

CMU 17-654/17-754 Analysis of Software Artifacts Aldrich, Spring 2008

Tool Practicum - FindBugs

Gunsik Choi, Wonjae Lee, Hyunho Kim Tool Practicum Due: Tue Mar 25, 2008

1. Overview

1.1. Tool Name

FindBugs Ver.1.3.2

1.2. Members

Our team consists of 3 members: Gunsik Choi, Hyunho Kim, Wonjae Lee. The
configuration of our team corresponds to that of U-Challenger studio team.

Name Contact

Gunsik Choi gchoi@andrew.cmu.edu

Hyunho Kim hyunhok@andrew.cmu.edu

Wonjae Lee wonjael@andrew.cmu.edu

2. Project Description

It is hard to achieve quality in software because of many reasons. One important
reason is that unexpected bugs can occur. Complex library APIs and various
language features provide many causes of bugs in software. However, bugs can
waste development time and make users frustrated.

We can use tools to find potential bugs in code. Static analysis, one of analysis
techniques, is tool-supported direct static evaluation of formal software artifacts.
Using static analysis, we can predict potential errors early without running codes.

In this project, we will test “FindBugs” which is a Java static analysis tool, to find
bugs in the codes of the two different projects, and figure out what kinds of bugs
this tool finds.

2.1. Objectives of Project

The primary objectives of this project are to gain an in-depth practical experience
with an analysis tool or technique and reflect on the experience.

All of our members work in a same studio project for developing collaborative
filtering system. Because the most portion of the system will be developed using
Java, we expect that we will use this Java static analysis tool to achieve higher
quality based on experience of this project.

3. Tool Description

3.1. Overview of FindBugs

2

FindBugs is a Java static analysis tool which can find code instances of bug
patterns in Java code. Bugs can be categorized into certain patterns according
to common characteristics, and FindBugs automatically detects code instances
of bug patterns as the result of matching the Java byte-code with those patterns.
This can generate a list of a variety of patterns of potential bugs. Using this tool,
we can analyze Java code without running the code.

3.2. How FindBugs Analyze Code

FindBugs analyzes Java class files using BCEL (Apache Byte Code Engineering
Library). BCEL provides analysis framework for CFG (Control Flow Graph)
construction, generic dataflow analysis, and various specific dataflow analyses.

And, FindBugs analyzes byte-code in three ways: byte-code scanning, scanning
with control flow, and dataflow analysis. Firstly, as following byte-codes, it drives
the state machine and checks whether the state machine is in the correct state.
Secondly, it can scan control flow thorough control flow graphs. Thirdly, through
dataflow analysis, it can check dataflow values iteratively.

3.3. Feature

3.3.1. Bug Pattern Detectors

FindBugs detects instances of bug patterns in Java program based on BCEL, an
open source bytecode analysis and instrumentation library. The bug patterns
broadly falls into following four categories:

� Single-threaded correctness issue

� Thread/synchronization correctness issue

� Performance issue

� Security and vulnerability to malicious untrusted code

The implementation strategies of FindBugs for finding vulnerabilities in Java
bytecode can be divided into four categories:

� Class structure and inheritance hierarchy: This strategy looks at the structure
of the analyzed classes without looking at the code.

� Linear code scan: This strategy makes a linear scan through the bytecode
and drives a state machine. Instead of using complete control flow, heuristics
such as identifying the targets of branch instruction are used.

� Control sensitive: This strategy makes uses of a control flow graph, and the
patterns are compared to it.

� Dataflow: This strategy uses the control and data flow graphs generated from
analyzing a program. For example, the null pointer dereference detectors
use this strategy.

3.3.2. Bug Patterns

3

Based on FindBugs version 1.3.3-dev-2008031, total 292 of bug patterns are
registered. The detail bug description is attached in Appendix 1.

Bug category Bug pattterns

Bad practice 78

Correctness 109

Internationalization 1

Malicious code vulnerability 12

Multithreaded correctness 12

Performance 22

Security 8

Dodgy 50

Summary 292

3.3.3. Custom detectors

FindBugs can be extended and customized to meet a team’s unique
requirements. It supports to make and add application-specific bug detectors.

3.4. Usage

FindBugs can be run as a standalone application or an Eclipse plug-in. FindBugs
as a standalone application provide two user interfaces: a graphical user
interface and a command line user interface. FindBugs can also be integrated
into a build script for Ant.

We will focus on running FindBugs as an Eclipse plug-in because Eclipse IDE
provides various benefits. Eclipse IDE enables developers to execute the
FindBugs directly, and analyze the codes without separately running it. Then the
basic functions of Eclipse can be used to fix the found bugs.

3.4.1. Installation

3.4.1.1. Standalone Application

Step 1) Download binary distributions that are available in gzipped tar format and
zip format.

Step 2) Extract from the archive file to a destination folder.

3.4.1.2. Eclipse Plug-in

Step 1) Start Eclipse and choose Help � Software Updates � Find and Install…

Step 2) Select the Search for new features to install option, and click the Next
button.

Step 3) Select New Remote Site

4

Step 4) As a Name, enter FindBugs update

 As a URL, enter http://findbugs.cs.umd.edu/eclipse

 And click OK button.

Step 5) Check the checkbox for “FindBugs update” in Sites to include in search
and click next button.

Step 6) Check the checkbox for “FindBugs Feature” in Select features to install
and click the next button.

Step 7) Select the I accept option and click the next button.

Step 8) Select the location and click the Finish button.

3.4.2. Using the Eclipse Plug-in

To start a bug scanning, click right button on a project and select “Find Bugs” �
“Find Bugs” as shown on the next screen shot.

When a bug scanning is completed, found bugs can be explored by selecting the
FindBugs perspective as shown on the next screen shot.

In the Bug Explorer, found bugs are classified by their types and importance. A
user can assign his own classification to a found bug in the Bug User
Annotations.

5

3.4.3. Customization

FindBugs can be customized by opening the Properties dialog for a Java project,
and choosing the “FindBugs” property page as shown on the next screen shot.

You can choose whether FindBugs runs automatically when a Java class is
modified by enabling or disabling the “Run FindBugs Automatically” checkbox.

Minimum warning priority and enabled bug categories can be chosen by
selecting “analysis effort” pull-down menu.

On the Detector configuration tab, detectors can be enabled or disabled for the
project.

