

Carnegie Mellon University

MSE 2009

Tool analysis report - PMD
Analysis of Software Artifacts

Group 2 - Abhishek Minde, Bhanu Sistla, Jeff Salk,

Nan Li, Yuki Saito

Tool analysis report - PMD

MSE 2009

Page 2

Table of Contents
1. Introduction .. 3

2. PMD Workflow .. 4

3. Experimental Setup ... 5

4. Data Gathered ... 6

5. PMD Result Analysis .. 7

5.1 Hnefatfl Game Plug-in ... 7

True positive: .. 7

True, but irrelevant ... 9

False Positive ... 9

5.2 Process Dashboard .. 12

6. Lessons Learned .. 13

6.1 Benefits of PMD .. 13

6.2 Drawbacks of PMD .. 14

7. Conclusion ... 16

References ... 17

Tool analysis report - PMD

MSE 2009

Page 3

1. Introduction

PMD is an open source, static code analysis tool. It can facilitate code reviewing through

multiple sets of rules. It scans Java source code and looks for potential problems including:

• Violation of coding standards

• Unreachable code - unused local variables, parameters and private methods

• Violation of optimization standards

• Overcomplicated (complex) methods and classes

• Duplicate code - copied/pasted code means copied/pasted bugs

• Dataflow anomalies

It currently consists of 225 rules and new rules can be added with the help of a feature request.

In order to keep the number of false positives reported to a minimum number, a suite of unit

tests is associated to every rule that ensures that false positives are kept as low in number as

possible.

There are many ways to use PMD, such as command line, ant task, maven plug-in, IDE plug-ins

(Eclipse plug-in). PMD plug-in allows developers to automatically run the PMD code analysis

tool on their project's source code and generate a report with its results. It also supports the

separate Copy/Paste Detector tool (or CPD) that is distributed with PMD. The plug-in accepts

configuration parameters that can be used to customize the execution of the PMD analysis tool.

Tool analysis report - PMD

MSE 2009

Page 4

2. PMD Workflow

The fundamental concept on which PMD is built upon is Abstract Syntax Tree (AST) which is a

finite, labeled tree with nodes that represent the operators and the edges form the operands of

the operators. An AST of every checked source file that is created and each rule from enabled

rules sets is run against the created tree. PMD then collects all the violations and presents it in a

report. Following are the steps that get executed when PMD is invoked from Eclipse:

• A file name, a directory (or project) is passed to the core PMD by Eclipse PMD plugin. The

RuleSets defined in the PMD preference page are then used by the engine to check for the

file(s) for violations.

• Following steps are executed in case of a directory or project containing multiple source

files.

1. Java language parser is obtained by PMD using JavaCC

2. A source file is parsed by the parser

3. A reference of an Abstract Syntax Tree(AST) is returned by the parser back to the PMD

plugin

4. AST is traversed by each rule in every RuleSet and violations are checked.

5. Based on the list of Rule Violations, a report is generated. The Rule Violations are

displayed in the PMD violations view or they get logged in the form of an HTML report,

or TXT , CSV or XML.

• New rules can be added to PMD in two formats:

1. Java based rules that involves writing a Java implementation class as a rule

2. XPATH rules that involves defining a rule in an XML file.

Both the ways can be used to add new rules and they are equally applicable. Therefore

choice of one of the two formats depends upon personal preference and complexity of the

rule.

Tool analysis report - PMD

MSE 2009

Page 5

3. Experimental Setup

Before starting on with the application of the tool, we decided the strategy. We decided and

executed the following procedure, so that we could do things in a controlled and time-efficient

manner.

Procedure:

1) Define the goals for analysis of the project under inspection/review

2) Identify rule sets from the available rules-sets, which support these goals. And for goals

those are not supported, we propose to define new rules.

3) Configure the rules sets according to your goal expectations can be done in two ways.

Certain rules can be turned and certain can be disabled.

4) Set appropriate priorities for the rules (e.g. informational, error, warning etc.)

5) Run the tool and evaluate the report

In this project, we focus on PMD integration with Eclipse to analysis and report the code

checking results.

