
 
Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering   

 
 
 
 

Evaluation of Eclat 
Automatic Test Generation Tool 

May 5, 2005 
 
 
 
 
 
 
 

Analysis of  
Software Artifacts 

 
 
 
 
 
 
 
 
 
 
              
         Team members:  
 
 

Min Chen 
Bharat Gorantla 

Okeno Palmer 
 
 
 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    

Table of Contents 

1 INTRODUCTION 1 

1.1 Purpose 1 

1.2 Expectation 1 

1.3 Approach 1 

2 WHAT IS ECLAT? 2 
3 USING ECLAT 3 

3.1 Installation 4 

3.2 Operational options 5 

3.3 A sample execution 5 

4 EVALUATION 9 

4.1 Usability 9 

4.2 Documentation 9 

4.3 Performance 10 

4.4 Validity of results 10 

4.5 Issues 11 

5 FUTURE IMPROVEMENTS 13 

5.1 GUI based application 13 

5.2 Handling interactive applications 13 

5.3 Incorrect handling of base exceptions 13 

5.4 No descriptive information on failures 14 

5.5 Inadequate documentation 14 

6 CONCLUSION 15 

APPENDIX A 16 

Eclat Input samples 16 
Input sample 1: Normal input 16 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ��

Input sample 2: Fault-revealing input 16 
Input sample 3: Illegal input 17 

Code samples 17 
Code sample 1: Preference.java 17 
6.1.1 Code sample 2: PreferenceUnitTest.java 18 
Code sample 3: PreferenceEclatTest.java 19 

REFERENCES 22 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    

1 

1 Introduction 
 
This paper documents the evaluation of the Eclat tool for automatic test generation by the 
Sapphire team. Eclat has been in existence since February 2005 and this evaluation was done in 
May 2005. The rest of this document details the steps and decisions taken during the evaluation 
of Eclat. 
 

1.1 Purpose 
 
The purpose of this evaluation is to fulfil the requirements of the ������	��
���
��������	�����
�
������The tool evaluation requires a presentation and a final write-up of findings from the 
evaluation. Another purpose of this evaluation is to give students practical hands-on experience 
in the use of tools to analyze software artifacts so that students can determine the value that use 
of these tools brings to the software engineering practice.  
 

1.2 Expectation 
 
This evaluation is expected to result in students understanding how to use the Eclat tool and the 
situations in which the tool will be useful. It is also expected that students will apply the theory 
learned in the course to see how closely a practical implementation of the theory applies to 
software engineering in practice. For this evaluation, Sapphire seeks to do the following: 
 

1. Compare the number of defects found in a peer review versus the number of defects 
found by test cases generated using Eclat. 

2. Determine the types of procedures for which Eclat generates test cases.  
3. Determine the number of procedures in a class for which Eclat generates test cases.  
4. Determine the number of defects found in an application by Eclat test cases.  
 

1.3 Approach  
 
The approach taken for this evaluation was for students to download the tools being evaluated, 
install the tool and perform experiments in the use of the tool with existing or new software 
artifacts.  
 
The software artifact used in this evaluation is source code from the Sapphire team’s studio 
project. The studio project uses source code written in C# but the Eclat tool only analyses java 
source code. To allow for the use of the Eclat tool, a subset of the C# code of the studio project 
was converted to Java so that we could evaluate how effective Eclat is in generating automatic 
unit tests for the studio project.  



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ��

2 What is Eclat? 
 
Exhaustive software testing is infeasible and expensive. It is desirable to test with a small set of 
test cases that will reveal as many errors as possible. It is even better if the tests can be generated 
automatically. Having this in mind, Carlos Pacheco and Michael D. Ernst from the 
Massachusetts Institute of Technology (MIT) created the Eclat tool to help test engineers select, 
from a large set of randomly generated test inputs, a small subset likely to reveal faults in the 
software under test. The development started in 2004, but it was first released on Feb 15, 2005. 
 
