CMU 17-654 & 17-754 Analysis of Software fadts Spring 2006
Individual Project: Tool Analysis
May 18, 2006
Eun-young Cho
echol@andrew.cmu.edu

JProfiler. Code Coverage Analysis Tool for OMP Project

Table of Contents

I (0 =oAL @]] 1= Tox €11 2
2 = - T (o | (0 11] o 1P 2
2.1 ADOUL JPTOTHRI: .t e et e e e e e 2
2.2 About Nemo and JProfiler's SCoOpe 0N NEMO ... commmmmeeeeeerneererineereiineerennneesennnaennid
T o =TT 0 =T] = LIS Y= 1] o 7
3.1 JProfiler Installation and SETUP s eeeeei e e e e et e e e e e e e eaa e eaen e 7
3.2. NeMO INSTANIALIONuuiiiiiieiiii e et eeeeees 8
3.3 NEMIO EXECULION.....cuiiiiiii ettt e e e et e e e e abaanes 9
A, ANAIYSIS OF RESUILS......uuiiiiiii et e et e e e et e e e e e e et e e e et e e e et e e e ennn s 9
4.1 Memory View through NEMIO..........iiiiiii e e 9
4.2 CPU View through NEMO.........iiiiiiii e e eeees et e e e e e e e e e e e enans 13
4.3 Thread View through NEMOcoouuiiiiiet e e e et e e e e e 15
4.4 VMtelemetry View through NEMIOocuuu e e eeeee e e e eeie e e e e e eenans 17
5. LESSONS LEAIMNEA.uiiiii ittt et e e e 19
5.1 General Characteristics Of JPTOfIEr ... e 19
5.2 Benefits to the MSE StudiO PrOJECT commmmn e eeeeeieeeeiie e eeet e e e e e e e e eaneeees 19
5.3 DIAWDACKSuuiiiiiiiiiii et 20
B. CONCIUSIONS ...ttt ettt e e et e et e e e e e e bt e e e e e eebbneeeeeenne 21
7. RETEIENCES ... ittt ettt ettt e e e et e e e e e et e e e eeabaas 21

1. Project Objectives

To use JProfiler, an analysis tool, to report performdogses to:
Report memory leaks on Nemo (an example of an Ovaflaticast Protocol, OMP)
Resolve threading issues on Nemo
Gain insight into the group management aspect of OMP i&aingp
Use the gained knowledge for the MSE POSDATA studio ptroje

2. Background
2.1 About JProfiler:

JProfiler is a unique tool when compared to any of its peers
The tool uses a combined approach to provide different pensgecti
The tool provides a faster 4 in 1 approach where the 4 viewse window correspond
to Memory views, CPU Views, Thread Views and VM Telem&tiews.

The details of the aforementioned views are given below

Memory Views

This view provides for:

Heap walker styled drill down showing object references

The drill down reports problem spots with a tree like regregion of the Heap data
structure.

Detailed browsing of the Heap structure, in order toigiermation on memory and
object references.

CPU Views
This view provides for:

Showing threads information on invocation of threadsthadt back traces.
Filtering mechanism enables the customizing the datandttiocone’s own perspective
A real time dynamic picture on the views

Thread Views
This view provides for:
Deadlock profiling by showing thread monitoring and colorediecithread history which

enables programmers to catch deadlocks where they poggnttially exist.
The thread debugger is also included in the JProfiler’allaibn package.

VM Telemetry Views

This view provides for:

Information on the Virtual machine’s parameter fromni@ement the JVM starts.

Each view breaks down into a sub view to enhance diggidyeadability. This also
makes the switching between views very easy and vastyipes

The following snapshot shows JProfiler with its majews drop-down menu.

([l riznin = JEruillzr b2 |

GoTo | Window Help

&5 Memory vYiews

| Session Yiew Profiling

@ORSH

&

Mermnory views

B

Heap walker

<4

CPU wiews

Thread views

|
a4
WM telemistry views

Thre
Aggr

|

¥

Il

&
B
o
=]

All objects
Recorded objects
Allocation call tree

Allocation hot spots

s Heap walker
& CPU views

Call tree
Hot spots
Call Graph

i Thread views

Thread history
Thread monitor

Deadlock Detection

Current monitor usage

Monitor usage history

Monitor usage statistics

,4 ¥M telemetry views

Heap

Recorded objects
Garbage collector
Classes

Threads

Chrl-1

Chrl-2

Chel-3

Chrl-4

Chrl-5

Followings are the comparison with similar tools in 2003s & competitive tool in
perspective of features and costs. JProfiler got 2003 and 20@®édseloper’s Journal Readers’
Choice Awards as the Best Java Profiling/Testing Tdbbfiler was nominated and adjudged as
the best Java Profiling tool for the 2003 and 2005 Java Dev&ajpmurnal Readers’ Choice

Award.