We picked two programs against which we decided to apply PMD:

1) Hnefatfl game plug-in our group developed in assignment 9, whose code is relatively simple;

2) Process Dashboard, which is an open source product and whose code is relatively complex.

The object of our experimentation is to capture different aspects of PMD. These aspects include

its performance, usability, completeness and soundness. Completeness and soundness are for

violations and defects PMD reports.

Tool analysis report - PMD

MSE 2009

Page 6

4. Data Gathered

Based on the code we decided to analyze, we chose the features and then ran PMD on them to

get the violations. Following is the list of features we chose.

• Hnefatfl game plugin (boredgames.game.hnafatafl.model Package only)

Feature Turned On/Off Rationale

Checking of code size rules.

These checks for Cyclomatic

and N-Path complexities in

the code. This rule set also

determines size of classes

and methods.

On

This analysis gives a fair idea about the complexity

and size of the code. This helps the code to meet the

size and complexity guidelines. More the complex

code, more vulnerable it's for defects.

Basic rules set tries to

address some coding

standards as well as tries to

On

We wanted to calculate the complexity of the code.

We thought this to be one of the most important

features, as it would let the developer know when

to refactor the code or redesign. These rules set can

be configured and used at an organizational level,

which would standardize the code and enhance the

understandability of the code.

Rules for J2EE, Sql resultset Off

The subject code does not use J2EE or sql package.

Hence, enabling these rules was unnecessary and

removing them would reduce the rules set which in

turn would enhance the performance and eliminate

the false positives generated by the PMD analysis.

Table 4.1: Rules configuration for testing the game plugin

Table 4.1 shows different rules-sets that we decided to turn off /on during the analysis.

• Process dashboard (net.sourceforge.processdash package only):

We kept the settings of rules as defined in the table 4.1. We didn’t check all subpackages of

net.sourceforge.processdash package, and we ended up in analyzing approximately 5K lines in

process dashboard code. 532 violations were reported with all default rules enabled (i.e., no

rules configured or turned on or off from what is set by default)

Tool analysis report - PMD

MSE 2009

Page 7

5. PMD Result Analysis

5.1 Hnefatfl Game Plug-in

We used PMD to check the code of game plug-in, which we developed in assignment 9 and has

total 838 LOC. After running PMD upon the code with the given rule sets, we got total 225

violations in 1 second, and #Violation/LOC equals 268.5. The analysis of these violations is

shown below.

Figure 4.1 Categorized Violations

We evaluated all 225 violations manually. We reviewed every violation that was notified by the

tool. Within the total 225 violations, there are 184 true positive violations, 16 true positive but

not relevant violations, and 25 false positive violations. For example:

True positive:

o NPathComplexity: The method … has an NPath complexity of…

This violation was observed multiple times. This is the one at line 94 in

HnefataflRules class. The violation says that “The method getLegalMovesFor()

has an NPath complexity of 1229313”. Typically, a threshold of 200 is considered

the point where measures should be taken to reduce complexity. From the

information provided by PMD, we can see that the NPath complexity of method

getLegalMovesFor() is too high which leads us to find a way to reduce the

complexity of the code to make it easy to understand and maintain, and avoid

being defect-prone.

o CyclomaticComplexity: The … has a Cyclomatic Complexity of ...

184

16
25

0

20

40

60

80

100

120

140

160

180

200

Violations

True Positive

True, Irrelvant

False Positive

Tool analysis report - PMD

MSE 2009

Page 8

This violation happens multiple times. This is the one at line 94 in HnefataflBoard

class. The violation says that “The class HnefataflBoard has a Cyclomatic

Complexity of 41.” Generally, 1-4 is low complexity, 5-7 indicates moderate

complexity, 8-10 is high complexity, and 11+ is very high complexity. From the

information provided by PMD, we get to know that the Cyclomatic Complexity of

the class is too high which means we need to reduce the complexity of our code

to make it readable, maintainable, not being error-prone, and easy to track when

error happens.

o Cut and Pasted code:

Cut and Pasted code detector (CPD) found several instances of cut and pasted

code in the process dashboard code base. This indicated that maintainability of

such code becomes difficult. And the chances that reflecting a change to one

instance of such code to all other instances is not always high. Hence, keeping

cut and pasted code lower is a good measure and CPD helps to achieve it.

o SwitchStmtsShouldHaveDefault: Switch statements should have a default label.