Eclat requires Java 1.5 and uses Daikon for invariants detection. Figure 1 shows the architecture 
of Eclat. It has three tree main components: 1) Input Generator, 2) Classifier, and 3) Reducer. 
 

 

v

v
Program

v
Normal 

Execution

Test Input 
Generator

Dynamic 
Analysis

Decision Procedure

v
Approx.
Oracle

v
New Test 

Inputs

Test Input
1

Test Input
2

Test Input
n

…..

Illegal input
normal execution
fault revealingEclat 

Eclat generated test suite

illegal input
normal execution
fault revealing

illegal input
normal execution
fault revealing

The Classifier

The Reducer

 
Figure 1: Eclat Architecture 

 
 
The way that Eclat works is that it receives two inputs files. One input file contains the program 
that we want to test, and the other is a correct test suite for the program we want to test. 
 
Eclat generates possible program inputs randomly and produces a new set of test inputs. It also 
uses the Daikon dynamic invariant detector to derive an operational model. This operational 
model approximates the correct behavior of the program based on the test suite. An operational 
model consists of a set of properties that hold at the entry and exit point of a program’s 
components (e.g., on public method entry and exit), and it is also regarded as oracle. These 
properties have an associated confidence measure which is the likelihood a property is 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ��

universally true in all program executions. Properties with higher confidence measure are more 
likely to be universally true. 
 
The classifier uses the new set of test inputs, the program under test, the operational model, and a 
confidence threshold. The classifier runs the program on the new set of test inputs and collects 
the (possibly empty) set of violated model properties. Violations of properties with confidence 
measure above the threshold are considered severe, and violations of properties with confidence 
below or at threshold are considered mild. 
 
These inputs are classified based on their violation pattern: the set of violated properties.  
 

1. Illegal. One or more severe entry violations occur, and one or more severe exit violations 
occur as well. 

2. Normal operation. No severe exit violations occur. 
3. Fault-revealing. No severe entry violations occur, but one or more severe exit violations 

occur. 
 
Figure 2 shows how to classify the input based on the set of violated properties. 
 

 
Figure 2: Classification of violated properties 

 
 
A violation pattern not only determines the classification of an input. It also induces a partition 
on all inputs, with two inputs belonging to the same partition if they violate the same properties. 
 
The process is repeated in rounds in order to obtain the smallest set of test cases that will reveal 
as many fault-revealing errors as possible. 
 
After the last round, the reducer discards the illegal and normal operation input and selects one 
fault-revealing input from each partition. 
 
Eclat generates the test cases based on this subset of inputs. 
 

3 Using Eclat 
This section describes how to acquire the Eclat tool, install it, and perform a sample execution of 
the tool to generate new inputs for a test engineer to use.   



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ��

3.1 Installation 
 
Eclat is a Java tool. It requires the use of the Java Development Kit version 1.5.0 (J2SDK 1.5.0). 
To acquire the Eclat tool, visit the website http://pag.csail.mit.edu/eclat/ and follow the 
instructions in the Download and Install section to download the required files. To test that the 
Eclat installation is successful, run the following commands and verify that output similar to the 
screenshots is displayed after running the respective commands:  
 

1. java daikon.Daikon 

 
 

2. java Eclat.textui.Main help  

 
 

 
Caveat: 
Setting the correct value for the CLASSPATH environment variable is very important. The value of this variable is dependent on 
the operating system that you use. At all times, be sure that your CLASSPATH includes the path to (1) the current directory, (2) 
path to daikon.jar, and (3) path to Eclat.jar. An example is shown below. We assume that the Eclat files are installed in the 
directory C:\eclat on a Micorsoft Windows operating system: 
 
set CLASSPATH=%CLASSPATH%;c:\eclat\daikon.jar;c:\eclat\eclat.jar;.\ 
 
* Note there are no spaces between the CLASSPATH entries!  
 
