
The Mappers: We find your way

Assignment 10 – Tool Project

Analysis of Software Artifacts

Assignment

The Mappers

António Alvim

Filipe Pontes

Paulo Casanova

Pedro Mota

Pedro Saraiva

The Mappers: We find your way

Analysis of Software Artifacts
Assignment 10: Tool Project

6th April 2009

Assignment 10

1

The Mappers: We find your way

Assignment 10 – Tool Project

Introduction ..

Tool ..

Projects ..

Setup ..

Analysis ..

5.1 Relevant True positives

5.2 Irrelevant True Positives

5.3 False positives

Conclusion ..

References ..

Appendices ..

Additional true positives discovered

Additional irrelevant true positives

The Mappers: We find your way

..

..

..

..

..

..

..

..

..

..

..

 ..

..

Assignment 10

2

... 3

.................................... 4

.............................. 6

.................................. 6

.............................. 7

... 8

.. 9

.................................... 10

... 11

... 12

.. 13

... 13

... 13

The Mappers: We find your way

Assignment 10 – Tool Project

Introduction
This report is the main delivery for assignment of the 2009 edition of Analysis of
Software Artifacts course.

We will present the results of a source code

- Gaming Framework for the Bored Games
effort for assignments 8 and 9

- Plural Static Analysis Project
protocols for the assignment 7 and 9 of

This report includes the following

Section 2 – We present and briefly describe main objectives of the tool that we used to
perform the analysis.

Section 3 – We identify and describe the two projects

Section 4 – We detail how we performed

Section 5 – We document the results
false positives and irrelevant warnings
additional examples are included in the appendixes section.

Section 6 – We provide some concluding remarks on the tools usage
and some general remarks.

The Mappers: We find your way

This report is the main delivery for assignment of the 2009 edition of Analysis of

source code analysis on the following applications

for the Bored Games - we analyzed the programming
assignments 8 and 9 where we (the Mappers team) participated

Plural Static Analysis Project – we analyzed the checking tool we used to define
assignment 7 and 9 of this course.

includes the following sections:

present and briefly describe main objectives of the tool that we used to

describe the two projects we analyzed.

we performed each of the project’s individual analysis

results for each, with particular focus on the true positives,
false positives and irrelevant warnings. We provide two examples for each result type

are included in the appendixes section.

provide some concluding remarks on the tools usage for the two projects

Assignment 10

3

This report is the main delivery for assignment of the 2009 edition of Analysis of

applications:

we analyzed the programming
participated.

tool we used to define

present and briefly describe main objectives of the tool that we used to

analysis.

focus on the true positives,
. We provide two examples for each result type –

the two projects

The Mappers: We find your way

Assignment 10 – Tool Project

Tool
We selected the tool based on the following

- We plan to use a tool that can be part of
implementation stage of our studio project

- Since we are going to implement
include the analysis of Java

As such, we selected the PMD tool
take the suggested “Programming Mistake Detector”, as indicated by the authors

We used the 4.2.5 version, released on February of 2009.

Independently of which tool it is run with, PMD
set of predefined rules, to identify
try/catch/finally/switch statements
suboptimal code.

The previous list is just the initial
categories of more than 250 individual rules possible to analyze
distribution [2].

In this regard, it is possible to use PMD as

- A command line executable
- Part of the a projects’ integrated build
- An integrated IDE Plug-in

We performed our analysis the assignment with the Eclipse plug

The following list highlights the core capabilities provided by PMD:

- Standard compliance –
standards and conventions

- Performance/size related issues
- Security – rules that compare code against the security guidelines published by

Sun;
- Design – provides some design patterns suggestions and

analyzing code, like Singleton
- Correctness – how object comparisons should be made (

cloning should be performed.

1 As seen in http://pmd.sourceforge.net/meaning.html

The Mappers: We find your way

on the following criteria:

a tool that can be part of our quality assurance strategy for the
ion stage of our studio project.
going to implement an information system in Java, the tool should

ava source code.

the PMD tool [1]. PMD has no meaning for the tool name
“Programming Mistake Detector”, as indicated by the authors

We used the 4.2.5 version, released on February of 2009.