This violation happens multiple times. This is the one at line 82 in HnefataflPiece

class. Our code is this:

switch(getType()){
 case BLACK_WARRIOR: string = "BLACK_WARRIOR";
 break;

 case WHITE_WARRIOR: string = "WHITE_WARRIOR";
 break;

 case WHITE_KING: string = "WHITE_KING";

}

The game can run properly with this segment of code. However, we lose the

automatic documentation provided by case-statement labels, and we also lose

the ability to detect errors with the default clause. Therefore, this is a true

positive violation in terms of our code.

o IfElseStmtsMustUseBraces: Avoid using if…else statements without using curly

braces.

This violation happens at many places. There is one at line 87 in HnefataflRules

class. Our code is this:

if(surroundedCount == 4)return opponentPlayer;
 else return null;

Tool analysis report - PMD

MSE 2009

Page 9

Even thought the segment of code can executed properly, but better

programming practice will make the code more readable. Therefore, we regard it

as a true positive violation.

True, but irrelevant

o NullAssignment: Assigning an Object to null is a code smell. Consider refactoring.

This violatioin happens once at line 271 in HnefataflBoard. Our code is this:

if(source!=null){

 board[location.getX()-1][location.getY()-1] = null;

}

We use this segment of code to remove a piece from the board, rather than just

assign an Object to null. Therefore, this violation is a true positive violation, but

not relevant to our code.

o SystemPrintln: System.(out|err).print is used, consider using a logger.

This violation happens once at line 487 in HnefataflBoard class. Our code is this:

public synchronized void addObserver(Observer o) {

 System.out.println("addobserver");
 if(HnefataflBoard.observer == null){

 HnefataflBoard.observer = (BoardPanel)o;
 super.addObserver(o);

 }
else

 super.addObserver(HnefataflBoard.observer;

}

We managed the rules at the rules set level and we did not configure the rules at

individual rule settings. Hence, we still had certain rule violations that we didn’t want to

see. This is an important thing that we will keep in mind when select the rules next time.

False Positive

We found the following false positives. Some of the false positives are because of the

fact that we did not filter all rules at individual filter level, although we did it at rules set

level.

Tool analysis report - PMD

MSE 2009

Page 10

DD Anomaly:

Fig 4.2 : toString Code: False positive DD

As shown in the code in fig 4.2, string is declared and initialized at the beginning.

However, “string” is initialized to null. Then inside, the switch case string is assigned to

some value. Dataflow anomaly analyzer reports this as a DD problem. It reports that we

are redefining the variable “string” once it is defined. It should take care of “null” and

based on that it should note that it’s perfectly value to have a redefinition.

Avoid instantiating new objects inside loops:

Under optimization rules set, we have a rule that reports a violation if we instantiate

any object inside a loop. This we felt was a false positive, as we thought not having any

object instantiated in a look is not practical. And we thought that declaration of an

object should not be done in the loop; however, instantiation could be done in a loop.

Fig 4.3: Instantiation in a loop false positive.

As shown in the fig 4.3, Point is being instantiated inside a loop, which is why PMD is

reporting a warning.

Tool analysis report - PMD

MSE 2009

Page 11

AvoidDuplicateLiterals:

The String literal … appears … times in this file; the first occurrence is on line …

Our code of Plural likes this:

@Perm(requires="pure(this!fr) in pieceHasPlr", ensures="pure(this!fr)")

The warnings we got regarding this kind of code like this:

The String literal full(this!fr) in boardUninitialized appears 4 times in this file; the first

occurrence is on line 36. It seems that PMD can’t recognize the syntax of Plural.