On the Reporter configuration tab, minimum priority to report and reported bug
categories can be chosen.

On the Filter files tab, filters for filtering bugs can be added.

6

3.4.4. Documentation

The manual is provided at http://findbugs.sourceforge.net/manual/index.html.
While most features are documented, explanation about the Eclipse plug-in is
less detailed. And more screen shots would have been helpful.

4. Tool Evaluation

4.1. Evaluation Environment Setup

4.1.1. The Experimental Setup

We performed static analysis using FindBugs with JDK/JRE 5.0 version in
Windows VISTA operating system. The major specification of hardware of the
computer which performed FindBugs is the following:

� CPU: Intel® Core™ 2 Duo CPU T7500 @ 2.20GHz

� Memory: 2046MB

4.1.1. Tool Customization

FindBugs provides properties option to allow user customization. Through the
option, a tool user can manipulate detector configuration, reporter configuration,
and filter files.

7

<Figure. Properties for jEdit>

� In detector configuration, we can disable bug detectors that we don’t want.
The default option doesn’t include detectors such as BadAppletConstructor,
FindCircularDependencies,InefficientMemberAccess, InfiniteRecursiveLoop2,
PublicSemaphores, TestASM, UseObjectEquals, and
UselessSubclassMethod.

� In reporter configuration, we can choose minimum priority to report, which
has 3 scales: high, medium, and low. And, we can choose bug categories
which will be reported. Bug categories that FindBugs support are
performance, correctness, internationalization, multithread correctness, bad
practice, malicious code vulnerability, dodgy, and security. The default option
includes all kinds of bug categories, and set minimum priority to report as
medium.

� In filter files, we can include or exclude filter files, and exclude baseline bugs.
The default option doesn’t specify any list of files.

In this project, we used default configuration of detectors, filter files, and reported
bug categories. However, we customized minimum priority to report as high
because we don’t enough time to figure out all kinds of bugs that have the
medium priority.

4.2. Analysis Result: jEdit

8

4.2.1. Purpose

The purpose of the analysis is to evaluate the effectiveness of FindBugs when
applied to mature open source software.

Number of found bugs, categories of found bugs, importance of found bugs,
true/false positive rates, time to scan, time to verify, and details of reports were
measured.

We could evaluate the effectiveness of FindBugs based on the measures.

4.2.2. Artifacts

jEdit is a mature text editor for programmers. It is open source software under
the terms of the GPL 2.0. It provides many features for programming and
supports plug-ins.

jEdit uses multi-threaded I/O to improve responsiveness. All buffer input/output
operations are executed asynchronously.

jEdit consists of 702 classes with 88712 lines of source code.

4.2.3. Bug Analysis

The analysis time of the program jEdit was 2:40 sec.

� Bug Category

Bug categories that FindBugs detected for jEdit are bad practice, correctness,
dodgy, performance, and vulnerability. FindBugs didn’t find any bugs related to
other categories such as malicious code vulnerability, multithreaded correctness,
security, and internationalization.

 Name of Category # of Bugs Percentage

Bad practice 11 17.2%

Correctness 7 10.9%

Dodgy 12 18.8%

Performance 2 3.1%

Vulnerability 32 50.0%

Malicious code vulnera
bility

0 0.0%

Multithreaded correctn
ess

0 0.0%

Security 0 0.0%

Bug
Category

Internationalization 0 0.0%

 Total 64 100.0%

9

� # of true positives and false positives that FindBugs detected for jEdit

True positive is a bug that FindBugs reports correctly based on the bug
description which FindBugs provides. And, false positive is a bug that FindBugs
reports incorrectly based the bug description which FindBugs provides.

The number of bugs that FindBugs detected for jEdit is 64. The number of true
positives is 61 and that of false positives is 3. True positives occupy the greater
percentage, 95.31%.

Category # of bugs detected in jEdit

True Positives 61

False Positives 3

of Total 64

< Percentage of true positives that FindBugs detected for jEdit >

� # of bug annotations that are assigned to bugs of jEdit

We assigned annotations, which consists of high, medium, low, and irrelevant, to
each detect bug. 4 different types of annotation are used to indicate how much a
bug affects to system. The meaning of each annotation can be corresponded to
priorities given by FindBugs. However, we additionally added the irrelevant
annotation to indicate that the found bug doesn’t affect to system.

Because all false positives are irrelevant naturally, we show the bug annotations
about the true positives in this section. The important thing that we figured out
among true positives is that some of true positives are irrelevant to system.
Those kinds of true positives are correct based on bug patterns that FindBugs
finds. However, we found that they don’t affect to authors’ intention about system.

The number of bugs annotated as high is 2. The number of bugs annotated as
medium is 7. The number of bugs annotated as low is 40. The number of bugs
annotated as irrelevant is 12.

10

Low annotations occupy the greatest percentage, 65.57%. Also, irrelevant
annotations occupy the secondly greatest percentage, 11.48%. Because we only
considered bugs reported as the high priority from FindBugs, we can see that the
result of our annotations is different from priorities that FindBugs gives to bugs.
Much of bugs reported as the high priority don’t have critical effects to the
system based on our judgment.

Annotation # of bugs

High 2

Medium 7

Low 40

Irrelevant 12

of Total 61

<Percentage of bug annotations that are assigned to bugs of jEdit>

� Time to verify

The total amount of time to verify all bugs is 19:02 minutes. And the average
time to verify each bug is 1:02 minutes.

The total amount of time to verify irrelevant bugs is 7:29 minutes. And the
average time to verify each irrelevant bug is 2:05 minutes.

The total amount of time to verify relevant bugs is 11:03 minutes. And the
average time to verify each relevant bug is 0:43 minutes.

 All Bugs Irrelevant

Bugs
Relevant Bugs

Total Time (min:sec) 19:02 7:29 11:33
Average (min:sec) 1:02 2:05 0:43

11

The descriptions of bugs were specific and detailed. A priority, category, location,
problematic portion, and explanation of why it is considered as a bug were
described. For example, a high priority bug of dodgy category was found in

org.gjt.sp.jedit.syntax.DisplayTokenHandler.java file. FindBugs reports that “H D
DLS: Dead store to wrapMargin in

org.gjt.sp.jedit.syntax.DisplayTokenHandler.init(SyntaxStyle[],

FontRenderContext, TabExpander, List, float)” is happened. And explanation

about the “Dead store to local variable” type bug is “This instruction assigns
a value to a local variable, but the value is not read by any

subsequent instruction. Often, this indicates an error, because the

value computed is never used. Note that Sun's javac compiler often

generates dead stores for final local variables. Because FindBugs is a

bytecode-based tool, there is no easy way to eliminate these false

positives.”