Independently of which tool it is run with, PMD statically checks source code ag
, to identify potential code problems such as empty

try/catch/finally/switch statements, overcomplicated expressions and dead

list is just the initial summary presented on the product homepage
individual rules possible to analyze with the standard

In this regard, it is possible to use PMD as:

A command line executable;
art of the a projects’ integrated build process (Maven [5] or Ant [6]);

in.

We performed our analysis the assignment with the Eclipse plug-in.

The following list highlights the core capabilities provided by PMD:

 J2EE, JSP (and other Java variations) guidelines, coding
standards and conventions;

ce/size related issues – code size, coupling, logging usage
rules that compare code against the security guidelines published by

provides some design patterns suggestions and recommendations after
analyzing code, like Singleton and improved ways of using interfaces

how object comparisons should be made (.equals vs.
cloning should be performed.

As seen in http://pmd.sourceforge.net/meaning.html

Assignment 10

4

our quality assurance strategy for the

the tool should

meaning for the tool name but we
“Programming Mistake Detector”, as indicated by the authors1.

source code against a
empty

dead or

presented on the product homepage of the
the standard PMD

process (Maven [5] or Ant [6]);

guidelines, coding

code size, coupling, logging usage;
rules that compare code against the security guidelines published by

recommendations after
and improved ways of using interfaces;

vs. ==), or how

The Mappers: We find your way

Assignment 10 – Tool Project

Because not all of the previous rules
allows configuring easily which rules we int

It also includes a Rule editor capability, where we can write our own set of rules [3],
which serve as an interesting option for developers who need t
customization.

The following picture displays eclipses’
managed (add, delete or update)

Figure 1 - Rule Configuration Screen of

Note that the authors state the PMD’s rules
configuration effort into achieving the desired

“Generally, pick the ones you like, and ignore or suppress the warnings you don't like. It's just a tool.

This means that discovering the best usage for PMD usually
on tuning.
An important feature of PMD is the possibility of marking exceptions. There are certain
times where violating a rule makes sense and it is necessary. It is possible to annota

The Mappers: We find your way

Because not all of the previous rules types are interesting to the all developers, PMD
which rules we intend to include on our analysis.

It also includes a Rule editor capability, where we can write our own set of rules [3],
which serve as an interesting option for developers who need this degree of

eclipses’ plug-in configuration menu, where rules can be
managed (add, delete or update).

Rule Configuration Screen of Eclipse’s v3.4.1 PMD plug-in.

he authors state the PMD’s rules are not set in stone, and that there is
configuration effort into achieving the desired results:

Generally, pick the ones you like, and ignore or suppress the warnings you don't like. It's just a tool.

at discovering the best usage for PMD usually comes with some attempts

An important feature of PMD is the possibility of marking exceptions. There are certain
times where violating a rule makes sense and it is necessary. It is possible to annota

Assignment 10

5

ng to the all developers, PMD

It also includes a Rule editor capability, where we can write our own set of rules [3],
his degree of

, where rules can be

in.

set in stone, and that there is

Generally, pick the ones you like, and ignore or suppress the warnings you don't like. It's just a tool.”

with some attempts

An important feature of PMD is the possibility of marking exceptions. There are certain
times where violating a rule makes sense and it is necessary. It is possible to annotate the

The Mappers: We find your way

Assignment 10 – Tool Project

source code (with a special notation embedded in a Java comment) to tell PMD to
ignore a specific rule on a code section.

Projects
We tested PMD with two different projects:

Project 1 – Analysis Gaming Framework

This was the development effort of
Checkers game application. This
game implementation, artificial intelligence

The project includes 167 source code files, which represent around

Project 2 – Plural Analysis Tool

This is a project developed by Nels Beckman and Kevin Bierhoff at Carnegie Mellon
University, used to perform modular typestate checking tool for Java programs. It is an
Eclipse plug-in, built on top of the Cryst
generator.

The project includes 190 source code files, which represent

We selected these projects because they represent different
joint effort of 15 elements, with different proficiency levels in the Java language
objective is serving as an academic exercise during a two
the other hand, is an active research tool
updates.