Version
Price

Free evaluation

Online (built-in) help

Is help context-
sensitive?

Built-in tutorials

Paper documentation

Number of tool module:

Tool modules sold
separately?

CPU profiler
Object/heap profiler
Thread profiler
Deadlock detection

Race condition
detection

Code coverage

Multi-JVM support

Drill-down to source

Drill-down to bytecode

Remote profiling*

Automated profiling**

IDE integration
Report generation

Host platform
licensing policy

Website

Ease of use

Optimizeit Suite JProbe Suite
5.0 5.0

$1,599
Yes

Yes
Yes

Yes

No

3 (Profiler, Thread Debugge
Code Coverage)

No

Yes (not real time)
Yes
Yes

Automated and visual
No

Yes
Yes
Yes
No

Yes
Yes
Yes
Yes

Multiplatform and
single-platform licenses

www.borland.com/optimizeit

$2,0001
Yes

Yes (JavaHelp)
Yes

Yes

Yes

JProfiler

2.2.1
$499
Yes

Yes (JavaHelp)?
Yes

No3
No

4 (Profiler, Coverage

Memory Debugger,
Threadalyzer)

Yes

Yes (not real time)
Yes
Yes

Automated
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Single platform

www.jprobe.com

7/10

4/10

0 (all-in-one)

No

Yes (real time)
Yes
Yes

Manual
No

No

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Multiplatform

www.jprofiler.com

8/10

Sourcehttp://www.javaworld.com/javaworld/jw-08-2003/jw-0822-profilemntit

* Remote profiling: The ability to profile a Java prograexecuting on a machine other than your
development machine

** Automated profiling: The ability to perform unattended ovight profiling sessions; in other words,
command-line-driven operation with no GUI

1 JProbe Suite price includes one year of Gold Support (tedimipport)

2 gj-technologies' JProfiler Online Help contains almostareenshots of views or dialogs

3 gj-technologies' lack of explicit tutorials is partly comgeted by some demo sessions

This is particularly of interest because on POSDATA,C&8mpany in Korea, my studio
project requires the use of OMP in order to broadcast \stiesam to particular nodes through
the use of group management. Though the focus of théléPtesting is not for OMP in general,
the program of interest is Nemo, a multicast prottitail uses group management. Here Nemo is
an existing OMP project that serves a good example t¢ov dine kind of problems and
parameters one may have to face or think about whersaealizing an OMP. The main types
of nodes are:

Bootstrap Node Nodes that serve as the leader of a cluster or aesggoh a group.
They serve as the meeting point for publishers and subscriber

Publisher Nodes Publish data and send data to subscribers. They mapealsoown as
co-leaders in the OMP terminology. The co-leadeikis & server for a particular layer
consisting of OMP clients.

Subscriber Nodes Receive data from publishers. They can be referred dbieass.

Followings are the script in case of running for each nolge r

1rminal Window
n] i

initiali
nfrom the JProfiler GUI ..,
ion

ed time

Jerofile g e = Mot icast Agent | |

wu,multicast api, IMulti

(a) Bootstrap node

A iz [= R rdlEr b

Terminal Window

JProfil
JProfilers :
JProfil
JProfiler=
JProfil
JProfiler=
JProfil
JProfile
JProfil
JProfile

du, i, ne
rly.

(b) Publisher Node

Terminal Window

ing dir ent Manageract ionT:
uted call: C: jdk¥bi cexe —agent |ib: jprofilerti=port=

bit library

tion from the JProfiler GUI
rument at ion

1 imEk

ing to multi
‘quit’ to terminate
i ust implement inte du, nwu mult i api, IMultic iber and col

JProfiler= Oi

(c) Subscriber Node

Figure 1: Execution script using the JProfilertool

2.2 About Nemo and JProfiler’s scope on Nemo

Nemo, an open source project, implements the concepveflay Multicast Protocol which
is a networking protocol to share a single data stredmwele@ a large number of connecting
clients without degradation of the performance orease in network cost. In the present
situation on the MSE project, there is a requirenterdeal with the high degree of variability
that may exist in the network on account of the jnu leave operations of the clients. This
variability arises from the dynamic situation of egla number of nodes joining and leaving, the
network. The aim of any multicast protocol is to achiéwe variability without giving up on end
to end delays and providing for an additional network costs.

3. Experimental Setup
3.1 JProfiler Installation and Setup

In order to run JProfiler, several steps should be dar&, Bownload the evaluation version
(JProfiler 4.2.1) of JProfiler which is jprofiler_windows 4 2xkein the website,
http://www.ej-technologies.com/download/jprofiler/tridigy Second, install JProfiler. Finally,
run JProfiler with personal evaluation key which recgivea email. For windows user below
environment setup is needed.

