
17654 – Analysis of Software Artifacts

Tool Evaluation
EclipsePro

Christopher Nelson – crnelson

J. Luis Rios – jriostre
Chung-Hao Shih – chunghas

Apr 27th, 2006

Evaluation of EclipsePro – Project 1

Team DaVinci

2 of 12

Describe the Tool
EclipsePro is an Eclipse plug-in that provides a set of tools for

analyzing source code, generating test cases, and monitoring test
coverage.

The analysis tool is based on heuristic rules that the user may

configure to
• Identify dead code

• Warn for possible logical or semantic errors that may lead to

actual bugs

• Discover bad coding practices inhibiting quality attributes such

as performance and security
• Improve the readability and decrease the complexity of the code

• Discover the source of internationalization issues

• Enforce a team to comply with a particular coding style and

convention.

Depending on the necessities of the developer, the application of all

these rules may have a big impact on quality attributes such as

performance, maintainability, testability, security, usability and
portability.

The tool also provides the ability to automatically generate unit test

cases for the developers using very basic unit test patterns and

regression test mechanisms. Furthermore, the tool provides metrics
for test coverage in order to give a clearer idea of how much code

these generated unit tests are testing.

Describe the Experimental Setup
In order to proceed with the evaluation, the following components

were set up (Please refer to the resources section for the URLs where

these tools can be downloaded)

• Eclipse 3.1.2
• OSATE 1.2.3 Plug-in for Eclipse

• EclipsePro 4.3.1

Additionally the OSATE code base and a prototype using the
infrastructure provided by OSATE were used as inputs to evaluate

EclipsePro.

Analysis of OSATE code base
The goals of this part of the evaluation were to

• Get a better understanding of the benefits that EclipsePro offers

Evaluation of EclipsePro – Project 1

Team DaVinci

3 of 12

• Detect issues such as bad practices and potential bugs in the

OSATE code base

• Identify areas in OSATE that may be improved
• Evaluate how the use of EclipsePro may have an impact in our

Studio project

Once the tools were in place, we determined what kind of issues were
the most important to us to analyze. Below is a list of these issues

grouped by the quality attributes they address that the team must

satisfy in our studio project.

Performance

Append string The appending of a string literal must be

replaced by the appending of a character

literal

Concatenation in
appending method

A concatenation of strings is incorrectly
used in the append method of the

StringBuffer class

Debugging code Calls to System.out are kept in

production code

Define initial capacity The initial capacity of Collections and
StringBuffer is not tailored to the specific

case

Favor static member

classes over non-static

Member classes that does not reference

the enclosing class must be static

Method invocation in
loop condition

A method call is used in every iteration
of the loop to evaluate the exit condition

Variable declared within

a loop

A variable is continually declared and

initialized within each iteration of the

loop

Maintainability

Block depth A measure of complexity based on how
many levels of nested blocks exist in a

particular block of code

Close where created Streams and sockets must be closed in

the same method where they are
instantiated

Empty catch clause Empty catch clauses make harder the

debugging of an application

Empty method Methods with no implementation (non-

abstract) distract the developer

File length Lengthy files makes the code harder to
understand

Evaluation of EclipsePro – Project 1

Team DaVinci

4 of 12

Include implementation

version

A deployed system must have a way to

differentiate itself from other versions

Log exceptions A system is more testable and traceable
if faulty conditions are recorded

Non-protected

constructor in abstract

type

It makes no sense to have a non-

protected constructor in an abstract

class

Protected method in final
class

Final classes cannot be derived so it is
not reasonable to have a protected

method

Source length Limiting the size of constructors,

initializers, and methods in order to

improve the readability of the code

String literals String literals are a source of problems

when the application is meant to be used

in different locales

String method usage The equals method of the String class

must not be used in applications that
need to be localized

Unused method Unused methods make the code harder

to understand

Variable should be final When the value of a variable does not

change it should be declared final to
indicate so

Variable usage A variable is assigned a value but this

value is never used

Correctness

Float comparison Because of rounding problems float
values should not be compared with the

equality and inequality operators

Hiding inherited fields A class defines a field with the same

name as a field declared by its parent

class making impossible to access the
parent field

String comparison Strings should not be compared with the

equality and inequality operators
Table 1 – Analysis description

Unit Tests for Prototype using OSATE code base

The goals of this part of the evaluation were to

• Get a better understanding of EclipsePro's unit test generation

capabilities.
• Detect potential bugs in our team's code base.

Evaluation of EclipsePro – Project 1

Team DaVinci

5 of 12

In our Studio project and during its implementation phase, the team

intends to follow a test-driven development process. As part of this

process, the generation of unit tests for all the code plays a very
important role. Therefore, the functionality provided by EclipsePro for

generating unit tests may help us generate additional tests cases that

could improve the quality of the development.

The target code for the evaluation of this tool was taken from an

OSATE plug-in prototype we had previously written. This prototype is a

small program consisting of 942 lines of java code.