Setup
We analyzed both projects source code files with the
PMD. After the code checking against the rules, we probed the result list in order to
discover significant warnings – all of

Gaming Framework

We configured PMD to check against all
around 10 seconds.

Plural

For Plural we have configured PMD not to check several controversial rules and seve
naming and coding conventions standards as it would generate too many spurious
warnings.

The execution time lasted around

The Mappers: We find your way

source code (with a special notation embedded in a Java comment) to tell PMD to
ignore a specific rule on a code section.

We tested PMD with two different projects:

Gaming Framework

This was the development effort of three different MSE teams for a standalone
application. This includes framework code, user interface, a checkers

game implementation, artificial intelligence and JUnit tests.

The project includes 167 source code files, which represent around 3400 LOC.

Plural Analysis Tool

This is a project developed by Nels Beckman and Kevin Bierhoff at Carnegie Mellon
University, used to perform modular typestate checking tool for Java programs. It is an

, built on top of the Crystal static analysis framework and the Antlr parser

190 source code files, which represent around 27K lines of code.

We selected these projects because they represent different challenges: the first was a
joint effort of 15 elements, with different proficiency levels in the Java language

serving as an academic exercise during a two-week coding effort.
active research tool that has been recently suffering significant

We analyzed both projects source code files with the Eclipse IDE plug-in version of
against the rules, we probed the result list in order to
all of the analysis was performed with Eclipse

We configured PMD to check against all predefined rule sets. The execution time lasted

e have configured PMD not to check several controversial rules and seve
naming and coding conventions standards as it would generate too many spurious

The execution time lasted around 22 seconds.

Assignment 10

6

source code (with a special notation embedded in a Java comment) to tell PMD to

standalone
framework code, user interface, a checkers

3400 LOC.

This is a project developed by Nels Beckman and Kevin Bierhoff at Carnegie Mellon
University, used to perform modular typestate checking tool for Java programs. It is an

and the Antlr parser

around 27K lines of code.

the first was a
joint effort of 15 elements, with different proficiency levels in the Java language. Its final

week coding effort. Plural, on
significant

in version of
against the rules, we probed the result list in order to

clipse.

The execution time lasted

e have configured PMD not to check several controversial rules and several
naming and coding conventions standards as it would generate too many spurious

The Mappers: We find your way

Assignment 10 – Tool Project

Analysis
Overall, we did not manage to identify any true bugs with PMD on both plural and
framework. Nevertheless, our analysis
and improvements that could promote code maintainability and performance
fact, one of PMD's major strengths).

Figure 2 - Summary violation report on gaming framework

The previous picture displays an unfiltered result from the PMD analysis on the gaming
framework. After browsing some
focus the analysis on the rules more relevant to the team.
customizable and integrated with eclipses’ perspectives, which
plug-in usage.

Figure 3 – Violation report expanded (

The Mappers: We find your way

e did not manage to identify any true bugs with PMD on both plural and
our analysis identified a significant number of best practices

and improvements that could promote code maintainability and performance
fact, one of PMD's major strengths).

Summary violation report on gaming framework (maximum detail enabled)

The previous picture displays an unfiltered result from the PMD analysis on the gaming
framework. After browsing some results and reducing the level of detail, it is

s the analysis on the rules more relevant to the team. The user interface
customizable and integrated with eclipses’ perspectives, which greatly facilit

Violation report expanded (only medium-high warnings enabled)

Assignment 10

7

e did not manage to identify any true bugs with PMD on both plural and
identified a significant number of best practices

and improvements that could promote code maintainability and performance (this is in

(maximum detail enabled).

The previous picture displays an unfiltered result from the PMD analysis on the gaming
it is possible to

The user interface is easily
greatly facilitated the

high warnings enabled).

The Mappers: We find your way

Assignment 10 – Tool Project

For example if the team was focusing on reducing methods complexity
on Plural several methods with v
edu.cmu.cs.plural.fractions.FractionalPermission.join

39. On the gaming framework, the maximum value encountered was 34.

5.1 Relevant True positives

A list of true positives is the following
the concept of "positive" is arguable):

Gaming Framework

- In Class aialg.Checkers.CheckersMove
method should be implemented using
super.clone(), instead implementing the duplication process.