4.3. Analysis Result: FreeMind

4.3.1. Purpose

The purpose of this analysis is to evaluate the tool Findbugs. The evaluation will
be performed by measuring the tool performance, analysis effectiveness, and
usability. The tool performance measures the time to scan and the size of code.
The tool effectiveness for analysis measures the number of found bugs, bug
categories, importance of found bugs, true/false positive rates and the time to
verify the found bugs. The usability measures the easiness of the tool

qualitatively.

4.3.2. Artifacts

The FreeMind is an open source application for mind-mapping written in Java.
Although the latest stable release verion is 0.8.1, the development community is
much active. The total source size is 4.41MB, the number of classes are 427,
and the source line is 83,147 (including braces).

4.3.3. Bug Analysis

The analysis time of the program FreeMind in FindBugs was 1:58 sec.

The analysis result shows that the FindBugs found 291 bugs, but our team
decided to verify only the defects of “high” importance because of the available
time and human resource constraints. The following analysis reports are based
on the bugs of “high” importance in the FindBugs.

� Bug Category

The total number of “high” important bugs found in the FreeMind program was
13. The percentage of bug category shows the similar distribution to the result of
jEdit program, in which the vulnerability bugs were almost half number and the
bugs of dodgy, bad practice and other parts were another half number.

12

 Name of Category # of Bugs Percentage

Bad practice 2 15.4%

Correctness 1 7.7%

Dodgy 4 30.8%

Performance 0

Vulnerability 6

46.1%

Malicious code vulnera
bility

0 0.0%

Multithreaded correctn
ess

0 0.0%

Security 0 0.0%

Bug Category

Internationalization 0 0.0%

� # of true positives and false positives that FindBugs detected for FreeMind

The below table shows that the false positives of the FindBugs is high compared
to false positive, but the evaluation for the result needs more consideration for
this figures. The false positives consist of 6 bugs as follows:

- 5 bugs: [MS] Field isn't final but should be [MS_SHOULD_BE_FINAL]

- 1 bug: [DE] Method might ignore exception [DE_MIGHT_IGNORE]

The first 5 bugs show that the static field should be defined with “final” keyword,
but the source code uses the static variables and changes them. So we
evaluated them as false positive. The other one is the bug which is wrongly
detected by FindBugs. The source code shows the exception handling should be
included in the outer block, but the FindBugs interpreted that the exception
handling isn’t needed in the outer bock.

This case shows that the customization of the tool is required for reducing the
false positive.

Category # of bugs detected in jEdit

True Positives 7

False Positives 6

of Total 13

13

< Percentage of true positives that FindBugs detected for FreeMind >

� # of bug annotations that are assigned to bugs of FreeMind

The following table shows the distribution of the importance of bugs in the true
positives by our team. We evaluated each bugs and most bugs were irrelevant.
The medium and low bugs we evaluated were as follows:

- [ES] Comparison of String objects using == or !=

[ES_COMPARING_STRINGS_WITH_EQ]

- [DLS] Dead store to local variable [DLS_DEAD_LOCAL_STORE]

Annotation # of bugs

High 0

Medium 1

Low 1

Irrelevant 5

of Total 7

14

<Percentage of bug annotations that are assigned to bugs of FreeMind>

� Time to verify

The following table shows that the time to verify the relevant bugs was lower
than the irrelevant bugs. The main reason was that the relevant bugs can be
easily conceived using the detail description of the tool, but the irrelevant bugs
need to verify the counter example and case for the description in the tool.

 All Bugs Irrelevant

Bugs
Relevant Bugs

Total Time (min:sec) 17:28 12:00 5:28
Average (min:sec) 1:20 1:05 2:44

4.4. Concrete Examples

4.4.1. Example of True positive That Is Reverent

One example of true positive that is relevant to the project is the following.

FindBugs reported “H C NP: Possible null pointer dereference of point in

org.gjt.sp.jedit.textarea. JEditTextArea.scrollTo(int, int, boolean)” in
jEdit code. The relevant code is the following.

if(point == null)
{
 Log.log(Log.ERROR,this,"BUG: screenLine=" + screenLine
 + ",visibleLines=" + visibleLines
 + ",physicalLine=" + line
 + ",firstPhysicalLine=" + getFirstPhysicalLine()
 + ",lastPhysicalLine=" + getLastPhysicalLine());
}

15

point.x += extraEndVirt;

The explanation by FindBugs is “[NP] Possible null pointer dereference
[NP_NULL_ON_SOME_PATH]

There is a branch of statement that, if executed, guarantees that a

null value will be dereferenced, which would generate a

NullPointerException when the code is executed. Of course, the problem

might be that the branch or statement is infeasible and that the null

pointer exception can't ever be executed; deciding that is beyond the

ability of FindBugs.”

In this case, when the point variable is a null pointer, the problem is logged.
However, it does not return after the logging, and this can cause a possible null
pointer dereference at the last line. The code can be fixed by adding a return
statement after logging.

Another example of true positive that is relevant to the project is the following.

FindBugs reported “H B BC: Random object created and used only once in

new org.gjt.sp.jedit.EditServer(String)” in jEdit code. The relevant code is
the following.

// Bind to any port on localhost; accept 2 simultaneous
// connection attempts before rejecting connections
socket = new ServerSocket(0, 2,
InetAddress.getByName("127.0.0.1"));
authKey = Math.abs(new Random().nextInt());
int port = socket.getLocalPort();

The explanation by FindBugs is “[BC] Random object created and used only
once [DMI_RANDOM_USED_ONLY_ONCE]

This code creates a java.util.Random object, uses it to generate one

random number, and then discards the Random object. This produces

mediocre quality random numbers and is inefficient. If possible,

rewrite the code so that the Random object is created once and saved,

and each time a new random number is required invoke a method on the

existing Random object to obtain it.

If it is important that the generated Random numbers not be guessable,

you must not create a new Random for each random number; the values are

too easily guessable. You should strongly consider using a

java.security.SecureRandom instead (and avoid allocating a new

SecureRandom for each random number needed).”