Session name | |nemo | Id: 114

Session bype

@ Local () Remote () Applet () Weh Start

Local settings

Java UM: [5un 1.5.0_06 =]

‘Working directory: |pmentManagerActionTask‘l,OMPjava'l,nemo-1 JD=sourcesiedulnwuinemo || i

Main class or executable JAR: [@du.nwu.nemo.examples.Multicastngent ||

J
WM arguments: | |
|
|

Argurments: |80 128,237.234.114:80 10

[[] open browser with URL:

Additional java file path

e e e o e R T e R e L e e T U R R] El S
ratdevelopmentiManagerActionTaskiOMPjavalJarsicolt-1.0.3.jar @
-aldevelopmentManageractionTaskOMPjaval Jarsicolt. jar |E]
-atdevelopmentiManagerActionTaskiOMPjaval Jarsicommons-collections-3.1.jar .'_'" 4
-atdevelopmentiManagerActionTaskiOMPjaval Jarsicommons-logging-1.0.3.jar | bt
(@ class path ratdevelopmentiManagerActionTaskiOMPjaval Jarsicommons-logging. jar 2
() source path :aldevelopmentManiagerActionTaskiOMPjaval Jarsiconcurrent. jar

izaldevelopmentManagerActionTasklOMPjaval Jarsiheimdall- 1.0-sources, jar

-atdevelopmentiManagerActionTaskiOMPjavalJarstjug-1.1.jar |

-atdevelopmentiManagerActionTaskiOMPjaval Jarsimulticast-1.0,jar Ei o
e |-

|8

() native library path

-aldevelopmentManagerActionTask OMPjaval Jarsinemo-1.0-sources, jar

atdevelopmentiManagerActionTaskiOMPjaval Jarsinucommon- 1. 0-sources, jar

| (2]

ok “ Cancel I Praofiling settings ” B General settings “ & Help ‘

@

Stz

[Javams | Fikersets | Defadk javafile path | IDEintegrations | Miscellaneous

() class path (3 source path () native library path
| l[j [} 1IMSE 6Posdatal developmentiManager Action T askiOMPiavalnemao-1.0-saurces :
d_,] [\ 1MSE\6Posdatal developmentManagerActionTaskiOMPiaval multicast-1, D-sources | s
ILJ [:4IMSE 6PosdataldevelopmentManager ActionTaskiOMPjavalnucommen-1, 0-sources | (g
| U [} 1MSE 6P osdatal developmentManager ActionTaskiOMPjavalheimdall- 1. 0-sources |§|
kil
[E3

After successful setting of the target programs, a progambe monitored by JProfiler in
four areas.

el
[E nemo — JProiilzre

jew Profiling GoTo Window Help
SESON AP DT © &

Agagregation level: |Cla.=;ses

Mame
Memary: views_
<
Heap walker
@ Start Program and Profile it [F11]
P views

&

Thread views

VM telemetry views

3.2. Nemo Installation

Nemo is an open-source overlay multicast protocol fogasting applications provided by
Northwestern University. In order to run Nemo, Nemo sedile and additional jar files are
need to Download. The source website is as follows.
http://www.aqualab.cs.northwestern.edu/projects/nemo/dodigbpor
http://sourceforge.net/project/showfiles.php?group_id=160473

SOURCEF. RGE”
shet

el
Log In - Create Account @ overlay multicasy Search | [

Nemo - Resilient Overlay Multicast Stats - Activity: $1.03% [EES

‘Summ‘ary | Admin | Home Page | Forums | Tracker | Bugs | Support Requests | Patches | Feature Requests | Mail | Tasks | Docs | Screenshots | News
CWVS | Files

Nemn is a performance-based overlay multicast protocal for streaming applications. Nemo
achieves high delivery ratio without sacrificing end-to-end latency or incurring additional costs.

AMDIN

T
|

Notes /

Mo Domain Names only $2.95

Free Page, DMS Caontrol & Privacy
Move wour site to a better provider
e, ipoWET. COm

Package Release Date Downloads

heirmdall February 24, 2006
multicast 1.0 February 24, 2006
nUCammoh 1.0 February 24, 2006

nunemo 1.0 February 24, 2006

Download
Download
Download

hhak

2
-
=

=

3.3. Nemo Execution

Nemo provides sample program named MulticastAgent.jatastaverlay multicast protocol.
The program can be run using three different set of paeasneWhen it runs using one
parameter which is port number, the agent program ruasbaststrap. A subscriber needs one
more parameter, the address of bootstrap agent. A pubtiskels additional packet sending
interval. In this experiment, | start using parameteithée MulticastAgent.java as follows.

Node type| Input Parameter Meaning

Bootstrap | 80 Local Port Number

Subscriber, 80 128.237.234.114:80 Port No., Bootstrap IP + Port No.
Publisher | 80 128.237.234.114:80{10 Port No., Bootstrap IP + Port No., PRbtish

4. Analysis of Results
4.1 Memory View through Nemo

As mentioned before, several memory views support healgsas. Following snapshot shows
the class monitor subview.

