
Analysis Tool Evaluation:
Coverity Prevent

Final Report
May 1, 2006

Ali Almossawi
Kelvin Lim

Tanmay Sinha

Carnegie Mellon University

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

1

1. Introduction

As a software engineer, you are probably used to having “bug hunter” in
your job description. Although computers are deterministic machines driven
by precise logic, there is a fly in the ointment: they function only as well as
their human creators design them to. And humans are somewhat prone to
error, to put it mildly. Software systems, in particular, seem to be an
attractive arena for spectacular displays of human error. Bugs get
introduced all the time despite our best intentions. Should you resign
yourself to a lifetime of bug hunting?

Not if Coverity Prevent does what it claims.

Coverity Prevent is one of the leading commercial static code analysis tools
on the market today. Code analysis techniques apply the computer’s logical
precision and computational power to automatically and quickly discover
code defects resulting from human error. This saves developers time and
reduces overall development costs. Although many of these analysis
techniques are relatively new, recent years have seen a number of analysis
tools mature sufficiently to start establishing a presence in the marketplace.
Coverity Prevent is one such tool.

Derived from Stanford’s Metal/xgcc research project, Prevent’s developers
claim that it is the “world’s most advanced static analysis tool” in existence.
According to the company, major users of the tool include software industry
giants such as IBM, Oracle, Veritas, and NASA. Prevent has also been
applied to a few public open source projects, including Linux.

All this sounds very good. But how much value is Coverity Prevent likely to
actually bring you as a software engineer in your everyday work? What will
using it be like? And what drawbacks are there? To answer these
questions, we explored the tool in detail and experimented with it on a
number of real software projects. We hope that our findings will prove
useful to you as you decide whether Coverity Prevent represents a viable
means for you to find relief from your bug hunting chores.

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

2

2. How Coverity Prevent Works

2.1. Summary of Analysis Techniques

Coverity Prevent discovers code defects using a combination of inter-
procedural data flow analysis and statistical analysis techniques.

• Inter-procedural data flow analysis. Prevent analyzes each function and

generates a context-sensitive summary for it. Each summary describes
all characteristics of the function that have important implications for
externally-observable behavior. Coverity calls these summaries
“function models”. During data flow analysis, Prevent uses these
summaries to determine the effects of function calls whenever possible.
Prevent also performs false path pruning to eliminate infeasible paths
from consideration. This reduces computation costs and lowers the
chances of generating false positives.

• Statistical analysis. Prevent uses statistical inference techniques to

detect important trends in the code. Using these conclusions, it then
tries to discover statistically significant coding anomalies, which may
represent deviations from the software developers’ intentions.

The exact details of its algorithms are proprietary and therefore are
generally not known outside the company. As Prevent remains under active
development, its techniques will undoubtedly continue to be refined with
each new release.

2.2. Applicable Development Environments

Is Coverity Prevent applicable to your development environment? First and
foremost, it is designed to analyze only C and C++ source code. If your
projects do not involve any substantial C/C++ components, then you will not
gain any value from using Prevent.

However, this programming language requirement is the only major
constraint. Prevent supports most popular development operating systems
(Windows, Mac OS, Linux, FreeBSD, NetBSD, Solaris, HP-UX) and
compilers for both traditional and embedded systems (GCC/G++, Microsoft
Visual Studio, Intel Compiler, ARM CC, Sun CC, Green Hills Compiler, etc.).
It fully supports parallel compilation systems.

Project scale is unlikely to pose any problems. Prevent has been shown to
work well even with code bases containing millions of lines of production
code. Prevent’s user interface also contains flexible multi-user features,
making it easy to use even if your organization uses large project teams.

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

3

2.3. Process

When you use Coverity Prevent to analyze your code, you will generally go
through this three-step process:

1. Emitter. After configuring Prevent for your compiler(s), it will integrate

itself with your existing build process. When you build your project (e.g.
using a “make” command), it will listen to all compiler calls and
simultaneously process your code through its own built-in C/C++ parser.
This allows it to generate internal binary representations of your project
code, stored in what Coverity calls “emit repositories”. Prevent handles
subsequent build runs incrementally, processing only changed code
whenever possible.