In this particular case, the issue is not just about inefficiency. Because the value

of authKey variable can be easily guessable, it can be a security hole during
authentication. A java.security.SecureRandom should have been used to

generate a value for the authKey.

16

4.4.2. Example of True Positive That Is Irrelevant

One example of true positive that is not relevant to the project is the following.

FindBugs reported “H D DMI: Hard coded reference to an absolute pathname

in accessories.plugins.util.xslt.ExportDialog.main(String[])” in freeMind
code. The relevant code is the following.

public static void main(String[] args) {
 Properties sysprops = System.getProperties();
 Enumeration propnames = sysprops.propertyNames();
 while (propnames.hasMoreElements()) {
 String propname = (String)propnames.nextElement();
 System.out.println(
 propname + "=" + System.getProperty(propname)
);
 };

 ExportDialog wnd = new ExportDialog(new
File("/home/testtrans.xml"));
 wnd.setVisible(true);
 }

The explanation by FindBugs is “[DMI] Code contains a hard coded reference
to an absolute pathname [DMI_HARDCODED_ABSOLUTE_FILENAME]

This code constructs a File object using a hard coded to an absolute

pathname (e.g., new

File("/home/dannyc/workspace/j2ee/src/share/com/sun/enterprise/deployme

nt");”.

While it is recommended that a hard coded reference should not be used, a hard
coded reference is used for testing purposes in the above code. Thus, while it is
a technically correct warning, it is not relevant to the freeMind project.

Another example of true positive that is not relevant to the project is the following.

FindBugs reported “H D ST: Write to static field

org.gjt.sp.jedit.gui.HistoryModel.modified from instance method

org.gjt.sp.jedit.gui.HistoryModel.addItem(String)” in jEdit code. The
relevant code is the following.

public void addItem(String text)
{
 if(text == null || text.length() == 0)
 return;
 modified = true;

17

 int index = data.indexOf(text);
 if(index != -1)
 data.removeElementAt(index);
 data.insertElementAt(text,0);
 while(getSize() > max)
 data.removeElementAt(data.size() - 1);
} //}}}

The explanation by FindBugs is “[ST] Write to static field from instance
method [ST_WRITE_TO_STATIC_FROM_INSTANCE_METHOD]

This instance method writes to a static field. This is tricky to get

correct if multiple instances are being manipulated, and generally bad

practice.”

While writing to a static field by an instance method can be problematic, it is intentional

in this case. The static modified field should be set to true when an item is added, and

there is no problem even when there are multiple instances. Thus, while it is a technically

correct warning, it is not relevant to the jEdit project.

4.4.3. Example of False positive

One example of false positive is the following.

FindBugs reported “H C INT: Bad comparison of nonnegative value with -1 in

installer. CBZip2InputStream.getAndMoveToFrontDecode()” in jEdit code. The

relevant code is the following.

char thech = 0;
try
{
 thech = (char)m_input.read();
}
catch(IOException e)
{
 compressedStreamEOF();
}
if(thech == -1)
{
 compressedStreamEOF();
}

The explanation by FindBugs is “[INT] Bad comparison of nonnegative value
with negative constant [INT_BAD_COMPARISON_WITH_NONNEGATIVE_VALUE]

This code compares a value that is guaranteed to be non-negative with a

negative constant.”

18

The read method in the above code can return -1 when the end of the stream is reached.

Thus thech can be -1, and the warning is a false positive.

Another example of false positive is the following.

FindBugs reported “H V MS:

freemind.controller.MindMapNodesSelection.mindMapNodesFlavor isn’t

final but should be” in freeMind code. The relevant code is the following.

public static DataFlavor mindMapNodesFlavor = null;

The explanation by FindBugs is “[MS] Field isn't final but should be

[MS_SHOULD_BE_FINAL]

A mutable static field could be changed by malicious code or by

accident from another package. The field could be made final to avoid

this vulnerability.”

In this case, mindMapNodesFlavor cannot be final because its value is changed later.

Thus, the warning is a false positive.

5. Lessons learned

We spent much time on verifying false positives or irrelevant bugs. If we could

customize options suited to project characteristics, the productivity would be better.

5.1. Benefits

FindBugs found non-trivial bugs in two fairly mature open source programs. We expect

FindBugs would find more valuable bugs during development. Finding a bug in early

stages of the process can reduce considerable reworks.

FindBugs found insidious kinds of bugs. Detection of these bugs can considerably

improve productivity.

FindBugs has a vast array of detectable bugs. It can be applied to various domains.

FindBugs is highly customizable. Each detector can be turned on or off individually.

Minimum priority to report can be selected. Customization can improve productivity.

Detailed explanations about bugs were helpful in verification.

19

Integration with Eclipse provides various productivity advantages. When utilizing a

feature that FindBugs runs automatically on modified Java codes, bug scanning time can

be practically ignored.

Programmers can learn many good practices of Java by verifying found bugs. This

would improve overall quality of code.

5.2. Drawbacks

Eclipse plug-in version of FindBugs lacks some necessary features. Exporting the list of

found bugs is not supported in Eclipse plug-in. Documentation for Eclipse plug-in

version needs improvement.

Reported priorities of bugs can be somewhat inconsistent because priorities are

determined by each bug detector. While a user can use bug filters, this inconsistency can

make customization difficult.

20

Appendix1. Bug patterns that FindBugs detected for jEdit

priority category description
true/
false

positive

importa
nce

tim
e to
 ver
ify

detai
l of r
eport
s

high correctne
ss

[RV] Bad attempt to compute absolute v
alue of signed 32-bit random integer [RV
_ABSOLUTE_VALUE_OF_RANDOM_I
NT]

TRUE med 4:18 high

high correctne
ss

[RV] Bad attempt to compute absolute v
alue of signed 32-bit random integer [RV
_ABSOLUTE_VALUE_OF_RANDOM_I
NT]

TRUE med 0:05 high

high correctne
ss

[INT] Bad comparison of nonnegative val
ue with negative constant

FALSE irrelevan
t

2:13 high

high correctne
ss

[INT] Bad comparison of nonnegative val
ue with negative constant

FALSE irrelevan
t

2:13 high

high correctne
ss

[INT] Bad comparison of nonnegative val
ue with negative constant

FALSE irrelevan
t

0:05 high

high bad pract
ice

[HE] Class defines equals() and uses Ob
ject.hashCode()