As can be seen through the memory view, the initigelallocation is for the logging feature
provided inbuilt into Nemo. This feature is commonly foundadinthe three node types. The
next large memory allocations are for the receive qaewkethe packet socket. When compared
at the method aggregation level, the Nemo BootstrapSes@ioe. is the class with maximum
allocation to its methods.

In following memory views, initial large memory alloaati is for the log. It's common on
three node types. And next common allocations ardhéoReceiveQueue and PacketSocket.

In method aggregation level, NemoBootstrapService.setup jor raflocated class and its
method.

For the bootstrap mode the view is defined below:

(a) Bootstrap Node

I Brafileredion]

BER

Session Yiew Profiing GoTo Window Help
WOBSHSOR B G @ A2
o Agaregation level: |C\asses El
& Hame | Instance count 4 Size
Memnoiy views charl] I, 4, C45 652 kB~
1 javalang.String B | 72,504 bytes
e | int[] I 757 105kB
ﬁ shart]] 75,848 bytes'—)
Heap walker =class=[] 53,072 bytes
byte[] 315 kB
java.lang.Class 334 kB
@ java.util, TreeMapEntry 24,672 bytes
]ava.utll.HashMaﬁ'sEntrv 11,712 bytes
CPU views java.util.Hashtable$Entry 7,824 bytes
java.util.LinkedHashMap$Entry 5,512 bytes
= java.util.LinkedList$Entry 5,064 bytes
:i)]ava.lang.reflatt.Mati‘vﬂd 12,080 bytes
Thread views java.lang.reflect. Constructor 6,464 bytes
cnm.]prnFi\er.agent.Li‘;_B 1,536 bytes
[-- — java.met, URL 4,984 bytes
| java.util.Date 2,064 bytes
o java.util. Hashiap 3,360 bytes
i Eslemeti vietis java.lang.Inkeger 1,232 bytes
| java.lang.reflect.Field 5,544 bytes
java.io,ExpiringCache$Entry 1,824 bytes
| java.util.LinkedList 1,800 bytes
|]ava.Iang.ref.saftﬁefarence 2,336 bytes
| java.lang.ref Finalizer 2,016 bytes
java.io.FileDescriptor 1,512 bytes
java.lang. Object 438 bytes
java.io.FileInputStream 912 bytes
java.lang, StringBuilder 348 bytes
edu.nwu.net.dl\‘S\mpiaFia\d 1,224 bytes
org.apache.logd;, Categorykey 736 bytssa
=P L
Wiew Filters: | Iz]‘ ‘ Reset view filkers]
&l nhjects l Recorded objects J Allocation cal tree l Allocation hiot spats J
:_).lnhtensed copy For evaluation furposes, 9 days remaining [Auko-update 25 07:35 [Profiing y

=

Session Y¥iew Profiling GoTo Window Help

OBRHLOR VP GE @

: Recorded allocations of: All classes
& Liveness made: Live objects
Hem ey Agaregation level: Methods IE“ Filtered classes: |show separately B
| Hot spot Allocated memary 4 Allocations
«;% [or’_g.apache‘commons.logglng.LogFactory.getLog(]ava.Iang‘Class) [EEEEEES 4,823
. 55.5% - 536 kB - 4,372 alloc. edu.rnmu.nemo.examples.Multicastagent, <clinit > |

Heap walker @ (@) 0.1% - 1,344 bytes - 36 alloc. edu.nwu.net.bll.Receiverueue. <elinit >
@ (W) 0.1% - 1,708 bytes - 32 alloc. edu.rwu.reflect. bl ClassHelper <clinit> (ine: 143)
@=) 0.1%: - 1,128 bytes - 15 alloc, edu.nvwu,multicast.examples, Multicast Subscriber, <clinit>

@ @ @ 0,1% - 1,008 bytes - & alloc, edu.rwu,utilbll.ProcessingTimeInfo, <dinit =
© (g 0.1% - 720 bytes - 9 alloc. edu.nwu.nemo.bll. StreamMulticastagent. <clinit >
CPU views @ () 0.1% - 696 bytes - 21 alloc. edu.nwu.net.wil.SharedracketSacket. <clinit>
@ 1gh 0.1% - 608 bytes - 19 allac. edu.nwu.reflect.dll ArrayType, <dinit>
= (o5 @ 0,1%s - 608 bytes - 19 alloc, edu, nwu.mulkicast. bll. Cache, <clinit>

@= () 0.1%: - 600 bytes - 19 slloc, edu,nwu,util.bll.CleanableManager, <clinit (ine: &3)
= @) 0.0% - 408 bytes - 9 alloc. edu.nwu,util.bll. CleanUpTask, <dinit =