The issue is that the Java
guarantees a correct clone. In
because there is no subclass
created, then this clone implementation wouldn’t be
object.

By implementing the PMD suggestions, we would be improving the overall
maintainability and robustness of the code.

Plural

- class edu.cmu.cs.plural.linear.DisjunvtiveVisi
(DisjunctiveVisitor.java:45
abstract, defined with no content. PMD indicates these methods should be
abstract instead. In fact, when analyzing all subclasses of
they all implemented the three methods.

By leaving the class as it is, it is likely that someone will create a subclass and
forgets to override some method. Another comment arises: shouldn't this class
actually be an interface?

The Mappers: We find your way

if the team was focusing on reducing methods complexity, PMD detected
several methods with very high cyclomatic complexity: the winner is

edu.cmu.cs.plural.fractions.FractionalPermission.join with cyclomatic complexity
39. On the gaming framework, the maximum value encountered was 34.

A list of true positives is the following (of course, since these relate to maintainability,
cept of "positive" is arguable):

aialg.Checkers.CheckersMove, line 69, PMD complains that the clone
method should be implemented using the Java object clone method,

instead implementing the duplication process.

 Object method for cloning is the only one that
guarantees a correct clone. In this particular project, this isn’t a current defect,
because there is no subclasses of this class, but if in the future a new subclass is
created, then this clone implementation wouldn’t be able to clone the subclass

By implementing the PMD suggestions, we would be improving the overall
maintainability and robustness of the code.

Figure 4 - Code Snippet.

edu.cmu.cs.plural.linear.DisjunvtiveVisitor
DisjunctiveVisitor.java:45) is declared as abstract and has three methods, non
abstract, defined with no content. PMD indicates these methods should be
abstract instead. In fact, when analyzing all subclasses of DisjunctiveVisitor

d the three methods.

By leaving the class as it is, it is likely that someone will create a subclass and
forgets to override some method. Another comment arises: shouldn't this class

Assignment 10

8

PMD detected
the winner is
cyclomatic complexity

(of course, since these relate to maintainability,

that the clone
the Java object clone method,

for cloning is the only one that
this isn’t a current defect,

this class, but if in the future a new subclass is
able to clone the subclass

By implementing the PMD suggestions, we would be improving the overall

) is declared as abstract and has three methods, non
abstract, defined with no content. PMD indicates these methods should be

DisjunctiveVisitor,

By leaving the class as it is, it is likely that someone will create a subclass and
forgets to override some method. Another comment arises: shouldn't this class

The Mappers: We find your way

Assignment 10 – Tool Project

5.2 Irrelevant True Positives

Although a significant number of the issues identified by PMD are important, some of
them can be considered irrelevant
code.

Gaming Framework

- In different methods PMD states that
should be the last statement in the method.
recommendable practice
other type of constraints might
be actually clearer than having just one

Examples can be found in:
494 and 501.

Plural

- Class edu.cmu.cs.plural.perm.parser.ParsedParameterSummary
complains on the following code:

Integer index = new Integer(paramIndex);

Stating that it would be more efficient to use
instead of instantiating a new integer object. In fact, since Plural is using Java 5,
just using the paramIndex
However, this is a mere detail, which is globally irrelevant.

The Mappers: We find your way

Irrelevant True Positives

significant number of the issues identified by PMD are important, some of
them can be considered irrelevant, because in reality they do not have any impact on the

In different methods PMD states that should have only one exit point
should be the last statement in the method. Although this is an (arguably)

 enhancing maintainability, the logic of the application or
other type of constraints might enforce that having more than one exit point

ly clearer than having just one.

can be found in: com.boredgames.group13.UIMain, lines 209,

Figure 5 - code snippet

edu.cmu.cs.plural.perm.parser.ParsedParameterSummary, line 171, PMD
complains on the following code:

Integer index = new Integer(paramIndex);

Stating that it would be more efficient to use Integer.valueOf(paramIndex
instead of instantiating a new integer object. In fact, since Plural is using Java 5,

 would lead to fewer code, and a more readable one
However, this is a mere detail, which is globally irrelevant.

