Ay

?ﬁqﬁe Mappers: We find your way

Assignment 10
Analysis of Software Artifacts
Assignment 10: Tool Project
6t April 2009
The Mappers
Antoénio Alvim
Filipe Pontes
Paulo Casanova
Pedro Mota
Pedro Saraiva
Assignment 10 - Tool Project 1

A

S The Mappers: We find your way Assignment 10
T oY [0 e o TSRS 3
1o o | PSP P PP 4
o oY1= or 3PP 6
Y=L AU] o OSSP PRSRPPP SRR 6
YT 1LY 2 L3 USSR 7
5.1 REIEVANT TIUE POSITIVES 1eeeeiiiieiiiieie e ccttie e cetiee e e ettt e e e et be e e e stree e sesasteaeesatteeessnseeeesnsesaesesssseesesnnsseeannnes 8

5.2 IrTelEVANT TIUE POSIHIVES ..cuutieieiieetie ettt sttt ettt et e st e et e e st e s sate e sateeessteesaeessaaeessnbeesnneeenseeannnes 9

5.3 FalSE POSITIVES .. uutiie et et et e et ee e et tre e e et te e e et b te e e e st bteeeesaeeeaeeeastbeeeesanbeae e e nraaaeeeaaeeeeeanrraeeeean 10
(67072 ol [T o T o P USSR 11
2] =] 1T TR 12
Y] o 1< g Vo Lol =TSSR 13
Additional true poSitives AISCOVEIEA......cciivuiii i cecciee e e e rre e e e erre e e s sbe e e e sraaeeeseersaeeeesnssseeesnnnes 13
Additional irrelevant tru@ POSITIVESuuii ittt e e s sse e e e s s sbbe e e e s s sraaeasnnnes 13

Assignment 10 - Tool Project 2

I The Mappers: We find your way Assignment 10

Introduction

This report is the main delivery for assignment of the 2009 edition of Analysis of
Software Artifacts course.

We will present the results of a source code analysis on the following applications:

- Gaming Framework for the Bored Games - we analyzed the programming
effort for assignments 8 and 9 where we (the Mappers team) participated.

- Plural Static Analysis Project — we analyzed the checking tool we used to define
protocols for the assignment 7 and 9 of this course.

This report includes the following sections:

Section 2 — We present and briefly describe main objectives of the tool that we used to
perform the analysis.

Section 3 — We identify and describe the two projects we analyzed.
Section 4 — We detail how we performed each of the project’s individual analysis.

Section 5 — We document the results for each, with particular focus on the true positives,
talse positives and irrelevant warnings. We provide two examples for each result type —
additional examples are included in the appendixes section.

Section 6 — We provide some concluding remarks on the tools usage for the two projects
and some general remarks.

Assignment 10 - Tool Project 3

Sl
XY The Mappers: We find your way Assignment 10

Tool

We selected the tool based on the following criteria:

- We plan to use a tool that can be part of our quality assurance strategy for the
implementation stage of our studio project.

- Since we are going to implement an information system in Java, the tool should
include the analysis of Java source code.

As such, we selected the PMD tool [1]. PMD has no meaning for the tool name but we
take the suggested “Programming Mistake Detector”, as indicated by the authors'.

We used the 4.2.5 version, released on February of 2009.

Independently of which tool it is run with, PMD statically checks source code against a
set of predefined rules, to identify potential code problems such as empty
try/catch/finally/switch statements, overcomplicated expressions and dead or
suboptimal code.

The previous list is just the initial summary presented on the product homepage of the
categories of more than 250 individual rules possible to analyze with the standard PMD
distribution [2].

In this regard, it is possible to use PMD as:

- A command line executable;
- Part of the a projects’ integrated build process (Maven [5] or Ant [6]);
- Anintegrated IDE Plug-in.

We performed our analysis the assignment with the Eclipse plug-in.
The following list highlights the core capabilities provided by PMD:

- Standard compliance — J2EE, JSP (and other Java variations) guidelines, coding
standards and conventions;

- Performance/size related issues — code size, coupling, logging usage;

- Security — rules that compare code against the security guidelines published by
Sun;

- Design — provides some design patterns suggestions and recommendations after
analyzing code, like Singleton and improved ways of using interfaces;

- Correctness — how object comparisons should be made (.equals vs. ==), or how
cloning should be performed.