2. Checkers. After creating the emit repositories, Prevent’s “inference

engine” analyzes the repositories using the inter-procedural data flow
and statistical analysis techniques described previously. It stores its
generated function summaries and derived inferences in a database.
After this, the “analysis engine” searches for defects by applying a
number of checkers to the database generated by the inference engine.
Each checker tries to match for a specific category of potential defects.
We will describe these checkers in the next section.

3. Output and Graphical User Interface. Finally, Prevent aggregates the

checkers’ results and converts them to XML format. The resultant output
can then either be used as inputs to other programs, or viewed through
the included graphical web (HTTP) interface. Prevent allows you to set
up user accounts so that multiple users can access the analysis results
and have their changes and comments tracked.

Coverity Prevent process steps (source: Coverity Prevent manual)

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

4

2.4. Defect Checkers

The version of Prevent we tested (2.2.6) includes these nineteen defect
checkers. Appendix A provides brief descriptions of the defects that each
checker is designed to detect.

• NULL_RETURNS
• FORWARD_NULL
• UNUSED_VALUE
• REVERSE_NULL
• REVERSE_NEGATIVE
• RETURN_LOCAL
• SIZECHECK
• CHECKED_RETURN
• STACK_USE
• RESOURCE_LEAK

• USE_AFTER_FREE
• DEADCODE
• UNINIT
• DELETE_ARRAY
• INVALIDATE_ITERATOR
• PASS_BY_VALUE
• OVERRUN_STATIC
• OVERRUN_DYNAMIC
• NEGATIVE_RETURNS

As already mentioned, these checkers work using inter-procedural data flow
and statistical analysis techniques. For instance, RESOURCE_LEAK
checks for leaks of system resources such as allocated memory and file
descriptors by tracking aliases to these resources and searching for control
flow paths that result in a resource having no remaining in-scope aliases
despite still being allocated. In contrast, CHECKED_RETURN uses
statistical analysis to infer when a given function’s return value is usually
explicitly checked, and then flags anomalous cases where it is not checked.

Why might finding these defects be useful to you? In our opinion, there are
at least three distinct reasons that you may find relevant:

• Correctness. Obviously, many of these defects can produce incorrect

behaviors, such as wrong outputs or system crashes. Some of these
faults may be hard to detect because they appear only under certain
inputs or operating conditions. CHECKED_RETURN and
NULL_RETURNS are some examples of defects that may cause the
program behave incorrectly.

• Security. Some of these defects may not necessarily violate behavioral

specifications, but may nevertheless open the system up to security
vulnerabilities. For instance, OVERRUN_STATIC may lead to buffer
overrun exploits, while DEADCODE may highlight normally inactive (but
linked) code that a malicious party planted to gain backdoor access.

• Performance. Other defects may indicate inefficiencies or issues that

can result in degraded system performance over time. Examples of
these include RESOURCE_LEAK and SIZECHECK.

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

5

3. Experiment Setup

3.1. Purpose

To help you gain insight into how well Coverity Prevent actually performs in
the field (as opposed to artificial test cases for each of its defect checkers),
we decided to obtain detailed quantitative and qualitative assessments of its
performance for real software projects.

We conducted our experiments on a variety of project types in order to
make the results as broadly representative as possible. Our intention was
to provide you with a basis for deciding how much value Prevent will
probably give you for each of your projects.

3.2. Setup

We conducted our experiments using the Linux version of Coverity Prevent
version 2.2.6. This was a fully functional version that Coverity kindly
provided to Carnegie Mellon for evaluation.

We used the following existing software projects as our test cases. We
chose these to represent as broad a range of development contexts,
application domains, and code base size as we could feasibly
accommodate for a small-scale study like this.

• OS-P3 – An academic Operating Systems project that implements basic

Unix-like kernel system call and thread handling functionality.