More analysis is below:

Figure 4.4 Prioritized Violations

Within these violations, most of them (95.7%) are the violations with Warning High priority

(Priority 3).

2 2

176

20 25

0

20

40

60

80

100

120

140

160

180

200

Priority

Error High

Error

Warning High

Warning

Information

Tool analysis report - PMD

MSE 2009

Page 12

Figure 4.5 Violation Allocation

After excluding the irrelevant and the false positive ones, the true positive violations belong to

10 out of total 22 rule sets, as shown in Figure 4.5. From this chart, we can get the idea about

the quality of our code. For example, the biggest portion of all the violations (26.1%) belongs to

optimization rules which mean our code may need to be optimized. Meanwhile, 11.4% of our

code violates the design rules, which can lead us to look back to our design and figure out if

there’s any design flaws.

5.2 Process Dashboard

We used PMD to check the code of net.sourceforge.processdash package. After running PMD

upon the code with the given rule sets, we got total 532 violations in 6 seconds. However, due

to limited amount of time, we could not visit each and every reported violation.

PDataFile.java: "Abstract classes should be named 'AbstractXXX'." This is not a common

standard for Java and is definitely not part of Sun's Java coding conventions standard.

48

40

26

21

20

11

9
4 4

1
Optimization Rules

Controversial Rules

Braces Rules

Design Rules

Naming Rules

Code Size Rules

JavaBean Rules

Clone Implement Rules

Security Code Guidelines Rules

Unused Code Rules

Tool analysis report - PMD

MSE 2009

Page 13

6. Lessons Learned

We identified several benefits and drawbacks of using PMD.

6.1 Benefits of PMD

1. Usability:

a. It provides great help documentation with examples and detailed explanation

about the warning or error.

b. It provides flexibility to the developer to assign priorities and severity level to

rules, and to define the rules based on their own purpose.

c. It provides priority filter which can show errors and warnings with certain

priority. Developers can look through all the errors and warnings easily for

particular level of priority.

d. It provides resource filter which can be used to view the checking result for a

particular project if multiple projects are checked at the same time.

e. Some useful menus are provided to facilitator the job of the developer, such as

the developer can view the checking results with different views, such as show

violation to packages, show violation to files, and show package with files.

f. It provides a Violation Outline window to give a detailed checking result for the

chosen Java file. For example, the Violations Overview displays there are four

violations in respect of the rule ShortVariable in RulesFactory class. Once you

double-click the rule, RulesFactory class will be opened and the Violation Outline

window will show up simultaneously with all the violations found along with line

numbers and these four violations highlighted. Once you click one of it, the

corresponding line in RulesFactory class that violates the rule will be located.

g. It provides the function to mark a violation as reviewed with reviewer's name

and review time and date, which facilitates the review and tracking of the

violations.

h. It provides a flexibility to specify "max" number of reported violation per file.

This helps in improving the performance for large files; however, it might give a

file impression.

Tool analysis report - PMD

MSE 2009

Page 14

2. It helps code in good programming practice. For example, it can be used to check if

there are variables with too short names like x, y, p, or if there's if...else statement

without curly braces.

3. It helps find not only syntax problems, but semantic problems in the code. For example,

it can verify both the NPath complexity and Cyclomatic complexity of the code, which is

hard to find before the code executed.

4. Rules creation: It allows the user/developer to create their own rules with the help of

inbuilt rule designer. This helps the user to define the rules that based on XPath, and

other complex rules need to be defined in a separate class.

5. Documentation: For almost every reported violation, PMD provides an example,

showing how to solve that violation. It also gives a hyperlink, which navigates to the

PMD webpage that describes the violation and gives an example about how to fix it.

6. Cut and Paste detector: This is a very useful utility. This allows us to find all instances of

cut and pasted code in different source files. Duplicate code is hard to find, especially in

large projects. PMD's copy paste detector finds it pretty quickly. It uses Karp Rabin's

algorithm for string comparisons. The more cut and pasted code you have, lesser the

maintainability of the program.