I As seen in http://pmd.sourceforge.net/ meaning.html

Assignment 10 - Tool Project 4

Y

N

26 The Mappers: We find your way

Assignment 10

Because not all of the previous rules types are interesting to the all developers, PMD
allows configuring easily which rules we intend to include on our analysis.

It also includes a Rule editor capability, where we can write our own set of rules [3],
which serve as an interesting option for developers who need this degree of
customization.

The following picture displays eclipses’ plug-in configuration menu, where rules can be
managed (add, delete or update).

S=TEY
|tVDB filter text Rules Configuration o T

- General 21| PMD RuleSet Configuration Options
[+ ANt
[¥- Data Management Rules
[Help Rule sek n... | Rule name | Since | Priorit | Description ;l Ao |
(- Instal{Update Basic Rules AwvoidDecimalliteralsInBigDeci... 3.4 Warring high Cne might assume that "new Big__|
[+ Java Basic Rules AvoidMultiplelnaryOperators 4.2 Error Using mulkiple unary operators m Edit rule... |
- Javascript Basic Rules | AvoidThreadGroup 3.6 Warning high Avoid using ThreadGroup; althol
- Jiglse GUI Buildsr AvoidlsingHardCodedIP 4.1 Warning high | An application with hard coded 1 Add rule... |
. Appearance and Behavi Bas!c Rules A.vnldUslngOctaI\-'..a\u.es 3.9 Warn!ng h!gh Intelger ||tera.|s should not stark
Pl A Basic Rules | BigIntegerInstantiation 3.9 Warning high | Don't create instances of alkead: Import rule set...
PETramanork: serings Biasic Rules BooleanInstantiation 1.2 Errar Avoid instantiating Boolean obje
- Class Creation Basic Rules | BrokenhullCheck 3.8 Errar The null check is broken since it o Export rule sef... |
- Code Generation Basic Rules CheckResultSet 4.1 Warning high Always check the return of one cl I
- Campanent palettefCus Basic Rules ClassCastExceptonwithTodrray | 3.4 Wwarning high if you need to get an array of a eard |
- Licensing Basic Rules CollapsibleIfStatements 31 Warning hioh Sometimes bwo 'if* statements cz
-Look and Feel Basic Rules | DoubleCheckedLocking 1.04 Error high Partially created objects can be
Basic Rules | EmphyCatchBlock 0.1 ‘Warning high | Empty Catch Block Finds instance
- Mon-seth thod
Pon .se RTINS Basic Rules ErnptyFinallyBlock 0.4 Wwarning high Avoid empry finally blocks - thes
arsing Basic Rules EmplyIfSkmt 0.1 Warning high | Empty IF Statement finds instan
- IPA Basic Rules ErnphyInitializer 5.0 Warning high | An empty initializer was found, = .
[Metrics Preferences 0l | » Rule Designer I
[#- Plug-in Developraent
= PMD Rule propetties
FD Prefer.ences. Propert [walue | e |
i Rules Configuration pattern ~'[0-9741, 3. [0-9]41, 30, [0-90{1, 31, [0-9141, 3"
[Remote Systems
[RunfDebug
[¥- Server
- Service Polides Exclude patterns Include patterns
S 1::‘;15 Exclude Pattern | Include Pattern [Add Exclude Pattern |
(- Usage Data Collectar] Add Include Pattern |
- Yalidation
[WWeb
ﬁ" Web Services _’lﬂ Restore Defaults | Apply |
?) ok I Cancel |

Figure 1 - Rule Configuration Screen of Eclipses v3.4.1 PMD plug-in.

Note that the authors state the PMD’s rules are not set in stone, and that there is
configuration effort into achieving the desired results:

“Generally, pick the ones you like, and ignore or suppress the warnings you don't like. It's just a tool.”

This means that discovering the best usage for PMD usually comes with some attempts
on tuning,

An important feature of PMD is the possibility of marking exceptions. There are certain
times where violating a rule makes sense and it is necessary. It is possible to annotate the

Assignment 10 - Tool Project

Sl
XY The Mappers: We find your way Assignment 10

source code (with a special notation embedded in a Java comment) to tell PMD to
ignore a specific rule on a code section.

Projects

We tested PMD with two different projects:
Project 1 — Analysis Gaming Framework

This was the development effort of three different MSE teams for a standalone
Checkers game application. This includes framework code, user interface, a checkers
game implementation, artificial intelligence and JUnit tests.