Thread views @ 1) 0.0% - 408 bytes - 13 alloc. edu.nwu.net. di PacketMapping, <dinit=
: 0.0% - 400 bytes - 13 alloc. edu.nwu.nema.dll. Callback. <clinit>
: @ () 0.0% - 352 bytes - 12 alloc. edu.nwu.nemo. bl CostOracle, <dlinits
’;ﬁl @=) 0.0% - 328 bytes - 8 alloc, edu.nwu,net,bil.UnreliableConnection, <cinit»
s ©) 0.0% - 320 bytes - 8 alloc. edu.nwu.nemo.bll. OverlayInfatgr, <dinit >
WM belernetry views @ @ 0.0% - 248 bytes - 7 alloc. edu.nwu. net. bll.UnreliableConnectioniapping. <clinit >

@ (g} 0.0% - 248 bytes - 7 alloc. edu.nwu.nemo.di. StreamMulticastPacketHandler. <clinit>
@ () 0.0% - 240 bytes - 7 alloc. edu.nwu.net. bil.ReliableCannectionMapping. <clinit>
@=) 0.0%: - 240 bytes - 7 alloc, edu,nwu,mulkicast bl ResponseTimeCache, <clinit»
@ @ 0,0% - 240 bytes - 7 alloc, edu.nwu,multicast, bl SubscriberManager. <clinit =
© (g} 0.0% - 232 bytes - 7 alloc. edu.nwu.net.bll. WindowBasedsendQueue. <clinit>
@ () 0.0% - 232 bytes - 7 alloc. edu.nwu.reflect. di Inet4addressType, <dinit>
@ 1) 0.0% - 232 bytes - 7 alloc. edu.nuwu. multicast. bil PublishStatistic, <clinit>
(o5 @ 0.0%: - 232 bytes - 7 alloc, edu.nwu,nemo.bll.LatencyCostManager, sclinit =
@= () 0.0% - 224 bytes - 7 alloc, edu,nwu,nemo.bll.LatencyCostInfo, <clinit>
@ () 0.0% - 224 bytes - 7 alloc. edu.nwu.reflect.dl. TypeMapping. <clinit>
@ 1) 0.0% - 224 bytes - 7 alloc, edu.nuwu. nema.bll. StreamCastOrade. <clinit>
& d 0.0% - 224 bytes - 7 alloc. edu.muu.nemo.bll. Mulkicast Callback. <clinit>

() 0.0% - 224 bytes - 7 alloc. edu.nwu,nema.bll. MulticastAgent . <dinit=
N9 - 217 hubae - 7 allaeach run neb Al RiakacramBacket 2ol

=

Wigw Fileers: | Ell Reset view filters

][Show global filkers ‘

l All objects] Recorded objects l Allocation call tree | Allocation hot spots |

}Jnlitensed copy for evaluation purposes, 9 days remaining [

[101 [ux Profling 7

10

For the publisher node the view is defined below:

(b) Publisher Node
=

Session ¥iew Profiing GoTo Window Help

SO0RsHL0Rh AP @F @

z Recorded allocations of: All classes
& Liveness mode: Live objects
Mermiary vigws Aggregation level: Methods E“ Filtered classes: |shnw separately Bl
= | Hot spat Bllocated memary 4 | Allocations |
ﬁ% &= org.apache.commons.logging. LogFactary.getLogjava.lang. Class) 553 kB (57 %) 4,823 z'
b (= edu.rwu.net. bll. DatagramSacketfR eceiver. <init = 65,552 bytes (6 %) 1
Heap walker log java.util.LinkedHashSet. <init=() B 34,144 bytes (3 %) 775
o java.nio.channels. Selector. open 0 22,6680 bytes (2 %) 264
@= cern.jet. random.engine, MersenneTwister, <init:= [20,096 bykes {2 %) 8
@ (o java.lang.StringBuffer. append(java.lang. Object) § 19,320 bykes {1 %) 97
o= java.lang.reflect. Constructor.newInstance | 17,376 bytes (1 %) 432
CPU wiews [0 java.security. MessageDigest. getInstance 1 17,096 bytes (1 %) 525
@= 1, java.io Bufferedreader, <init> [16,443 bytes (1 %) Z
= (= java.lang.Integer, taHexString [14,400 bytes (1 %) 360
{ j5 o java.util, Set.kofirray | 12,704 bytes (1 %) 551
- o java.util. LinkedHashSet, <init >(java, util, Collection) 1 10,800 bytes (1 %) 270
Thread views @ java.ang. Object, <init> | 10,948 bytes (1 %) 448
@= 1 java.lang.StringBuilder .appendijava.lang.Object) 1 10,360 bytes (1 %) 211
o @ java.ang.Integer, <init> 1 9,344 bytes (0 %) 534
L‘ﬂ (} java.lang.StringBuilder taString 19,104 bytes {0 %) 114
o java.io. InputStreamReader ., <init = | 8,376 bytes (0 %) G2 T
WM telemetry views (= java.lang.Byte. <initz | 8,192 bytes {0 %) 512
o java.util. Sek.addal | 8,112 bytes (0% 256
L org.apache.cammons.logging.Lag.errar | 7,336 bytes {0 %) 5
@= /¥, java.lang.StringBuilder. <initz | 6,592 bytes {0 %) a8
@= t edu.mwo utilbll.Uniqueld.generate | 5,456 bytes {0 %) 103
log java.util. LinkedList, <init> | 4,596 bytes {0 %0 204
o3 java.lang.StringBuffer . append(java.lang. String) | 4,784 bykes (0 %) 35
@= java.lang.StringBuffer kosString | 4,736 bytes (0 %0 50
(o java.util.Map, put 4,468 bytes (0 %) 158
o5 java.lang.Class.getFislds 4,456 bytes (0 %) a7
ol jarva.utl, Set.add 4,416 bytes (0 %) 138
@ java.util, Set.iterator 3,540 bytes (0 %) 120
(=3 java.util, List.iterator 3,520 bytes (0 %) 110
@ java.lang.stringBuilder, appendijava.lang. String) 3,392 bytes (0 %) 18
B W ianem k] Mabe siniksi 2120 ke 1 0LY 1an
Vigw Filters, ‘ Iz“ l Reset view filters H Shaw global Filkers l
| all ohjects [Recorded objects [Allocation call tree J Allacation hot spats |
}.lnl\censad copy For evaluation purposes, 9 days remaining |] 1310]-\; Profiling