6.2 Drawbacks of PMD

1. It doesn't offer any "Quick Fix"es, as it common with Java problems found in Eclipse,

even though right-clicking on an error in the Violations Outline view has a "Quick Fix..."

entry, it is always disabled (grayed-out). This is even for errors where the suggestion is

clear. For example, "Consider replacing this Vector with the newer java.util.List".

2. Mostly checks “Mechanical” bugs: Most of the times, PMD will identify mechanical

defects. It doesn’t perform detailed analysis so that it could also give us insight into

some of the semantic defects.

3. Dataflow analyses: Dataflow analyzer has been recently built in the PMD. And currently

it can report on primitive dataflow anomalies in the program. They are expecting other

analyses to be built on top of this dataflow analyses. However, it is still in evolving state.

4. Selecting the project in Eclipse (Project Explorer view) and choosing "Generate Reports"

doesn't result in anything visible. There was progress showing in the Eclipse progress

message area and it seemed to complete to 100%, but then nothing happened. I even

had all possible PMD views visible and checked each one of them, but nothing changed

in the views.

Tool analysis report - PMD

MSE 2009

Page 15

5. It doesn't seem possible to run PMD on just a single package without it also running the

checker on the sub(child) packages. For example, in trying to run it only on code in the

"net.sourceforge.processdash" package (selecting that node in the Package Explorer

view), it ran it on all code in all subpackages, too. Unfortunately, the majority of the

code-base of the Process Dashboard project is a sub-package of

net.sourceforge.processdash. And checking the options for PMD there appears to be no

option to filter this. However a viable workaround is to simply select all the code in the

package of interest and then run PMD on the selected code. In addition, note that the

Eclipse Problems view seems to suffer the same limitation - even trying the various

options to "show selected element only " and "show selected element and its children" I

could not get it to only show the problems for the net.sourceforge.processdash package

(the code in that package) itself without also showing that of the subpackages.

6. It requires understanding of the AST in order to understand and define the XPath

definitions (rules).

7. It doesn’t provide help for Rule Designer, and is not clear what the input is for each part

of the designer and how it works with Rules Configuration.

8. Some results are confusing. For example, there two violations appear at line 5 of

HnefataflPiece class. Both the violations are identical and there’s no reason why it

produces the same result twice.

9. It shows that the file has errors in package explorer if there is any priority 1 (error high)

or priority 2 (Error) violation appear. The icon shown for the violations with either

priority is a file with a red cross, which is same as the icon for compiling error. It

confuses the developers as if these are compile errors in the code.

10. The priority of given rules needs to be refined due to its inaccurate. For example, the

priority of SystemPrintln violation (System.(out|err).print is used, consider using a

logger.) is defined as Error, but it can be just a warning or a information. Moreover,

currently even for a low cyclomatic complexity, it is showing a warning (exact severity is

"warning high"). The severity level should at least be lowered for such a case, or the

rule should be modified so that this message is not shown unless the complexity is

above a given threshold value.

Tool analysis report - PMD

MSE 2009

Page 16

7. Conclusion

PMD can be applied for Java code and would be very beneficial for use in industry. The

main drawback is that the developer has to take the time to customize the rules to

eliminate the ones that aren't considered relevant and/or reducing the severity of

certain rules. But that's typically a one-time setup, followed by possibly some small

incremental fine-tuning as it gets used more and more.

After having thought about all its benefits and drawbacks we’ve decided to use PMD for

our studio project in summer.

We will define the QA strategy, which will primarily have what kind of coding,

optimization standards we as a team are going to adhere to. Tools like PMD can

streamline our process of development of code that adheres to common or predefined

standards (at least to certain extent).

We realized that for any analysis tool, it is very important that it can be extended to

support more analyses. E.g. PMD supports creation of new rules with quite an ease. This

allows the developers to add their rules as and when they need it. This enhances the

applicability of the tool.

Tool analysis report - PMD

MSE 2009

Page 17

References

[1] PMD, software policing software, - http://pmd.sourceforge.net/

 [2] XML Path Language (XPath), when less is more, http://www.w3.org/TR/xpath

 [3] Eclipse, http://www.eclipse.org