The project includes 167 source code files, which represent around 3400 LOC.
Project 2 — Plural Analysis Tool

This is a project developed by Nels Beckman and Kevin Bierhoff at Carnegie Mellon
University, used to perform modular typestate checking tool for Java programs. It is an
Eclipse plug-in, built on top of the Crystal static analysis framework and the Antlr parser
generator.

The project includes 190 source code files, which represent around 27K lines of code.

We selected these projects because they represent different challenges: the first was a
joint effort of 15 elements, with different proficiency levels in the Java language. Its final
objective is serving as an academic exercise during a two-week coding effort. Plural, on
the other hand, is an active research tool that has been recently suffering significant
updates.

Setup

We analyzed both projects source code files with the Eclipse IDE plug-in version of
PMD. After the code checking against the rules, we probed the result list in order to
discover significant warnings — all of the analysis was performed with Eclipse.

Gaming Framework

We configured PMD to check against all predefined rule sets. The execution time lasted
around 10 seconds.

Plural

For Plural we have configured PMD not to check several controversial rules and several
naming and coding conventions standards as it would generate too many spurious
warnings.

The execution time lasted around 22 seconds.

Assignment 10 - Tool Project 6

&y The Mappers: We find your way Assignment 10

Analysis

Overall, we did not manage to identify any true bugs with PMD on both plural and
tramework. Nevertheless, our analysis identified a significant number of best practices
and improvements that could promote code maintainability and performance (this is in
fact, one of PMD's major strengths).

[£7) Wiolations Overview 53 RN E

Element I # Violations | # Wiolations/LOC I # Violations/iethod [Project]
3 testsFramework 38 Mfa Wia GrameFramework
-3 tests 95 NjA NjA GrameFramework
£ test 133 A WiA GrameFramework
£ com.boredgames.group13.ComponentTests 101 A W& GrameFramework
- com.boredgames.groupl3 208 A Mj& GrameFramework
3 com.boredgames.group10 114 MNfA Wis GrameFramework
#-£3 checkers 119 13222.2 } 1000 59.50 GrameFramework
=8 ai 102 A NiA GrameFramework
-3 faialg checkers | 166 217.8{ 1000 3.32 GrameFramework
-5 aialg 15 nfa WA GrameFramework

Figure 2 - Summary violation report on gaming framework (maxinum detail enabled).

The previous picture displays an unfiltered result from the PMD analysis on the gaming
framework. After browsing some results and reducing the level of detail, it is possible to
focus the analysis on the rules more relevant to the team. The user interface is easily
customizable and integrated with eclipses’ perspectives, which greatly facilitated the
plug-in usage.

77 Yiglations Overview 53 4 || * | - | 4 & @ | = =]
Element | # Wiolations | # Wiolations/LOC | # Violations/Method | Project |:|
#-f3 com.boredgames, groupl 3, Component Tests a3 80,7 f 1000 3,92 GrameFramework
E|EE com.boredgames. groupl 3 132 §6.8 f 1000 Z.64 GrameFramework
E|,a’ AssignmentIndperand z 1.3 1000 0.04 GrameFramework,
m UIMain. java 1 1.3 1000 0.04 GrameFramework,
1 1,3/ 1000 0,04 GrameFramework,
z 1,3 1000 0,04 GrameFramework,
H m UIMain. java 1 1,3 1000 0,04 GrameFramework,
- m UIMain. java 1 1.3 1000 0.04 GrameFramework,
[SystemPrintin 10 6.6 1000 0,20 GrameFramework,
[+ Shortvariable 10 6.6 1000 0,20 GrameFramework,
[CyclomaticComplesxity & 3.9/ 1000 0,12 GrameFramework P
: W ConfusingTernary 2 1.3/ 1000 0.04 GrameFramework
¥ ConstruckorCallsoverridableMethod 4 2.6] 1000 0.08 GrameFramework
- LocalVariableCouldBeFinal 10 6.6] 1000 0,20 GrameFramework
-l EmplyiehileStmt 2 1.3/ 1000 0.04 GrameFramework
-l IFElseStmbsMustseBraces 10 6.6] 1000 0,20 GrameFramework
- IFSEmbsMustUseBraces 2 1.3/ 1000 0.04 GrameFramework
- UnusedLocalvariable 2 1.3/ 1000 0.04 GrameFramework
- SignatureDeclare ThrowsException & 3.9/ 1000 0,12 GrameFramework
-l DoMobCallSystemExit 10 6.6] 1000 0,20 GrameFramework
-l SimplifyBooleanExpressions z 1.3/ 1000 0.04 GrameFramework
- & AyoidThrowingRawException Types [} 3.9 /1000 0.12 GrameFramework
-l DefaultPackage z 1.3 1000 0.04 GrameFramework
-l MethodargumentCouldBeFinal 10 6.6 /1000 0.20 iGrameFramework LI