=

Session ¥iew Profiling GoTo Window Help

&

Memory views

&

Heap walker

%

CPU views

Thread views

WM telemetry views

GOHSHLOR BP GF ©

Recorded allocations of: - All classes

Liveness mode: Live objects

Agagregation level: iMethods E‘ Filkered classes: |show separately |3
I Hot spot Allocated memary /4 | Allocations |

@- .1 org.apache.commons.logging. LogFactory. getLogliava. lang. Class) [EEEEEES] 4,628 [«

@ W 49,97 - 536 kB - 4,372 alloc. edu.nwu.nemo. examples. Multicastagent. <clinit =
@ 1) O[3k - 1,344 bytes - 36 allac. edu.nwu.net.bll.ReceiveQueue. <clinit>
@ WP0.1% - 1,344 brytes - 36 alloc, edu.nwu.net.wfl,PacketSocket, <init= {line: 115)
) 0.1% - 1,344 bytes - 36 alloc, edu,nwu.nemo examples, MulticastAgent.main
@- @ 0.1% - 1,208 bytes - 32 alloc. edu,nwu.reflect.bl. ClassHelper. <dinit (line: 149)
@ W 0.1% - 1,208 bytes - 32 allac. edu.nwu.net.dl.PacketMapping register (line: 33)
q‘), Q 0.1% - 1,208 bytes - 32 glloc. edu.nwu.net.dll. CustomPacketMapping. <init > (line: 92)
Q@ ‘Q 0,1% - 1,208 bytes - 32 alloc, edu.nwu.net.bll, ServerSocket, <init= (line: 118)
Lo Q 0.1% - 1,208 bytes - 32 alloc. edu,rwmu.net.wfl. Packetsocket, <init> (ine: 115)
| W 0.1% - 1,208 bytes - 32 alloc, edu.rwu.nemo. examples MulticastAgent.main
-) 0.1% -1, tes - 15 alloc. edu.nwu.multicast. examples. MulticastPublisher, <dinit >
0.1% -1 128 byt 15 4ll .l lricast les. MulticastPublish linit:
) 0,1% - 1,128 bytes - 15 alloc, edu.nwu.nemo. examples, MulticastAgent, main
- | 1% -1, kes - 8 alloc. edu.nwu.multicast.bll. CacheEntry, <clinit =
o 0.1% 1,000 beyt & all ol lticast. bl CacheEnt: limit
@ W) 0.1% - 1,000 bytes - 8 alloc, edu.nwu.nema. bll. MulticastAgent publish (ine: 4100
© W 0.1% - 1,000 bytes - 8 alloc. edu.nwu.nema. bil. MulticastAgent. publish (line: 149)
Q@ ‘Q 0,1% - 1,000 bytes - & alloc, edu, nwu.nemo, bil, SynchronizedMulticastAgent, publish {line: 187)
Q- @ 0,1% - 1,000 bytes - & alloc, edu,nwu.nemo, bll, StreamMulticastagent, publish {ine: 352)
@ 0.19% - 1,000 bytes - 8 alloc. edu.nwu.nemo. bil.NemoServicefMulkicastPublishersession. publish (ine: 123)
(b 0.1% - 1,000 bytes - & alloc, edu,nwu.multicast.examples. MulticastPublisher run
) 0.1% - vtes - 9 alloc, edu.nwu.nemo. bll. StreamMulticast Agent . <clinit =
0.1% - 720 byt 3 all di bll. 5t MulticastAgent. <clinit
@ u_.'D 0,1% - 720 bytes - 9 alloc, edu.nwu.nemo.bll.Nemo3ervice.setup (line: 135)
A% - whes - 9 alloc. edu.nwu.nemo.examples. MulticastAgent.main
0.1% - 720 byt 9 all di les. MulticastAgent.
- () 0.1% - whes - 21 alloc. edu.nwu.net.wil.SharedPacketSocket, <clinit>
0.1% - 896 byt 21 all di t.wfl. SharedPacketSocket, <clinit
0 0.1% - whes - 21 alloc, edu.nwu.nemo;examples. MulkicastAgent . main
0.1% - 696 byt 21 all di les.MulticastAgent
[1% - wbes - 19 alloc, edu.nw, reflect.dil ArrayType. <dlinit >
) 0,1%: - 608 byt 19 all di Flect,dil ArrayT finit
@ W) 0.1% - 608 bytes - 19 alloc. edu.nwu.reflect.dl. TypeMapping. <cinits
@) 0.19% - 608 bytes - 19 alloc. edu.nwu.net. dil. PacketFactary. <init> (ine: 75)
@ () 0.1% - 608 bytes - 19 allor, edu.nwo,net, wil.ParketSocket, <init= (ine: 115)
B Q 0,1% - 608 bytes - 19 alloc, edu.nwu,nemo.examples,MulkicastAgent. main
& i) 0,1% - 608 bytes - 19 alloc, sdu.nveu,multicast,bll, Cache, <dinit>
I & (3 0 100 - 608 hukes - 10 allne_adin i nemn bl MamaGarvics cabin fins: 1951 -]