After a successful installation, Eclat is now ready to be used to automatically generate test inputs 
for a test engineer.  



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ��

3.2 Operational options  
 
Eclat can be operated in two modes. These modes are generate-inputs or bottom-up. The modes 
are enabled by specifying which one Eclat is to run in at its entry point. The entry point for Eclat 
is in the form of the command line command:  
 

java Eclat.textui.Main <command> <command-options> <command-arguments> 
 
The <command> option specifies Eclat’s mode of operation. In generate-inputs mode, Eclat 
generates test inputs, for examined classes, that deviate from the behavior observed when 
running the program that specifies a correct sample execution of the class being examined. In 
bottom-up mode, Eclat generates random new input for the observed class by executing several 
rounds of invocating public methods and constructors of the observed class. In each round of 
execution, inputs generated from the previous rounds are used to invoke the public methods and 
constructors in the current round. This produces an increasing number of inputs per round which 
are eventually classified by Eclat as normal, fault-revealing, or illegal. A subset of these inputs is  
used to create JUnit test classes that serve as the output of Eclat.  
 
Each command has specific command options. Details of these command options can be found 
in the documentation of the Eclat tool. This information is located at 
http://pag.csail.mit.edu/eclat/manual/index.php#Usage  

3.3 A sample execution 
 
During our evaluation of Eclat we used Java code that represents a Java implementation of a C# 
project that Sapphire had been working on. This code was the implementation of a structure that 
represents the concept of a Preference in a system. A preference is defined as an object that 
contains a key and possibly one or more values associated with that key. A JUnit test for this 
Preference object was also created and used during the evaluation of Eclat. The java code for 
these classes can be found in Appendix A’s code samples.  
 
To start, we specified to Eclat, the class to be examined and the unit test that represents a correct 
execution of this class.  The operational mode used for executing Eclat is generate-inputs. This 
can be done as follows:  
 

java Eclat.textui.Main generate-inputs  --test  Preference.java PrefereceUnitTest 
 
It is important to note here that the files Preference.java and PreferenceUnitTest.java must have 
already been compiled before running Eclat. This is necessary because Eclat will attempt to 
locate the class files for Preference and PreferenceUnitTest, and use those class files in its 
dynamic analysis of the Prefernce class to determine invariants for the class’ usage as it observes 
how the class is used in the correct execution of the class as determined by the supplied unit test, 
PreferenceUnitTest.  
 
The output from Eclat details information about the inputs Eclat creates as it performs each 
round of generating inputs for the class. Eclat begins executing the correct normal execution of 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ��

the code supplied to it so that it can observe the values used in the normal execution of the class. 
It then performs dynamic analysis of the input by using Daikon to determine invariants over the 
observations it has done. These invariants state what conditions are true in the correct execution 
supplied to Eclat. Figure 3 below shows Eclat’s output that is associated with this part of its 
processing on the Preference class. 
 
 

 
 

Figure 3: Eclat observing invariants of the correct normal  
execution of the Preference class 

 
After acquiring these invariants, Eclat instruments the source code provided to allow it to check 
new inputs it creates against the invariants that were discovered during dynamic analysis. In this 
step Eclat attempts to generate an approximate oracle that it can use to create new inputs and 
determine what category these inputs fall into. These inputs are categorized as illegal, fault-
revealing, or normal execution. Input generation is done over several rounds of invocation of the 
public methods and constructors of the class being analyzed. The number of rounds that Ecalt 
performs is a configurable option, but the default value is four. Figure 4 below shows Eclat’s 
output that is associated with this part of its processing on the Preference class. 