TRUE med 5:15 high

high dodgy [DLS] Dead store to local variable [DLS_
DEAD_LOCAL_STORE]

TRUE low 2:48 high

high dodgy [DLS] Dead store to local variable [DLS_
DEAD_LOCAL_STORE]

TRUE low 0:53 high

high dodgy [DLS] Dead store to local variable [DLS_
DEAD_LOCAL_STORE]

TRUE low 0:05 high

high dodgy [DLS] Dead store to local variable [DLS_
DEAD_LOCAL_STORE]

TRUE low 0:05 high

high dodgy [DLS] Dead store to local variable [DLS_
DEAD_LOCAL_STORE]

TRUE low 0:05 high

high dodgy [DLS] Dead store to local variable [DLS_
DEAD_LOCAL_STORE]

TRUE low 0:05 high

high dodgy [DLS] Dead store to local variable [DLS_
DEAD_LOCAL_STORE]

TRUE low 2:58 high

high dodgy [DLS] Dead store to local variable [DLS_
DEAD_LOCAL_STORE]

TRUE low 0:05 high

high performa
nce

[Dm] Explicit garbage collection; extreme
ly dubious except in benchmarking code
[DM_GC]

TRUE irrelevan
t

1:13 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:52 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit [MS] Field isn't final but should be [MS_S TRUE low 0:05 high

21

y HOULD_BE_FINAL]

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high vulerabilit
y

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE low 0:05 high

high bad pract
ice

[RR] Method ignores results of InputStre
am.skip() [SR_NOT_CHECKED]

TRUE irrelevan
t

5:17 high

high bad pract [Se] Non-transient non-serializable insta TRUE med 3:12 high

22

ice nce field in serializable class [SE_BAD_
FIELD]

high bad pract
ice

[Se] Non-transient non-serializable insta
nce field in serializable class [SE_BAD_
FIELD]

TRUE med 0:05 high

high bad pract
ice

[Se] Non-transient non-serializable insta
nce field in serializable class [SE_BAD_
FIELD]

TRUE med 0:05 high

high correctne
ss

[NP] Possible null pointer dereference [N
P_NULL_ON_SOME_PATH]

TRUE high 2:10 high

high bad pract
ice

[BC] Random object created and used o
nly once [DMI_RANDOM_USED_ONLY
_ONCE]

TRUE irrelevan
t

1:40 high

high bad pract
ice

[BC] Random object created and used o
nly once [DMI_RANDOM_USED_ONLY
_ONCE]

TRUE high 7:00 high

high correctne
ss

[STCAL] Static DateFormat [STCAL_ST
ATIC_SIMPLE_DATE_FORMAT_INSTA
NCE]

TRUE med 2:52 high

high performa
nce

[Dm] The equals and hashCode method
s of URL are blocking [DMI_BLOCKING
_METHODS_ON_URL]

TRUE irrelevan
t

1:52 high

high bad pract
ice

[Se] Transient field that isn't set by deser
ialization. [SE_TRANSIENT_FIELD_NO
T_RESTORED]

TRUE irrelevan
t

6:09 high

high bad pract
ice

[Se] Transient field that isn't set by deser
ialization. [SE_TRANSIENT_FIELD_NO
T_RESTORED]

TRUE irrelevan
t

0:05 high

high bad pract
ice

[Se] Transient field that isn't set by deser
ialization. [SE_TRANSIENT_FIELD_NO
T_RESTORED]

TRUE irrelevan
t

0:05 high

high bad pract
ice

[Se] Transient field that isn't set by deser
ialization. [SE_TRANSIENT_FIELD_NO
T_RESTORED]

TRUE irrelevan
t

0:05 high

high dodgy [ST] Write to static field from instance m
ethod [ST_WRITE_TO_STATIC_FROM
_INSTANCE_METHOD]

TRUE irrelevan
t

4:46 high

high dodgy [ST] Write to static field from instance m
ethod [ST_WRITE_TO_STATIC_FROM
_INSTANCE_METHOD]

TRUE irrelevan
t

4:46 high

high dodgy [ST] Write to static field from instance m
ethod [ST_WRITE_TO_STATIC_FROM
_INSTANCE_METHOD]

TRUE irrelevan
t

0:30 high

high dodgy [ST] Write to static field from instance m
ethod [ST_WRITE_TO_STATIC_FROM
_INSTANCE_METHOD]

TRUE irrelevan
t

0:30 high

23

Appendix2. Bug patterns that FindBugs detected for FreeMind

priori
ty

category description true/
false
positive

importa
nce

time
 to v
erify

detail
 of re
ports

high bad pract
ice

[ES] Comparison of String objects using =
= or != [ES_COMPARING_STRINGS_WI
TH_EQ]

TRUE med 3:12 high

high bad pract
ice

[DE] Method might ignore exception [DE_
MIGHT_IGNORE]

FALSE irrelevant 1:59 high

high correctne
ss

[LI] Incorrect lazy initialization and update
of static field [LI_LAZY_INIT_UPDATE_S
TATIC]

TRUE irrelevant 2:00 high

high dodgy [DMI] Code contains a hard coded referen
ce to an absolute pathname [DMI_HARD
CODED_ABSOLUTE_FILENAME]

TRUE irrelevant 2:10 high

high dodgy [DLS] Dead store to local variable [DLS_D
EAD_LOCAL_STORE]

TRUE low 2:16 high

high dodgy [REC] Exception is caught when Exceptio
n is not thrown [REC_CATCH_EXCEPTI
ON]

TRUE irrelevant 1:56 high

high dodgy [ST] Write to static field from instance met
hod [ST_WRITE_TO_STATIC_FROM_IN
STANCE_METHOD]

TRUE irrelevant 2:30 high

high vulnerabi
lity

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

TRUE irrelevant 1:00 high

high vulnerabi
lity

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

FALSE irrelevant 0:05 high

high vulnerabi
lity

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

FALSE irrelevant 0:05 high

high vulnerabi
lity

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

FALSE irrelevant 0:05 high

high vulnerabi
lity

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

FALSE irrelevant 0:05 high

high vulnerabi
lity

[MS] Field isn't final but should be [MS_S
HOULD_BE_FINAL]

