionality.

6. Conclusion

Overall we were quite pleased with the tool. While the lack of support for

semantic dependencies is disappointing, it is not fatal for this tool as manual

input from knowledgeable architects and developers can cover up this blind

spot. The Lattix LDM tool seems like a very good place to start for

architectural discovery as the syntactic dependencies and DSM partitioning

algorithm can help to quickly understand the logical subsystems of a system,

even in large projects.

Team OverHEAD Tool Evaluation

 19

The quality of the tool is quite good as well, as should be the case for a

commercial product. There were no glaring bugs in the primary DSM

functionality and only a few annoying user interface issues. The conceptual

architecture diagram could certainly use some work, but this almost seems

like a portion of the tool that could be left out without significantly sacrificing

the usefulness of the tool.

Using Lattix LDM to track dependencies in a project seems quite doable and

very useful given the amount of time and effort involved. It seems especially

useful if you can avoid projects with a lot of semantic dependencies. Lattix

LDM seems to favor Java projects much more then C/C++ projects, but

C/C++ projects would still be possible if you are already using Microsoft tools

as part of your development method.

Another positive note for Lattix LDM is that is uses a technique that has

already been successfully used in other industries. The DSM technology has

had a chance to mature already before its application to software. Being based

upon the DSM technology will also allow Lattix LDM to take advantage of

new, clever algorithms that may be invented in the future; these algorithms

may improve on the current algorithms by partitioning the DSM diagrams in

different ways in order to reveal other aspects of complex systems.

Team OverHEAD Tool Evaluation

 20

References

[1] Sangal, Neeraj, Ev Jordan, Vineet Sinha, Daniel Jackson. Using Dependency

Models to Manage Complex Software Architecture. ACM. October 2005.

http://www.lattix.com/download/dl/oopsla05.pdf

[2] More information about the Eclipse IDE can be obtained from the Eclipse web

site at http://www.eclipse.org

[3] More information about the Decision Support System for Efficient Aid

Distribution (DSS4EAD) can be found at http://heinz-aiddist.heinz.cmu.edu