 

 
Figure 4: Eclat generating new input based on Daikon invariants 

 and an approximate oracle 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ��

 
When Ecalt is finished generating new inputs, it produces a new unit test that contains a subset of 
the new inputs it created. This subset is intended to be the smallest set of inputs that Eclat 
determines will be useful to test engineer. The subset of inputs will include inputs that lead to 
fault-revealing, illegal, or new normal execution scenarios. The inputs that lead to fault-revealing 
and illegal scenarios are used by Eclat to create unit tests that demonstrate these scenarios. Inputs 
that lead to new normal execution scenarios are also used to create unit test cases that 
demonstrate use of the new inputs. Figure 5 below shows Eclat’s output that is associated with 
this part of its processing on the Preference class.  
 
 

 
 

Figure 5: Eclat specifying the name of the unit  
test file it created with new unit test cases 

 
Along with creating these new unit tests, Eclat also makes a log of all the new inputs it generated 
and the results of executing those inputs against the class being examined. This is done by Eclat 
to allow test engineers to see what exactly Eclat used during its operation and can give a test 
engineer an idea of the kind of coverage Ecalt gives for variation of inputs used that could cause 
fault-revealing, illegal, or new normal execution of the class they supplied to Eclat. Figure 6 
below shows Eclat’s output that is associated with this part of its processing on the Preference 
class. 
 

 
 

Figure 6: Eclat storing inputs it created to a zip file 
 for future reference by a test engineer 

 
At this point, Eclat has completed its analysis of the class and has created the following files for 
a test engineer to use: 
 

1. PreferenceEclatTest.java 
2. PreferenceUnitTest.dtrace.gz 
3. PreferenceUnitTest.inv.gz 
4. Preference.txt.zip 

 
The two Gzip (i.e. *.gz) files created contain invariant information and a trace generated by 
Daikon during Eclat’s dynamic analysis of the Preference class. The Zip (i.e. *.zip) file contains 
all the inputs generated by Eclat during its analysis. The Java file contains the unit test generated 
by Eclat. Samples of the contents of these files can be found in Appendix A’s input samples.  
 
At this point, it is now up to the test engineer to examine the unit test generated by Eclat to 
determine how viable those unit tests are for testing the target class. The test engineer is now 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ��

equipped with both new unit tests, knowledge of the hidden invariants of the code, and samples 
of inputs generated by Eclat that he can use in his determination of the right tests for a class. The 
new unit tests created by Eclat can be refined by the test engineer and then used to further test 
that refinement with another run of Eclat.  
 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ��

4 Evaluation  
In this section we evaluate the Eclat tool by stating observations from the use of the tool and by 
answering several questions that focus on the effectiveness and usefulness of the tool.  

4.1 Usability 
 
To use Eclat, a user needs to know how to run commands from the command line of an operating 
system. Eclat is not have a graphical user interface. Eclat’s command line syntax is similar to any 
average command line oriented application. Users familiar with using unix or windows 
commands from the unix shell or windows shell respectively will have no difficulty using the 
tool. Eclat’s command options are easily accessible via a help command as well so at any point 
when a user is unsure of how to use Eclat, they can issue a help command to the tool and it will 
display its usage instructions.  
 
Eclat displays progress information to the command line in a very readable manner and it is easy 
to see the points of the analysis as Eclat does its operations. The display of the rounds and 
number of inputs for each round is also useful and easy to identify and immediately gives the 
user an idea of how large the input set generated for the observed class is.  
 
Eclat’s output becomes unreadable when it is run in debug mode and/or with verbose modes set 
to true. In these modes, Eclat outputs numerous debug information intended for a more technical 
audience that is interested in seeing the specifics of Eclat’s analysis as it performs its processing. 
An example of a run for Eclat that generates this type of output is as follows:  
 

java eclat.textui.Main generate-inputs --verbose --debug --test Preference.java PreferenceUnitTest 
 
This ability does not reduce the usability of the tool. It instead makes it more useful as the tool 
allows both simple users and more technical users to gain the information they need from the 
same interface, namely the command line. The default behavior for Eclat is to output simple 
results which are in a very readable form and provide sufficient detail for the progress of the 
analysis and the location of files generated by the tool.  
 