J
Figure 3 — Violation report expanded (only medinn-high warnings enabled).

Assignment 10 - Tool Project 7

AL
A he Mappers: We find your way Assignment 10

For example if the team was focusing on reducing methods complexity, PMD detected
on Plural several methods with very high cyclomatic complexity: the winner is
edu.cmu.cs.plural.fractions.FractionalPermission.join with cyclomatic COl’nplCXity
39. On the gaming framework, the maximum value encountered was 34.

5.1 Relevant True positives

A list of true positives is the following (of course, since these relate to maintainability,
the concept of "positive" is arguable):

Gaming Framework

- In Class aialg.Checkers.CheckersMove, line 69, PMD complains that the clone
method should be implemented using the Java object clone method,
super.clone (), instead implementing the duplication process.

The issue is that the Java object method for cloning is the only one that
guarantees a correct clone. In this particular project, this isn’t a current defect,
because there is no subclasses of this class, but if in the future a new subclass is
created, then this clone implementation wouldn’t be able to clone the subclass
object.

By implementing the PMD suggestions, we would be improving the overall
maintainability and robustness of the code.

= [iCrrerride

=] public CheckersMowve clone() {

Ta CheckerslMove cl = new CheckersHMowve () :
71 for [(CheckersBasicMove chm : moves) |
72 cl.addMove [chm) ;

73 i

74

75 return cl;

T i

Figure 4 - Code Snippet.
Plural

- class edu.cmu.cs .plural.linear.DisjunvtiveVisitor
(bisjunctiveVisitor.java:45) is declared as abstract and has three methods, non
abstract, defined with no content. PMD indicates these methods should be
abstract instead. In fact, when analyzing all subclasses of pisjunctivevisitor,
they all implemented the three methods.

By leaving the class as it is, it is likely that someone will create a subclass and
forgets to override some method. Another comment arises: shouldn't this class
actually be an interface?

Assignment 10 - Tool Project 8

e =Y The Mappers: We find your way Assignment 10

5.2 lrrelevant True Positives

Although a significant number of the issues identified by PMD are important, some of
them can be considered irrelevant, because in reality they do not have any impact on the
code.

Gaming Framework

- In different methods PMD states that should have only one exit point and that
should be the last statement in the method. Although this is an (arguably)
recommendable practice enhancing maintainability, the logic of the application or
other type of constraints might enforce that having more than one exit point to
be actually clearer than having just one.

Examples can be found in: com.boredgames.groupl3.UIMain, lines 209, 433, 440,

494 and 501.
20z private boolean handlelLoad() throws IOException {
03 System.out.println("Enter file name of the saved gsmwe to load: ™) ;
Z04 String filensmwe = readline() !
z05
206 try {
207 currentGamwe = GameFactory.getGameFactories () .get (0) . loadGamwe (£ilensme) 2
Z08 System.out.println("Load succesfully!™);
zZn9 return true:
Z10 + catch (Not3upportedException =) {
211 Systew.out,.println("DEEUG — handlelLoad: Gstoe loading not supported™) :
Z12 Svstem.exit (1) ;
Z13 + catch (IOException 2)
214 Systewm.out.println("Problew loading from f£ile ™ + filename):
Z15 + catch [(NoGamePluginsException e) |
Z21a Systew.out,.println("DEEUG — handleload: No plugins detected®™);
Z17 Jystem.exit (1) ;
218 ¥
Z19 return false;
220 }
Figure 5 - code snippet
Plural

- Class edu.cmu.cs. plural.perm.parser.ParsedParameterSummary, line 171, PMD
complains on the following code:

Integer index = new Integer (paramlndex) ;

Stating that it would be more efficient to use Integer.valueof (paramIndex)
instead of instantiating a new integer object. In fact, since Plural is using Java 5,
just using the paramIndex would lead to fewer code, and a more readable one.
However, this is a mere detail, which is globally irrelevant.