• Networks-P2 – An academic computer networks project that implements

a basic client for a BitTorrent-like peer-to-peer file sharing protocol.

• DirList – A single-developer open-source Web CGI providing access to a
user directory database.

• Apache HTTP – The Apache project’s HTTP server, one of the most

popular and well-supported open source web servers currently in use.

• GAIM – An open-source instant messaging client.

• GLib – The GNOME C function library, a large repository of algorithm
and data structure implementations that developers can use.

• Vim – A very popular interactive text editor for UNIX systems with a

broad feature set.

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

6

• Thunderbird – The Mozilla Foundation’s open source email client, which
was recently distributed as a stable release for the first time.

• MySQL – A mature and full-featured database system supporting SQL

queries, developed by a large open-source developer network.

We used the latest stable code versions of each project at the time we
conducted the experiments.

3.3. Method

Each experiment trial involved running the entire Coverity Prevent analysis
process of one of the test projects. For each test case, we noted the
following quantitative information reported by Prevent:

• Number of lines of code (excluding comments and blank lines)
• Total number of detected defects
• Defect density (average number of defects per thousand lines of code)
• Breakdown of defects by defect category
• Time taken to complete the analysis

In addition, because Prevent is an unsound analysis tool, not all the defects
it reports are guaranteed to be genuine. We therefore studied each
individual reported defect and assigned it a rating indicating how confident
we were that it was a genuine code defect. A high confidence rating meant
that we were very sure that it was a real defect. Conversely, a low
confidence rating meant that we were very sure that it was a false positive.
We assigned medium confidence to all defects that we could not come to a
strong conclusion about after expending a reasonable amount of effort on
manual analysis. Although this is clearly a subjective measure, we tried to
make our evaluations as consistent as possible.

We also qualitatively assessed our experience with each project. We tried
to do so from the perspective of a typical developer in the midst of a real
project development process, so this should reflect what it would be like for
you when you use the tool.

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

7

4. Empirical Findings

4.1. Result Data

This table summarizes the key results we obtained from our experiments.
Appendix B provides more detailed breakdowns for each test case.

Our Confidence Rating

Project LOC Defects Defects/
KLOC High Med Low

OS-P3 12,636 14 1.108 9 - 5

Networks-P2 14,716 6 0.408 6 - -

DirList 17,459 17 0.974 14 - 3

Apache HTTP 66,382 16 0.241 8 6 2

GAIM 93,733 3 0.032 3 - -

Glib 121,691 34 0.279 26 7 1

Vim 171,459 80 0.467 49 29 2

Thunderbird 246,810 75 0.304 65 7 3

MySQL 607,457 233 0.384 127 61 45

Summary of experiment results

In total, Coverity Prevent reported 478 defects over 1,352,343 lines of code,
yielding an average defect density of 0.353 defects per thousand lines of
code. Of the 478 defects, we rated 307 (64.2%) as high confidence, 110
(23.0%) as medium confidence, and 61 (12.7%) as low confidence (as
shown in the chart below).

Depending on whether we consider medium confidence defects to be false
positives, we therefore estimate the overall false positive rate to be
somewhere between 12.7% and 35.7%, with a mean of 24.2%.

High

Medium

Low

Breakdown of reported defects by confidence rating

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

8

4.2. Implications of Results

Coverity claims that Prevent’s average false positive rate is around 20%
(“one false positive to every four genuine errors”). Our results appear to be
consistent with this claim.

Compared to many other static analysis tools, we consider this to be a very
low false positive rate, especially considering the fact that these results
were obtained without providing any additional annotations to aid Prevent’s
analysis. The key implication of this statistic for you as a developer is that
you will spend most of your time fixing real bugs in your program, instead of
wasting time attempting to trace spurious error messages.

The overall average defect density of 0.353 defects (or 0.227 high
confidence defects) per thousand lines of code suggests that Coverity
Prevent does a decent job of surfacing defects. Industry studies suggest
that developers typically introduce somewhere on the order of one to three
defects (of all possible categories) per thousand lines of code during initial
development. Considering that we ran these analyses on fairly mature code
bases, this suggests that Prevent provides a means to automatically catch a
very significant proportion of all defects in your code.