FALSE irrelevant 0:05 high

24

Appendix3. Complete Bug Patterns in FindBugs

Code Description Category

AM Creates an empty jar file entry Bad practice

AM Creates an empty zip file entry Bad practice

BC
Equals method should not assume anything about the type of its
argument

Bad practice

BC Random object created and used only once Bad practice

BIT Check for sign of bitwise operation Bad practice

CN Class implements Cloneable but does not define or use clone method Bad practice

CN clone method does not call super.clone() Bad practice

CN Class defines clone() but doesn't implement Cloneable Bad practice

Co Abstract class defines covariant compareTo() method Bad practice

Co Covariant compareTo() method defined Bad practice

DE Method might drop exception Bad practice

DE Method might ignore exception Bad practice

DP Classloaders should only be created inside doPrivileged block Bad practice

DP
Method invoked that should be only be invoked inside a doPrivileged
block

Bad practice

Dm Method invokes System.exit(...) Bad practice

Dm Method invokes dangerous method runFinalizersOnExit Bad practice

ES Comparison of String parameter using == or != Bad practice

ES Comparison of String objects using == or != Bad practice

Eq Abstract class defines covariant equals() method Bad practice

Eq Class defines compareTo(...) and uses Object.equals() Bad practice

Eq Covariant equals() method defined Bad practice

FI Empty finalizer should be deleted Bad practice

FI Explicit invocation of finalizer Bad practice

FI Finalizer nulls fields Bad practice

FI Finalizer only nulls fields Bad practice

FI Finalizer does not call superclass finalizer Bad practice

FI Finalizer nullifies superclass finalizer Bad practice

FI Finalizer does nothing but call superclass finalizer Bad practice

HE Class defines equals() but not hashCode() Bad practice

HE Class defines equals() and uses Object.hashCode() Bad practice

HE Class defines hashCode() but not equals() Bad practice

HE Class defines hashCode() and uses Object.equals() Bad practice

HE Class inherits equals() and uses Object.hashCode() Bad practice

IC Superclass uses subclass during initialization Bad practice

IMSE Dubious catching of IllegalMonitorStateException Bad practice

ISC Needless instantiation of class that only supplies static methods Bad practice

It Iterator next() method can't throw NoSuchElement exception Bad practice

J2EE Store of non serializable object into HttpSession Bad practice

NP Method with Boolean return type returns explicit null Bad practice

NP Clone method may return null Bad practice

NP equals() method does not check for null argument Bad practice

NP toString method may return null Bad practice

25

Nm Class names should start with an upper case letter Bad practice

Nm
Class is not derived from an Exception, even though it is named as
such

Bad practice

Nm Confusing method names Bad practice

Nm Field names should start with a lower case letter Bad practice

Nm Use of identifier that is a keyword in later versions of Java Bad practice

Nm Use of identifier that is a keyword in later versions of Java Bad practice

Nm Method names should start with a lower case letter Bad practice

Nm Class names shouldn't shadow simple name of implemented interface Bad practice

Nm Class names shouldn't shadow simple name of superclass Bad practice

Nm Very confusing method names Bad practice

Nm
Method doesn't override method in superclass due to wrong package
for parameter

Bad practice

ODR Method may fail to close database resource Bad practice

ODR Method may fail to close database resource on exception Bad practice

OS Method may fail to close stream Bad practice

OS Method may fail to close stream on exception Bad practice

RC Suspicious reference comparison Bad practice

RR Method ignores results of InputStream.read() Bad practice

RR Method ignores results of InputStream.skip() Bad practice

RV Method ignores exceptional return value Bad practice

SI Static initializer creates instance before all static final fields assigned Bad practice

SW Certain swing methods needs to be invoked in Swing thread Bad practice

Se Non-transient non-serializable instance field in serializable class Bad practice

Se Non-serializable class has a serializable inner class Bad practice

Se Non-serializable value stored into instance field of a serializable class Bad practice

Se Comparator doesn't implement Serializable Bad practice

Se Serializable inner class Bad practice

Se Method must be private in order for serialization to work Bad practice

Se serialVersionUID isn't final Bad practice

Se serialVersionUID isn't long Bad practice

Se serialVersionUID isn't static Bad practice

Se Class is Serializable but its superclass doesn't define a void constructor Bad practice

Se Class is Externalizable but doesn't define a void constructor Bad practice

Se The readResolve method must be declared with a return type of Object. Bad practice

Se Transient field that isn't set by deserialization. Bad practice

SnVI Class is Serializable, but doesn't define serialVersionUID Bad practice

UI Usage of GetResource may be unsafe if class is extended Bad practice

BC Impossible cast Correctness

BC instanceof will always return false Correctness

BIT Incompatible bit masks Correctness

BIT Check to see if ((...) & 0) == 0 Correctness

BIT Incompatible bit masks Correctness

BIT Bitwise OR of signed byte value Correctness

BIT Check for sign of bitwise operation Correctness

BOA Class overrides a method implemented in super class Adapter wrongly Correctness

26

Bx Primitive value is unboxed and coerced for ternary operator Correctness

DLS Useless assignment in return statement Correctness

DLS Dead store of class literal Correctness

DLS Overwritten increment Correctness

DMI Bad constant value for month Correctness

DMI hasNext method invokes next Correctness

DMI Invocation of toString on an array Correctness

DMI Invocation of toString on an array Correctness

DMI Double.longBitsToDouble invoked on an int Correctness

Dm
Can't use reflection to check for presence of annotation with default
retention

Correctness

EC equals() used to compare array and nonarray Correctness

EC Invocation of equals() on an array, which is equivalent to == Correctness

EC Call to equals() with null argument Correctness

EC Call to equals() comparing unrelated class and interface Correctness

EC Call to equals() comparing different interface types Correctness

EC Call to equals() comparing different types Correctness

EC Using pointer equality to compare different types Correctness

Eq Covariant equals() method defined for enum Correctness

Eq equals() method defined that doesn't override equals(Object) Correctness

Eq equals() method defined that doesn't override Object.equals(Object) Correctness

Eq
equals method overrides equals in superclass and may not be
symmetric

Correctness

Eq Covariant equals() method defined, Object.equals(Object) inherited Correctness

FE Doomed test for equality to NaN Correctness

GC No relationship between generic parameter and method argument Correctness

HE Use of class without a hashCode() method in a hashed data structure Correctness