&

View Filkers: | EH Reset view fikers H Show global filkers]

| All objects l Recorded objects J Allocation call tree: J Allocation hat spots

wrilicensed copy for evaluation purposes, 8 days remaining] J 00:31 “u. Prafiling %

11

For the subscriber node the view is defined below:

(c) Subscriber Node

12

4.2 CPU View through Nemo

Method timing is available as a method invocation tree sigppercentage of time consumed
and absolute time consumed. Following snapshot showsvao¥isuch a tree.

In following given CPU view, again an initial large memallocation is for the logging
feature inbuilt in Nemo This feature is commonly foundatinthe three node types. The next
large memory allocations are for the receive queue lang@dcket socket. When compared at the
method aggregation level, the Nemo BootstrapService.setufineisclass with maximum
allocation to its methods.

In Publisher node, StreamMulticastAgent.publish is thesclagth the next dominant
allocation. Finally, hot spot in Subscriber type node iscated for the sendPkt. The next
consumption is for the LogFactory.getLog class.

(a) Bootstrap Node

(b) Publisher Node

The following snapshot shows a statically calculate@attirresolved call graph from main
function which is selected in graph nodes. The graph nwadebe methods, classes, packages, or
J2EE components, depending on the selected aggregationlieveiraph has been calculated,
the context menu also provides access to this actianrddulting graph is static and can be re-
calculated be executing Generate graph again[5]. Thegcath wizard remembers the last
selection.Using this graph, the caller-callee relationship is \ysdnalyzed. The node color is
marked from a gray to red scale for increasing the imheéi@e and the total time. Therefore, it
becomes possible to identify the potential bottlenecks.

13

(c) Subscriber Node

14

4.3 Thread View through Nemo

The threads view set comprises five subviews focusing drapdscurrent thread states (the
color scheme of these is as follows: runnable-greeaaiting-orange, net I/O-light blue, and
blocked-red), past and current monitor usage, and monitastisg{5]. Following figures show
a typical threads view.

The pattern of three nodes are similar to each otlittram exception in the case of the
thread of publish. There is a provision for an additidghe¢ad for the publishing function. In
case of short interval, the thread has more cotitr@ which is represented by the green color.
Based on this view, the thread bottleneck detection igyedentified. As can bee seen the
thread for publishing node is in “waiting” state for a longlerration when the interval gets
longer. Performance tuning becomes simpler using this view.

(a) Bootstrap Node

15

(b) Publisher Node

(c) Subscriber Node

16

4.4 VMtelemetry View through Nemo

The VM telemetry view set comprises five differentltgae scrolling graphs showing used
and free heap space, number of objects (helpfully catsgbrinto arrays and non-arrays),
number of loaded classes, garbage collector activitgt, mmmber of threads [5]. Following
snapshots show this view set.

(a) Bootstrap Node
This graph shows the assigned and freed heap under total 1.@8Mbyte status of

bootstrap node is less dynamic than publisher node.

(b) Publisher Node

This snapshot provides an analysis of the freed objecta the garbage collection
function. During the course of object creation and dmtetthe shape of graph becomes
fluctuating. However, in case the interaction is Idvere is probably a little of garbage
collection. One cannot find a specific pattern betweemode types.