One reason why we indicated nearly a quarter of all defects as medium
confidence was the fact that some of the defects were very hard to trace by
hand. This was because these defects often occurred across complex
interactions between multiple functions, and only on some data flow paths.
If these defects were genuine, this suggests that Prevent will help you
greatly in surfacing non-trivial bugs that are very difficult to detect through
code inspection. Although testing may eventually find these defects, the
great advantage of static analysis tools like Prevent is that you can apply it
throughout the entire development lifecycle instead of only when you have
testable deliverables. This can save you substantial cost by finding quality
problems earlier on, when they are usually cheaper to fix.

We should also note that even the false negative reports were often
surprisingly insightful. For instance, one reason for the high number of false
positives with the MySQL code was that it used its own custom debugging
macros, which would terminate the program when an assertion failed.
Prevent did not recognize these termination mechanisms and therefore
continued to trace the data flow beyond them. However, the false negative
reports essentially provided a list of all the instances where these debugging
macros actually serve useful functions (i.e. they were not redundant
checks). Prevent’s analysis results and function models can therefore help
you in ways beyond their primary defect detection role. (Note also that
Prevent’s models can in fact be manually configured to recognize MySQL’s
debugging macros if so desired.)

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

9

In particular, we found Prevent’s analysis results very useful in helping us
better understand the logic and structure of the large public open source
code bases we tested. As none of us had any experience working on these
projects, we were essentially thrust in the role of developers coming into a
previously existing project that we did not originally work on—a realistic
scenario that you may well face in the future. Many of the defect reports
helped highlight hidden assumptions in the code that were not explicitly
reflected in the accompanying comments and documentation. We therefore
suggest that Prevent can be a very valuable aid in architecture discovery
and code refactoring efforts.

Overall, we were very pleased with Prevent’s performance on our
experiment trials. Considering the minimal setup work we had to do to
perform these analyses, we consider the returns we received to be
excellent, and we believe that most developers will derive similar value from
the tool.

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

10

5. Qualitative Evaluation

5.1. Usability

Coverity Prevent’s user interface clearly reflects its original Linux/Unix
heritage. As a user, you will initiate most of the analysis steps through the
shell command line. Indeed, everything that can be done with it is done by
running command-line executables, except viewing the final analysis output.

Surprisingly, we found that this does not really hinder the usability of the
tool. The user gets a satisfying sense of progress as each analysis module
is run in turn, readying the environment for the next one. During the
different stages of the analysis, a progress bar shows exactly how much
more time is left before completion (and a twirling animation even helps
keep the user entertained during the wait!). If the user prefers not to run
each executable in sequence for each code base, Coverity also provides an
executable that runs the entire process with a single command.

The graphical user interface works through a standard web browser
interface, with pages served up by a built-in version of Apache HTTP
Server. Using the GUI is one of the more enjoyable aspects of the tool.
After logging in, the screen cleanly shows all the different analysis runs that
were committed, together with the line count and defect statistics for each
run. Clicking on a particular run displays a table with all the defects that
were detected. Clicking on a run brings up a very cleanly organized window
(pictured below) with details of the defect and the exact source lines
involved in the defect trace, annotated with Prevent’s analysis inferences.

Sample trace view for one defect.

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

11

As a user, you can easily jump between different parts of the code base by
clicking on function or variable names. We found this highly interactive
feature extremely useful while trying to understand the reason behind why a
line has been flagged as a defect. The ease with which one can move
between different parts of the code using hypertext links makes the manual
analysis process much more enjoyable than it would have been if we had
been expected to take on the burden of browsing through files outside the
fold of the tool.

Prevent also gives us the ability to tag defects as being actual defects, false
positives, pending, and so on. This is much like one can do with other
popular bug-tracking systems such as Bugzilla. This, coupled with the color
coding used throughout the GUI, is especially useful for the novice.