The prototype is composed of the following java source files

edu.cmu.sei.aadl.plugindemo.ComponentPortGroupCandidateSwitch.java
edu.cmu.sei.aadl.plugindemo.ConnectionPortGroupCandidateSwitch.java
edu.cmu.sei.aadl.plugindemo.PlugindemoPlugin.java
edu.cmu.sei.aadl.plugindemo.PortGroupCandidate.java
edu.cmu.sei.aadl.plugindemo.actions.CheckPortGroupCandidate.java

The following test cases were generated by EclipsePro

edu.cmu.sei.aadl.plugindemo.ComponentPortGroupCandidateSwitchTest.java
edu.cmu.sei.aadl.plugindemo.ConnectionPortGroupCandidateSwitchTest.java
edu.cmu.sei.aadl.plugindemo.PlugindemoPluginTest.java
edu.cmu.sei.aadl.plugindemo.PortGroupCandidateTest.java
edu.cmu.sei.aadl.plugindemo.actions.CheckPortGroupCandidateTest.java

Describe Qualitative and Quantitative Data Gathered
The OSATE analysis was executed in

Time Lines of Code

2 minutes 33 seconds 59,510
Table 2 – Execution time and source code size

The number of issues is summarized in the following table.

Performance

Rule Name Number of Issues

Append string 9

Concatenation in appending
method

2

Debugging code 4

Define initial capacity 22

Favor static member classes

over non-static

6

Evaluation of EclipsePro – Project 1

Team DaVinci

6 of 12

Method invocation in loop

condition

10

Variable declared within a loop 339

Total Performance 395

Maintainability

Rule Name Number of Issues

Block depth 38

Close where created 3

Empty catch clause 2

Empty method 53

File length 7

Include implementation

version

1

Log exceptions 10

Non-protected constructor in
abstract type

6

Protected method in final class 4

Source length 32

String literals 1970

String method usage 50

Unused method 2

Variable should be final 7

Variable usage 8

Total Maintainability 2158

Correctness

Rule Name Number of Issues

Float comparison 3

Hiding inherited fields 193

String comparison 6

Total Correctness 202

Total Evaluation 2755
Table 3 – Statistics of analyzed code

Analysis of special conditions such as null dereferencing and aliasing

were tested. Unfortunately, EclipsePro does not perform data flow

analysis and was not able to report issues in these two categories.

The following table presents the coverage of the generated unit tests.

This is represented in terms of how many methods, lines, blocks and

instructions were covered by the generated tests.

Evaluation of EclipsePro – Project 1

Team DaVinci

7 of 12

Generated code Method Lines Blocks Instructions
ComponentPortGroupCandidateSwitchTest 0/2 0/6 0/2 0/19
ConnectionPortGroupCandidateSwitchTest 0/6 0/99 0/48 0/482
PlugindemoPluginTest 5/6 8/16 8/12 21/41
PortGroupCandidateTest 5/6 29/150 15/84 88/705
CheckPortGroupCandidateTest 3/4 3/15 4/8 9/44

Average 54% 13% 24% 9%
Table 4 – Coverage of generated tests

From the coverage range of the unit tests, we can tell that if we blindly

trust the quality of the automatically generated unit tests that would

mean that we would be covering only 9% of all the instructions of the

total code. This is extremely low. There are execution paths that are

not covered and therefore human rechecks are necessary to improve
the coverage of the generated unit tests.

There are several reasons for the low code coverage. For example,

code referencing interfaces could not be analyzed because this tool
does not take into account run-time behavior and statically there is no

way to infer what actual code will be executed.

Benefits of the Tool
Configurable rules

Rules for analyzing source code are configurable including severity and

parameters for their tailoring

The processing time is good

The time EclipsePro took to analyze the source code and generate the

unit tests is very reasonable compared to the benefits one can get.

Integrate many analysis techniques in one tool

Analysis of source code, unit test generation, code coverage analysis,

and metrics of the source code can all be achieved with EclipsePro.

Automatically generates the framework of the unit test

It generates the framework methods of the unit test. For example

tearDown(), setUp(), etc. Therefore, the developer does not need to

write all the basic components of the unit tests.

Automatically generate the basic test classes

EclipsePro will automatically generate the test methods by analyzing

the methods within the target source class. For example, for the
method abc(), it will automatically generate testAbc().

Evaluation of EclipsePro – Project 1

Team DaVinci

8 of 12

Provide a mechanism to ensure the verification of unit tests

before the test is executed

Having fail("unverified") in the end of each automatic generated unit

test method is a check to help ensure that each test method is verified

before it can pass.

Figure 1 - Verification

Check invalid and valid parameters for each method call
For each automatically generated method, EclipsePro will try to give

null values and other reasonable values as parameters to verify the

result of each method.

Figure 2 - Parameters

Provide a mechanism ease regression testing

EclipsePro provides the TestAll.java component for testing every unit

test at once or for testing every unit test in each of the packages.