ICAST Integer shift by an amount not in the range 0..31 Correctness

ICAST int value cast to double and then passed to Math.ceil Correctness

ICAST int value cast to float and then passed to Math.round Correctness

IJU JUnit assertion in run method will not be noticed by JUnit Correctness

IJU TestCase declares a bad suite method Correctness

IJU TestCase has no tests Correctness

IJU TestCase implements setUp but doesn't call super.setUp() Correctness

IJU TestCase implements a non-static suite method Correctness

IJU TestCase implements tearDown but doesn't call super.tearDown() Correctness

IL A container is added to itself Correctness

IL An apparent infinite loop Correctness

IL An apparent infinite recursive loop Correctness

IM Integer multiply of result of integer remainder Correctness

INT Bad comparison of nonnegative value with negative constant Correctness

INT Bad comparison of signed byte Correctness

INT Integer remainder modulo 1 Correctness

IO Doomed attempt to append to an object output stream Correctness

IP A parameter is dead upon entry to a method but overwritten Correctness

JCIP Fields of immutable classes should be final Correctness

27

MF Class defines field that masks a superclass field Correctness

MF Method defines a variable that obscures a field Correctness

NP Null pointer dereference Correctness

NP Null pointer dereference in method on exception path Correctness

NP Method does not check for null argument Correctness

NP Null value is guaranteed to be dereferenced Correctness

NP Value is null and guaranteed to be dereferenced on exception path Correctness

NP Method call passes null to a nonnull parameter Correctness

NP Method may return null, but is declared @NonNull Correctness

NP A known null value is checked to see if it is an instance of a type Correctness

NP Possible null pointer dereference Correctness

NP Possible null pointer dereference in method on exception path Correctness

NP Method call passes null for unconditionally dereferenced parameter Correctness

NP Method call passes null for unconditionally dereferenced parameter Correctness

NP
Non-virtual method call passes null for unconditionally dereferenced
parameter

Correctness

NP Store of null value into field annotated NonNull Correctness

NP Read of unwritten field Correctness

Nm Class defines equal(); should it be equals()? Correctness

Nm Class defines hashcode(); should it be hashCode()? Correctness

Nm Class defines tostring(); should it be toString()? Correctness

Nm Apparent method/constructor confusion Correctness

Nm Very confusing method names Correctness

Nm
Method doesn't override method in superclass due to wrong package
for parameter

Correctness

QBA Method assigns boolean literal in boolean expression Correctness

RCN Nullcheck of value previously dereferenced Correctness

RE Invalid syntax for regular expression Correctness

RE File.separator used for regular expression Correctness

RE . used for regular expression Correctness

RV Random value from 0 to 1 is coerced to the integer 0 Correctness

RV Bad attempt to compute absolute value of signed 32-bit hashcode Correctness

RV Bad attempt to compute absolute value of signed 32-bit random integer Correctness

RV Exception created and dropped rather than thrown Correctness

RV Method ignores return value Correctness

SA Double assignment of field Correctness

SA Self assignment of field Correctness

SA Self comparison of field with itself Correctness

SA Nonsensical self computation involving a field (e.g., x & x) Correctness

SA Double assignment of local variable Correctness

SA Self comparison of value with itself Correctness

SA Nonsensical self computation involving a variable (e.g., x & x) Correctness

SF Dead store due to switch statement fall through Correctness

SIO Unnecessary type check done using instanceof operator Correctness

SQL
Method attempts to access a prepared statement parameter with index
0

Correctness

SQL Method attempts to access a result set field with index 0 Correctness

28

STI Unneeded use of currentThread() call, to call interrupted() Correctness

STI Static Thread.interrupted() method invoked on thread instance Correctness

TQ
Value annotated as carrying a type qualifier used where a value that
must not carry that qualifier is required

Correctness

TQ
Value that might not carry a type qualifier reaches a use requiring that
type qualifier

Correctness

TQ
Unknown value reaches a use which forbids values carrying type
qualifier annotation

Correctness

TQ
Value annotated as never carrying a type qualifier used where value
carrying that qualifier is required

Correctness

UCF Useless control flow to next line Correctness

UMAC Uncallable method defined in anonymous class Correctness

UR Uninitialized read of field in constructor Correctness

UwF Field only ever set to null Correctness

UwF Unwritten field Correctness

VA
Number of format-string arguments does not correspond to number of
placeholders

Correctness

VA
Primitive array passed to function expecting a variable number of object
arguments

Correctness

Dm Consider using Locale parameterized version of invoked method
Internationalizat
ion

EI
May expose internal representation by returning reference to mutable
object

Malicious code
vulnerability

EI2
May expose internal representation by incorporating reference to
mutable object

Malicious code
vulnerability

FI Finalizer should be protected, not public
Malicious code
vulnerability

MS
May expose internal static state by storing a mutable object into a static
field

Malicious code
vulnerability

MS Field isn't final and can't be protected from malicious code
Malicious code
vulnerability

MS
Public static method may expose internal representation by returning
array

Malicious code
vulnerability

MS Field should be both final and package protected
Malicious code
vulnerability

MS Field is a mutable array
Malicious code
vulnerability

MS Field is a mutable Hashtable
Malicious code
vulnerability

MS Field should be moved out of an interface and made package protected
Malicious code
vulnerability

MS Field should be package protected
Malicious code
vulnerability

MS Field isn't final but should be
Malicious code
vulnerability

DC Possible double check of field
Multithreaded
correctness

DL Synchronization on Boolean could lead to deadlock
Multithreaded
correctness

DL Synchronization on boxed primative could lead to deadlock
Multithreaded
correctness

DL Synchronization on shared constant could lead to deadlock
Multithreaded
correctness

29

DL Synchronization boxed primative values
Multithreaded
correctness

Dm Monitor wait() called on Condition
Multithreaded
correctness

Dm A thread was created using the default empty run method
Multithreaded
correctness

ESync Empty synchronized block
Multithreaded
correctness

IS Inconsistent synchronization
Multithreaded
correctness

IS Field not guarded against concurrent access
Multithreaded
correctness

JLM Synchronization performed on java.util.concurrent Lock
Multithreaded
correctness

LI Incorrect lazy initialization of static field
Multithreaded
correctness

LI Incorrect lazy initialization and update of static field
Multithreaded
correctness

ML Synchronization on field in futile attempt to guard that field
Multithreaded
correctness