5.2. Performance

Prevent performed its analysis runs remarkably quickly even for large code
bases. From our experiments, we found that it took as little as 15 seconds
to process a 12,000 line code base, and even MySQL (over 600,000 lines of
code) took just under an hour. This was significantly faster than most other
static analysis tools we used in the past.

Coverity Prevent’s excellent performance will therefore probably serve most
organizations’ efficiency needs. It minimizes the amount of time you and
your team have to wait before you can engage in productive work based on
its analysis results.

5.3. Scalability

As previously mentioned, we ran Prevent on projects ranging from small
academic ones with about 12,000 lines of code to large projects with
600,000 lines of code. In all cases, it did not crash or report any kinds of
unexpected errors. To accommodate the needs of very large projects,
Coverity’s documentation also indicates that Prevent can perform parallel
builds and analyses, although we did not test this functionality in our
experiments. In general, we would probably not hesitate to apply this tool to
code bases of any size.

5.4. Limitations

Perhaps the biggest limitation of the tool is its high monetary cost. Coverity
charges a yearly fee for Prevent according to the number of lines of code in
the code base you use it with. Although Coverity does not publish standard
rates on its publicity materials, one online source indicated that a project
with 500,000 lines of code will cost approximately $50,000. Had we been

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

12

charged for the privilege of using the program, even our relatively small-
scale experiments could well have cost us over $100,000!

You must therefore carefully consider whether Prevent provides enough
benefits to justify its cost in your development environment. Fortunately,
Coverity apparently provides a free trial program that involves them
demonstrating the tool on your existing code bases. This can provide a
valuable source of input in helping you decide whether Prevent makes
sense to your organization.

Another significant limitation, as we mentioned at the outset, is that Prevent
works only with C and C++ code. The tool’s brochure, available on its
website, mentions the defects that it can detect include some that may lead
to denial-of-service-type attacks and SQL injections, so it would be
extremely helpful if this tool can be extended to Web-based projects written
in languages such as Java and PHP. Until this happens, however, you are
essentially out of luck if your project involves sizeable non-C/C++ modules.

5.5. Documentation

Coverity Prevent’s included documentation is extremely well-written. It
covers everything from setting up the tool on different operating systems to
how we can interpret the results of analyses. For each of the defects listed
in section 2.4, the manual explains the defect in detail and also discusses
common cases where the tool might produce a false positive. It also
suggests ways of suppressing each of these false positive cases with
annotations and other built-in mechanisms. Other sections include detailed
overviews of how the tool works, as well as troubleshooting tips that
describe possible pitfalls that a user may encounter and the likely causes.

Overall, the well thought-out documentation reflects how well thought-out
the overall product is. Prevent clearly gives the impression of being a very
mature and professional tool.

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

13

6. Conclusions and Recommendations

So what’s the bottom line? Does Coverity Prevent live up to its claim of
being “the world’s most advanced static analysis tool”? It would be unfair to
answer that question based only on our small-scale study. Nevertheless,
we are confident that our conclusions generally point us in the right
direction. What is certain is that Prevent is an excellent static analysis tool
around for C and C++ code.

In terms of its defect detection efficacy, Prevent does an excellent job of
surfacing important defects while keeping the false positive rate low. This is
surely good news for software engineers everywhere. As an incomplete
tool, it does not do everything, of course. So Prevent will not remove bug
hunting from your job description, at least not in its current iteration. But it
will probably make you a better and more productive bug hunter, and will
free up more time for you to attend to other aspects of your job.

Prevent is also a very practical tool. It has a lot of features that were clearly
designed with end users in mind. Its web-based user interface is very
intuitive, and it provides an excellent way for teams to keep track of bugs
found. Its multi-user features help managers track bug fixes to individual
developers and avoid redundancies and unnecessary overlap. By not
requiring code annotations or changes to the build process, it also caters to
most developers’ preferences by leaving as small a footprint on their code
as possible—while still providing very useful results in spite of the minimal
input it requires.