Assignment 10

9

significant number of the issues identified by PMD are important, some of
have any impact on the

point and that
n (arguably)

, the logic of the application or
more than one exit point to

, lines 209, 433, 440,

, line 171, PMD

Integer.valueOf(paramIndex)
instead of instantiating a new integer object. In fact, since Plural is using Java 5,

more readable one.

The Mappers: We find your way

Assignment 10 – Tool Project

5.3 False positives

Gaming Framework

- Class com.boredgames.group10.
switchToInitializedState

documented as a dummy method specifically to be used for

Plural

- Class edu.cmu.cs.plural.perm.parser.AbstractParamVisitor
marks the method indicating it should be abstract but it is actually documented as
returning true.

The Mappers: We find your way

.boredgames.group10.Game, line 523. PMD marks the method
switchToInitializedState indicating it should be abstract but it is actually

dummy method specifically to be used for Plural purposes

Figure 6 - Code Snippet.

edu.cmu.cs.plural.perm.parser.AbstractParamVisitor, line 424. PMD
marks the method indicating it should be abstract but it is actually documented as

Assignment 10

10

. PMD marks the method
indicating it should be abstract but it is actually

Plural purposes.

, line 424. PMD
marks the method indicating it should be abstract but it is actually documented as

The Mappers: We find your way

Assignment 10 – Tool Project

Conclusion
PMD is a static analysis tool focusing primarily on enforcing g
practices. It doesn’t focus much on bug detection such as detecting null pointer
dereferencing. Therefore, instead of promoting “functional quality” it promotes
maintainability and some low-level performance optimization.

Within these framing characterist
deeply integrated with most current development environments and build tools, and
containing many predefined rules making it useful out

One of the most important (unexpected) benefits of this
the Java language by providing guidance to the best practices (PMD not only signals the
issues but also explains why they are relevant).

Usage of PMD with Eclipse is straightforward: the plug
Eclipse’s standards for auto-installing and updating plug
browse. It does take some time to identify whether the defects are in fact true positives
or not.

PMD is fully customizable both in what rules to check, what is the severit
with each rule. PMD can be extended with n
existing rules may be modified, if desired
rules to be marked avoiding permanently raising warnings known to be false

We find that PMD has some overlapping with some of Eclipse’s built
but we don’t see that as a real disadvantage: the checks can be turned off and PMD may
still be run to check them during a continuous integration build (with A
instance).

By itself, PMD will not ensure quality of a program not will it prove any characteristic
of a program like Plural does. It is, however, non
combined with other static analysis tool.

We would recommend using PMD on every Java project, with a configuration which has
to adapter to the level of expertise of its users.

The Mappers: We find your way

PMD is a static analysis tool focusing primarily on enforcing good programming
It doesn’t focus much on bug detection such as detecting null pointer

dereferencing. Therefore, instead of promoting “functional quality” it promotes
level performance optimization.

Within these framing characteristics, PMD does an excellent job being extremely fast,
deeply integrated with most current development environments and build tools, and
containing many predefined rules making it useful out-of-the-box.

One of the most important (unexpected) benefits of this tool is to help newcomers in
the Java language by providing guidance to the best practices (PMD not only signals the
issues but also explains why they are relevant).

Usage of PMD with Eclipse is straightforward: the plug-in is easy to install (follows
installing and updating plug-ins) and results are easy to

browse. It does take some time to identify whether the defects are in fact true positives

PMD is fully customizable both in what rules to check, what is the severity associated
PMD can be extended with new rules and, being fully open source,

existing rules may be modified, if desired. PMD also allows specific exceptions to the
rules to be marked avoiding permanently raising warnings known to be false

We find that PMD has some overlapping with some of Eclipse’s built-in static analysis
but we don’t see that as a real disadvantage: the checks can be turned off and PMD may
still be run to check them during a continuous integration build (with Apache maven, for

By itself, PMD will not ensure quality of a program not will it prove any characteristic
of a program like Plural does. It is, however, non-intrusive and can (should) be
combined with other static analysis tool.

nd using PMD on every Java project, with a configuration which has
to adapter to the level of expertise of its users.