ML Method synchronizes on an updated field
Multithreaded
correctness

MWN Mismatched notify()
Multithreaded
correctness

MWN Mismatched wait()
Multithreaded
correctness

NN Naked notify
Multithreaded
correctness

NP Synchronize and null check on the same field.
Multithreaded
correctness

No Using notify() rather than notifyAll()
Multithreaded
correctness

RS Class's readObject() method is synchronized
Multithreaded
correctness

Ru Invokes run on a thread (did you mean to start it instead?)
Multithreaded
correctness

SC Constructor invokes Thread.start()
Multithreaded
correctness

SP Method spins on field
Multithreaded
correctness

STCAL Call to static Calendar
Multithreaded
correctness

STCAL Call to static DateFormat
Multithreaded
correctness

STCAL Static Calendar
Multithreaded
correctness

STCAL Static DateFormat
Multithreaded
correctness

SWL Method calls Thread.sleep() with a lock held
Multithreaded
correctness

TLW Wait with two locks held
Multithreaded
correctness

UG Unsynchronized get method, synchronized set method
Multithreaded
correctness

30

UL Method does not release lock on all paths
Multithreaded
correctness

UL Method does not release lock on all exception paths
Multithreaded
correctness

UW Unconditional wait
Multithreaded
correctness

VO
A volatile reference to an array doesn't treat the array elements as
volatile

Multithreaded
correctness

WS Class's writeObject() method is synchronized but nothing else is
Multithreaded
correctness

Wa Condition.await() not in loop
Multithreaded
correctness

Wa Wait not in loop
Multithreaded
correctness

Bx Primitive value is boxed and then immediately unboxed Performance

Bx Primitive value is boxed then unboxed to perform primitive coercion Performance

Bx Method allocates a boxed primitive just to call toString Performance

Bx
Method invokes inefficient floating-point Number constructor; use static
valueOf instead

Performance

Bx
Method invokes inefficient Number constructor; use static valueOf
instead

Performance

Dm The equals and hashCode methods of URL are blocking Performance

Dm Maps and sets of URLs can be performance hogs Performance

Dm
Method invokes inefficient Boolean constructor; use
Boolean.valueOf(...) instead

Performance

Dm
Explicit garbage collection; extremely dubious except in benchmarking
code

Performance

Dm Method allocates an object, only to get the class object Performance

Dm
Use the nextInt method of Random rather than nextDouble to generate
a random integer

Performance

Dm Method invokes inefficient new String(String) constructor Performance

Dm
Method invokes inefficient String.equals(""); use String.length() == 0
instead

Performance

Dm Method invokes toString() method on a String Performance

Dm Method invokes inefficient new String() constructor Performance

HSC Huge string constants is duplicated across multiple class files Performance

ITA Method uses toArray() with zero-length array argument Performance

SBSC Method concatenates strings using + in a loop Performance

SIC Should be a static inner class Performance

SIC Could be refactored into a named static inner class Performance

SIC Could be refactored into a static inner class Performance

SS:
Unread
field

should this field be static? Performance

UM Method calls static Math class method on a constant value Performance

UPM Private method is never called Performance

UrF Unread field Performance

UuF Unused field Performance

WMI Inefficient use of keySet iterator instead of entrySet iterator Performance

Dm Hardcoded constant database password Security

31

Dm Empty database password Security

HRS HTTP cookie formed from untrusted input Security

HRS HTTP Response splitting vulnerability Security

SQL Nonconstant string passed to execute method on an SQL statement Security

SQL A prepared statement is generated from a nonconstant String Security

XSS JSP reflected cross site scripting vulnerability Security

XSS Servlet reflected cross site scripting vulnerability Security

BC Questionable cast to abstract collection Dodgy

BC Questionable cast to concrete collection Dodgy

BC Unchecked/unconfirmed cast Dodgy

BC instanceof will always return true Dodgy

CI Class is final but declares protected field Dodgy

DB Method uses the same code for two branches Dodgy

DB Method uses the same code for two switch clauses Dodgy

DLS Dead store to local variable Dodgy

DLS Dead store of null to local variable Dodgy

DMI Code contains a hard coded reference to an absolute pathname Dodgy

DMI Non serializable object written to ObjectOutput Dodgy

DMI Invocation of substring(0), which returns the original value Dodgy

Dm Thread passed where Runnable expected Dodgy

Eq Class doesn't override equals in superclass Dodgy

FE Test for floating point equality Dodgy

IA Ambiguous invocation of either an inherited or outer method Dodgy

IC Initialization circularity Dodgy

ICAST int division result cast to double or float Dodgy

ICAST Result of integer multiplication cast to long Dodgy

ICAST Unsigned right shift cast to short/byte Dodgy

IM Computation of average could overflow Dodgy

IM Check for oddness that won't work for negative numbers Dodgy

INT Vacuous comparison of integer value Dodgy

MTIA Class extends Servlet class and uses instance variables Dodgy

MTIA Class extends Struts Action class and uses instance variables Dodgy

NP Immediate dereference of the result of readLine() Dodgy

NP Load of known null value Dodgy

NP Possible null pointer dereference due to return value of called method Dodgy

NP Possible null pointer dereference on path that might be infeasible Dodgy

NS Potentially dangerous use of non-short-circuit logic Dodgy

NS Questionable use of non-short-circuit logic Dodgy

PZLA Consider returning a zero length array rather than null Dodgy

QF Complicated, subtle or wrong increment in for-loop Dodgy

RCN Redundant comparison of non-null value to null Dodgy

RCN Redundant comparison of two null values Dodgy

RCN Redundant nullcheck of value known to be non-null Dodgy

RCN Redundant nullcheck of value known to be null Dodgy

REC Exception is caught when Exception is not thrown Dodgy

RI Class implements same interface as superclass Dodgy

32

RV Method checks to see if result of String.indexOf is positive Dodgy

RV Method discards result of readLine after checking if it is nonnull Dodgy

RV Remainder of hashCode could be negative Dodgy

RV Remainder of 32-bit signed random integer Dodgy

SA Self assignment of local variable Dodgy

SF Switch statement found where one case falls through to the next case Dodgy

ST Write to static field from instance method Dodgy

Se Transient field of class that isn't Serializable. Dodgy

UCF Useless control flow Dodgy

UwF Field not initialized in constructor Dodgy

XFB Method directly allocates a specific implementation of xml interfaces Dodgy