Indeed, the only factor deterring us from wholeheartedly recommending
Coverity Prevent to everyone is the high monetary cost of using the tool. If
your organization can justify the cost of purchasing this product, we are
confident that you will not just find more bugs more easily, but—believe it or
not—actually enjoy the bug-hunting process a lot more.

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

14

Appendix A: Defect Checker Descriptions

• NULL_RETURNS: A function that can return NULL must be checked
before it is used. This checker identifies for such dereferences of NULL
return values.

• FORWARD_NULL: A program will normally crash when a NULL pointer is

dereferenced. One situation this can happen is when the pointer has
been checked against NULL and is dereferenced later. This check
identifies such situation by checking all possible paths where such NULL
dereferences can occur.

• REVERSE_NULL: A program will normally crash when a NULL pointer is

dereferenced. Another situation this can happen is when the pointer is
dereferenced before it has been checked against NULL. If the dereference
is NULL, the check programmer should be warned to place the check
against NULL before dereference. This check identifies such situation by
checking all possible paths where such NULL dereferences can occur.

• UNUSED_VALUE: When a variable is assigned a pointer value returned

from a function call and is never used anywhere else in the source code, it
can not only cause inefficient use of resources but can also result in
undetermined behavior. This checker identifies all variables that are never
used anywhere else in the program after a value is assigned to them.

• REVERSE_NEGATIVE: Sometimes a negative value is not advisable to

use. One way to avoid such use is to check for negative value after a
possible dangerous use. In this situation there could be a problem when
the value should not be negative before use. This checker identifies such
conditions by checking all possible paths where such usage of negative
value can occur.

• RETURN_LOCAL: If a function returns a pointer to a local stack variable,

there could is a possibility of memory corruption and un-deterministic
behavior. This checker identifies such returns and marks them as defects.

• SIZECHECK: Incorrect amount of memory allocation can lead to

undetermined behavior and program crashes. This checker identifies such
memory allocations that are assigned to a pointer to a type that are bigger
than amount of memory allocated to them.

• CHECKED_RETURN: If might be necessary for the developer in many

cases to check for the value returned by a function call. This checker uses
static analysis to determine whether all the error conditions are handled
when the function call is made.

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

15

• STACK_USE: Some applications have limitations on the overall stack

allocation, e.g. device drivers. This checker can be used to determine
whether there is a violation of overall stack use. This is a special checker
that is required to be enabled. The analysis does not use this checker by
default.

• RESOURCE_LEAK: Resource leaks can have all kinds of bad effects on

the program. A memory leak can lead to program crashes. A leak of file
descriptors, and socket can cause crashes and also have other harmful
effects on the program. This checker identifies all these kinds of leaks in
the source code and marks them as errors. Apart from usual memory leak
checks, it checks for interesting situations like aliasing as well.

• USE_AFTER_FREE: It is not advisable to use a memory after it has been

freed, as it might lead to non-deterministic results when it is used. This
checker identifies such conditions where a memory location is
dereferenced after it has been freed. This also includes checks for double
freeing of a pointer.

• DEADCODE: If a certain part of source code can never be reached during

the execution of program, it’s called dead code. Usually harmless, it can
cause problems when the dead code contains some code that is important
for the proper functioning of the program. This checker identifies such
pieces of code in the program using static analysis.

• UNINIT: The use of un-initialized variables can often result in non-

deterministic behavior. Under some situations, it can also cause security
vulnerabilities. This checker identifies such variables and points their
usage.

• DELETE_ARRAY: This checker simply checks if there is a use of “delete”

instead of “delete []” to free an array.

• INVALIDATE_ITERATOR: A C++ specific checker that identifies a wrong
usage of iterators in Standard Template Libraries (STL), as it might not
work across operating environments and can cause crashes.

• PASS_BY_VALUE: This checker warns if the value being passed in a

function is larger than 64 bytes, as it might result in poor performance
under certain situations.

• OVERRUN_STATIC: This checker identifies invalid accesses to a static

array, as it can cause buffer overruns that can ultimately lead to security
vulnerabilities and program crashes.