Assignment 10

11

ood programming
It doesn’t focus much on bug detection such as detecting null pointer

dereferencing. Therefore, instead of promoting “functional quality” it promotes

ics, PMD does an excellent job being extremely fast,
deeply integrated with most current development environments and build tools, and

tool is to help newcomers in
the Java language by providing guidance to the best practices (PMD not only signals the

in is easy to install (follows
ins) and results are easy to

browse. It does take some time to identify whether the defects are in fact true positives

y associated
and, being fully open source,

PMD also allows specific exceptions to the
rules to be marked avoiding permanently raising warnings known to be false positives.

in static analysis
but we don’t see that as a real disadvantage: the checks can be turned off and PMD may

pache maven, for

By itself, PMD will not ensure quality of a program not will it prove any characteristic
intrusive and can (should) be

nd using PMD on every Java project, with a configuration which has

The Mappers: We find your way

Assignment 10 – Tool Project

References
[1] PMD homepage:

http://pmd.sourceforge.net

[2] PMD complete list of current rules

http://pmd.sourceforge.net/rules/index.html

[3] PMD instructions for writing rules:

http://pmd.sourceforge.net/howtowritearule.html

[4] Plural Analysis Tool:

http://code.google.com/p/pluralism

[5] Maven homepage:

http://maven.apache.org

[6] Ant homepage:

http://ant.apache.org

The Mappers: We find your way

current rules with descriptions:

http://pmd.sourceforge.net/rules/index.html

PMD instructions for writing rules:

http://pmd.sourceforge.net/howtowritearule.html

http://code.google.com/p/pluralism

Assignment 10

12

The Mappers: We find your way

Assignment 10 – Tool Project

Appendices

Additional true positives discovered

Gaming framework

- In Class aialg.Checkers.CheckersBasicMove.
following code:

if (o == null || !(o instanceof CheckersBasicMove))

Stating that there is no need to chec
keyword already returns false when given a
comparison, we would be improving the overall performance o
reducing its complexity.

Plural

- In class edu.cmu.cs.plural.perm.parser.FieldFPVisitorConj
98, throws RuntimeException
exception types should not be thrown. In fact, this would pro
java.util.UnsupportedOperationException

- In class edu.cmu.cs.plural.states.StateSpaceImpl
method is calling in the constructor. This may lead to a bug if the class is
extended.

Additional irrelevant true positives

Plural

- Class edu.cmu.cs.plural.perm.parser.BoolLiteral
private constructors and PMD says it should be declared as final. In fact that is
true since it allows some optimization, but this is not a relevant issue for Plural.

The Mappers: We find your way

Additional true positives discovered

aialg.Checkers.CheckersBasicMove., line 345, PMD complains on the

instanceof CheckersBasicMove)));

need to check for null before an instanceof, because this
returns false when given a null argument. By removing the first

comparison, we would be improving the overall performance of the code, and

edu.cmu.cs.plural.perm.parser.FieldFPVisitorConj, method visit, line
RuntimeException("Unimplemented"). PMD complains that raw

exception types should not be thrown. In fact, this would probably be a
java.util.UnsupportedOperationException.

edu.cmu.cs.plural.states.StateSpaceImpl, line 117, an overridable
method is calling in the constructor. This may lead to a bug if the class is

Additional irrelevant true positives

edu.cmu.cs.plural.perm.parser.BoolLiteral: this class contains only
private constructors and PMD says it should be declared as final. In fact that is
true since it allows some optimization, but this is not a relevant issue for Plural.

Assignment 10

13

, PMD complains on the

, because this
By removing the first

f the code, and

, method visit, line
. PMD complains that raw

bably be a

, line 117, an overridable
method is calling in the constructor. This may lead to a bug if the class is

: this class contains only
private constructors and PMD says it should be declared as final. In fact that is
true since it allows some optimization, but this is not a relevant issue for Plural.