Evaluation of EclipsePro – Project 1

Team DaVinci

9 of 12

Figure 3 – Regression testing

Automatically generates comments for the unit tests
EclipsePro generates comments for each unit test method it generates.

These comments include tags for @author, @see, and @return. This

automatic generation of comments (and any other artifact) can boost

team's productivity.

Figure 4 - Comments

Test coverage
EclipsePro provides test coverage analysis. Therefore, it is helpful for

detecting blocks that have not been covered by the current unit tests.

Figure 5 – Test coverage

Evaluation of EclipsePro – Project 1

Team DaVinci

10 of 12

Drawbacks of the Tool
Could not generate test cases for interfaces
If a method references an interface, EclipsePro cannot distinguish it

from an actual instance of an object. The consequence of this is that it

will throw a NullPointerException when generating the unit test cases.

However, this actually means that the content of the method in the
interface could not be analyzed. The actual implementation of the

method implementation will be dynamically linked during runtime

execution and that cannot be tested by the static analysis used by

EclipsePro to generate the unit tests.

Missing library

The tool does not automatically include the library of the original

project, which is used to generate the unit test cases. Therefore, it is
necessary to manually add one by one all the required libraries.

Missing a great deal of basic unit test scenarios
The documentation that EclipsePro provides is not specific in terms of

how many unit test scenarios it can generate. Many scenarios for the

unit tests are missing. For example, checking other types of input

values rather than only null.

False positives

• The tool may return some false positives

• Constructors must invoke only final methods but inherited

methods are not allowed
• Constant conditional expressions such as while(true) are

reported and there is not way to get rid of them

• Hiding inherited fields does not allow to ignore certain fields such

as copyright notices
• False positives for unused fields because they are indeed being

used in the body of the enclosing class

• No able to detect that some variables must be constants since

they do not change their value

Scope of the Applicability of the Tool
EclipsePro is not a substitute for tools such as Fugue, Metal, or Prefix.

However, it outputs a different type of analysis that may be also

important, this is, it may be used as a complement to these other tools.
In terms of unit test generation the tool is useful for producing

skeletons that require manual modification and in that regard it may

improve the productivity of the development team.

Evaluation of EclipsePro – Project 1

Team DaVinci

11 of 12

Conclusions
Although the analysis of the source code and the test cases that

resulted in the statistics shown in the tables are very useful for

learning about certain types of errors, EclipsePro lacks some of the

features found in some of the tools used in class. For example
• The type of analysis that EclipsePro does cannot be compared

with Blast or Fugue where it is possible to define the protocol

defining the contract for how a class may be correctly used.

EclipsePro does not support the definition of protocols.

• EclipsePro does not provide a data flow analysis. As opposed to
Metal, Prefix, and Fugue where the tool can detect issues such

as locking misuses and dereference of null variables, EclipsePro

focuses on detecting errors that do not involve run-time behavior.

• As part of this evaluation we informally compared Eclat, which is
a research tool developed at MIT for the generation of test cases,

with EclipsePro. Eclat relies on Daikon for discovering the

invariants of every method. According to the limited testing we

executed, Eclat generated more diverse test cases than
EclipsePro.

On the other hand, EclipsePro was very useful for finding areas in the

OSATE code base that need certain level of rework. Examples of these

areas are the indiscriminate usage of string literals, poor
documentation conforming to the javadoc standard, no logging in

order to improve traceability, and the lack of fine-tuning such as the

definition of the initial capacity of collections used throughout the

application in order to improve its performance.

The test-case component of the tool has some limitations. For example

• For large and complex projects the use of EclipsePro may not be

of much help because of its limitations in covering language
constructs such as code referencing interfaces.

• The functionality for unit test generation is not good enough

since it requires human involvement. If more static analysis

features were introduced into the tool, such as in Eclat,
EclipsePro would be much more powerful.

However, EclipsePro can still be used as a starting point for use case

generation. Although according to our evaluation, the generated unit

tests are not as reliable in terms of coverage as they must be, these
initial unit tests can be used as a skeleton to create further test cases.

Evaluation of EclipsePro – Project 1

Team DaVinci

12 of 12

Furthermore, the test coverage offered by the tool is a good very

useful for seeing how well written the test cases are. It gives the

developer a clear overview of what the test cases have covered and
what is actually missing.

In summary, we will likely use the tool a couple times during our

summer semester to determine if there are sections of code that need
particular attention for code reviews. Selection of these sections of

code for review would be based on the number of warnings/errors

EclipsePro generates on a given code section. We do not plan on

incorporating the tool into our daily development processes.

Resources
Where to get the tools used in this evaluation

• Eclipse 3.1.2 [http://www.eclipse.org/downloads/]
• OSATE 1.2.3 Plug-in for Eclipse [http://www.aadl.info/]

• EclipsePro 4.3.1 [http://www.instantiations.com/eclipsepro/]