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

16

• OVERRUN_DYNAMIC: This checker, unlike the static overrun, identifies

invalid accesses to a dynamic array, as it can cause buffer overruns that
can ultimately lead to major security vulnerabilities and program crashes.

• NEGATIVE_RETURNS: If a value that is returned from a function can be

negative and is used inappropriately, it can cause multiple errors such as
memory corruption, crashes, infinite loops and so on. This checker
identifies such situations and marks such usage of a negative value as an
error.

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

17

Appendix B: Experiment Results by Project

• OS-P3
 Analysis time: 00:00:57

 Total Hi Med Low

UNINIT 3 2 - 1

RESOURCE_LEAK 6 2 - 4

NULL_RETURNS 1 1 - -

FORWARD_NULL 3 3 - -

CHECKED_RETURN 1 1 - -

• Networks-P2

Analysis time: 00:00:15

 Total Hi Med Low

RESOURCE_LEAK 5 5 - -

OVERRUN_STATIC 1 1 - -

• DirList

Analysis time: 00:02:00

 Total Hi Med Low
DEADCODE 2 2 - -
FORWARD_NULL 3 3 - -
RESOURCE_LEAK 5 5 - -
REVERSE_INULL 3 3 - -
SIZECHECK 3 - - 3
USE_AFTER_FREE 1 1 - -

• Apache HTTP

Analysis time: 00:05:58

 Total Hi Med Low

REVERSE_INULL 1 1 - -

NULL_RETURNS 2 - - 2

FORWARD_NULLS 7 2 5 -

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

18

DEADCODE 4 2 1 1

CHECKED_RETURN 1 1 - 1

• GAIM

Analysis time: 00:15:00

 Total Hi Med Low
UNUSED_VALUE 3 3 - -

• gLib

Analysis time: 00:29:34

 Total Hi Med Low
USE_AFTER_FREE 1 1 - -
UNUSED_VALUE 5 5 - -
UNINIT 1 1 - -
RESOURCE_LEAK 6 2 4 -
OVERRUN_STATIC 4 3 1 -
FORWARD_NULL 13 11 2 -
DEADCODE 1 - - 1
CHECKED_RETURN 3 3 - -

• Vim

Analysis time: 00:43:45

 Total Hi Med Low

CHECKED_RETURN 22 - 20 2

DEADCODE 5 5 - -

FORWARD_NULL 13 13 - -

NEGATIVE_RETURNS 21 21 - -

NULL_RETURNS 2 2 - -

OVERRUN_STATIC 4 - 4 -

RESOURCE_LEAK 6 - 6 -

REVERSE_INULL 2 2 - -

UNINIT 3 - 3 -

USE_AFTER_FREE 2 2 - -

Tool Evaluation: Coverity Prevent Almossawi, Lim, Sinha

19

• Thunderbird
Analysis time: 00:45:22

 Total Hi Med Low
USE_AFTER_FREE 1 1 - -
UNUSED_VALUE 4 4 - -
UNINIT 9 9 - -
REVERSE_INULL 3 3 - -
RESOURCE_LEAK 6 2 4 -
OVERRUN_STATIC 7 7 - -
NULL_RETURNS 3 3 - -
NEGATIVE_RETURNS 1 1 - -
FORWARD_NULL 34 31 3 -
DEADCODE 3 2 - 1
CHECKED_RETURN 4 2 - 2

• MySQL

Analysis time: 00:59:29

 Total Hi Med Low
USE_AFTER_FREE 2 2 - -
UNUSED_VALUE 3 3 - -
UNINIT 38 3 15 20
REVERSE_INULL 3 - - 3
RESOURCE_LEAK 25 19 3 3
OVERRUN_STATIC 3 1 - 2
NULL_RETURNS 11 8 3 -
NEGATIVE_RETURNS 5 - 1 4
FORWARD_NULL 34 10 16 8
DEADCODE 23 14 8 1
CHECKED_RETURN 86 67 15 4