17

(d) Subscriber Node
The heap status view provides information on the allocabelifreed space from a total of
1.98 MB. This space is used mainly for the periodical soakeimunication.

Lastly, JProfiler's Heap Walker module is the unique aspastd on the easy-to-navigate
GUI [5]. The following snapshot view shows the statuslagses and arrays in bootstrap nodes.
The developer follows the source code easily in run.time

18

5. Lessons Learned

Throughout the project, | learned a number of lessonssing JProfiler on an OMP project
like Nemo. JProfiler’s various output produced enabled tkig@iviedge on Nemo’s setup as an
OMP project and also form an opinion on whether Nemo dvpubvide useful support to my
team project.

5.1 General Characteristics of JProfiler

There are several profiling tools available on the makath as JProbe and Optimizeit, and
to be fair, they all kind of do the same thing. The ceedures that most end-users are ingested
in are the same as other tools - thread monitoring, ddadketection and memory/class instance
monitoring.

JProfiler provides the obvious two advantages as follows.

Easy to use: The main window is simple and intuitive waiig a user to quickly navigate
between the different views on offer. Filters asoalery straightforward and provide a
way to focus on a specific set of information.

Cost: It's one of the 500% java products.

Ant it also runs on Mac OS X and provides easy apjicaerver integration.
5.2 Benefits to the MSE studio project

1. JProfiler 2.4 is designed to help developers manage perfoem@siks throughout the
development process and produce fast, reliable entergieadions. Developers use
profiling technology to identify performance bottlenecksd memory leaks during the
development stage of an application. JProfiler istiterprise-level Java tool available to
the development community that integrates CPU, meraady thread profiling in one
powerful and robust application.

2. Based on the expectations and the results produced byldRitbi analysis proved to be
beneficial in understanding a simple OMP situation. Jdo@e situation was used to make
decisions of making Nemo a part of the MSE project.

3. The analysis are primarily of 4 views:
Memory View: JProfiler's memory view section offers dynamically
updated views on memory usage and allocations. All vieamsstiow live and
garbage collected objects.
CPU View. JProfiler offers various ways to record the calleetr
to optimize for performance or detail. The thread oedd group as well as the
thread status can be chosen for all views.

19

Thread View: For thread profiling, JProfiler offers thread historyetad monitor,

deadlock detection graph, current monitor usage, monitor usag®y, and

monitor usage statistics.

VM Telemetry View: To observe the internal state of your JVM, JPeofil

offers various telemetry views such as heap, object®agarcollector, classes

and threads.
These profiles provide useful information as describexv@lf-or instance, the Logging
function is an inherent scheme available in Nemo. Ekengh the overall performance
of Nemo is better than a previous prototype example mgaf NICE (another OMP
protocol), it is still a bottleneck in Nemo. Therefomrgtial logging function should be
designed as an optional function. In conclusion, the suggestion is that the logging
function is replaced by an Aspect-Oriented Program (A@Rich depends upon the
analysis result of JProfiler.

5.3 Drawbacks

1. JProfiler does not provide control over selectivelgfiing java code in fine-grained
level.

2. There is no the facility to extract information frohetresponse of a request and use that
information in subsequent requests.

3. Even though some of multiple executions are done, swudnected shell script window
console still remained like a dangling program as thevalg snapshot. Therefore, as
an improvement step, the related console should disapgear the execution is done
and the tool is no longer in operation.

20

6. Conclusions

oUlhWN R

In this approach, JProfiler as a static analysi¢ tmo OMP project was moderately

helpful. The reasons are as follows:

1.

The tool could provide memory, CPU, and thread view for GdgEn product, Nemo.

This was when there is a bootstrap, publisher, and suéscrilule in the network. This
fact is attributed to the real time nature of JProfile

The tool could execute a simple case of an OMP on Namdoprovide insight into the

network parameters.

The various outputs produced with JProfiler enabled to utaaetshe OMP concepts as
depicted by Nemo in a better and more productive way. Thiades the useful idea on
a new design and implementation of OMP in perspectifelime, space and also its
related tradeoffs.

For the short project, the reverse engineering is waportant to achieve the basic
concept using previous academic or industry product. Orpthat, this simple and fast
usable tool contributes to save the time and money oprbject. JProfiler is strongly

recommended to the urgent and similar size project.

. References

. http://www.ej-technologies.com/products/jprofiler/tuadsihtml

http://www.javaworld.com/javaworld/jw-08-2003/jw-0822-profitgml

. http://sourceforge.net/project/showfiles.php?group id=160473

. http://weblogs.java.net/blog/simongbrown/archive/2005/02/jerofminir 1.html

. JProfiler Manual, ej-technologies, 2006
. CMU MSE Team OMPArchitectability, Mini-Project 1: Tood Analysis Practicum, Daikon:

Invariant Detection of Nemo in association with OMPject, Spring semester 2006

21