Assignment 10 - Tool Project 9

~ The Mappers: We find your way Assignment 10

5.3 False positives
Gaming Framework

- Class com.boredgames.groupl0.Game, line 523. PMD marks the method
switchToInitializedState indicating it should be abstract but it is actually
documented as a dummy method specifically to be used for Plural purposes.

S22 [@Full jregquires = "prelnit™, ensuresz = "initislized", fieldliccess = true)
5273 protected void svitchToInitialized3tate()
524 Ff Aoy method for plural

525 '

Figure 6 - Code Snippet.
Plural

- Class edu.cmu.cs. plural.perm.parser.AbstractParamVisitor, line 424. PMD
marks the method indicating it should be abstract but it is actually documented as
returning true.

Assignment 10 - Tool Project 10

Sl
XY The Mappers: We find your way Assignment 10

Conclusion

PMD is a static analysis tool focusing primarily on enforcing good programming
practices. It doesn’t focus much on bug detection such as detecting null pointer
dereferencing. Therefore, instead of promoting “functional quality” it promotes
maintainability and some low-level performance optimization.

Within these framing characteristics, PMD does an excellent job being extremely fast,
deeply integrated with most current development environments and build tools, and
containing many predefined rules making it useful out-of-the-box.

One of the most important (unexpected) benefits of this tool is to help newcomers in
the Java language by providing guidance to the best practices (PMD not only signals the
issues but also explains why they are relevant).

Usage of PMD with Eclipse is straightforward: the plug-in is easy to install (follows
Eclipse’s standards for auto-installing and updating plug-ins) and results are easy to
browse. It does take some time to identify whether the defects are in fact true positives
or not.

PMD is fully customizable both in what rules to check, what is the severity associated
with each rule. PMD can be extended with new rules and, being fully open source,

existing rules may be modified, if desired. PMD also allows specific exceptions to the
rules to be marked avoiding permanently raising warnings known to be false positives.

We find that PMD has some overlapping with some of Eclipse’s built-in static analysis
but we don’t see that as a real disadvantage: the checks can be turned off and PMD may
still be run to check them during a continuous integration build (with Apache maven, for
instance).

By itself, PMD will not ensure quality of a program not will it prove any characteristic
of a program like Plural does. It is, however, non-intrusive and can (should) be
combined with other static analysis tool.

We would recommend using PMD on every Java project, with a configuration which has
to adapter to the level of expertise of its users.

Assignment 10 - Tool Project 11

2

Y The Mappers: We find your way

B

Assignment 10

References

[1] PMD homepage:

http://pmd.sourceforge.net

[2] PMD complete list of current rules with descriptions:

http://pmd.soutrceforge.net/rules/index.html

[3] PMD instructions for writing rules:
http://pmd.sourceforge.net/howtowritearule.html
[4] Plural Analysis Tool:

http://code.google.com/p/pluralism

[5] Maven homepage:

http://maven.apache.org

[6] Ant homepage:

http://ant.apache.org

Assignment 10 - Tool Project

12

A Mappers: We find your way Assignment 10

Appendices

Additional true positives discovered

Gaming framework

- In Class aialg.Checkers.CheckersBasicMove. 5 line 345, PMD complains on the
tollowing code:

if (o == null || ! (o instanceof CheckersBasicMove))):;

Stating that there is no need to check for null before an instanceot, because this
keyword already returns false when given a nu1l argument. By removing the first
comparison, we would be improving the overall performance of the code, and
reducing its complexity.

Plural

- Inclass edu.cmu.cs.plural.perm.parser.FieldFPVisitorConj 5 method Visit, line
98, throws RuntimeException ("Unimplemented"). PMD complains that raw
exception types should not be thrown. In fact, this would probably be a

java.util.UnsupportedOperationException.

- Inclass edu.cmu.cs .plural.states.StateSpaceImpl, line 117, an overridable
method is calling in the constructor. This may lead to a bug if the class is
extended.

Additional irrelevant true positives
Plural

- (Class edu.cmu.cs. plural .perm.parser.BoolLiteral: this class contains onl
y
private constructors and PMD says it should be declared as final. In fact that is
true since it allows some optimization, but this is not a relevant issue for Plural.

Assignment 10 - Tool Project 13