4.2 Documentation 
 
The documentation for Eclat as of May 2005 is sufficient for specifying how to install and use 
the tool for getting output. However, this documentation can be improved. While using the tool, 
we encountered installation issues with setting the java CLASSPATH variable and some 
nuisances involved with getting this to work on the Microsoft Windows operating system. 
Though this may seem outside the scope of the Eclat tool, this type of documentation should be a 
part of Eclat because the tool relies on the correct configuration of the Java environment for it to 
run. Having this documentation can save users time during setup.  
 
Documentation for use of the tool and the options it supports is very good. The tool creators do a 
good job of specifying what each command to Eclat does along with the purpose of each 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

command and the options it supports. There a few typos in the documentation of the syntax of 
the commands on the website but these typos do not exist in the tool’s usage documentation 
accessed by issuing the help command to the tool.   

4.3 Performance 
 
Eclat’s performance is determined by the operational commands and the options specified for 
those commands that affect the way Eclat analyzes the input files to the tool. Eclat’s analysis 
involves observing the behavior of the provided correct execution of a class and the 
determination of invariants over that observation. Eclat performs numerous rounds of input 
generation which can be configured from the command line. In each round of input generation 
that Eclat performs, the user can specify the number of invocations per round. To specify these 
parameters to Eclat a user can use one or more of the following command line options to the 
generate-inputs command: 
 

1. --num-rounds N  
a. Do N rounds of generation (default=4) 

2.  --invoc-per-round N   
a. On each round, try to create N new invocations of each method. (default = 100) 

3. --nesting-depth  
a. Depth to which to examine structure components (default=2) 

 
These command options directly affect the runtime performance of the tool in terms of how long 
it will take t produce new inputs and the coverage that those inputs will provide. A sample run of 
Eclat was done with the command below: 
 
java eclat.textui.Main generate-inputs --nesting-depth=100 --num-rounds=10 --invoc-per-round=1000 --

test Preference.java PreferenceUnitTest 
 
The execution of this command took 2 hours 11 minutes seconds consuming 483MB of RAM on 
a laptop PC with 1GB of RAM and a 3GHz Multiprocessor; created 6825 new inputs and 4 test 
cases in the generated unit test. These measures indicate that doing more detailed analysis of a 
simple class does not necessarily provide better results. We still had 4 test cases that identified 
the same results as when we ran Eclat with the default values for the options. In this latter case, 
the run took 2 hours whereas in the default configuration case, the run took under 5 seconds. 
 
The performance for Eclat is good with its default values for these command options with 
execution completing in fewer than 5 seconds with the Preference class found in Appendix A. It 
is necessary to note though that depending on the level of analysis that a test engineer requires, 
the tool can consume significant computer resources and take a long time to complete its analysis. 
 

4.4 Validity of results  
 
During the evaluation of the tool, several questions were asked that we sought answers to. The 
questions are:  



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

 
1. Does Eclat find defects that were not captured during Sapphire’s peer review of the 

Preference code? 
2. What types of procedures does Eclat generate test cases for? 
3. How many procedures in a class does Eclat generate test cases for?  

 
During our evaluation Eclat found several defects that were not captured during the team’s peer 
review session. Eclat was able to generate 4 test cases that identified two fault revealing cases 
and 2 new behavior cases. None of these were identified in our peer review. On revising these 
results, the team realized that the results were valid and the defects did exist in the code base. 
The identification of these defects also leads to the further investigation of the rest of the code 
base for these types of defects. This is a very good result of using Eclat and shows immediate 
value for the tool. The types of defects it found were out of bounds exceptions that could occur 
while accessing a collection. These types of defects were not identified in the peer review 
because the peer review did not inspect the detailed technical aspects of methods calls or 
invocations. This is something that Eclat does well by observing behavior and exercising inputs 
that are able to get at these types of defects better than a peer review would do.  
 
Questions two and three can be answered together. Ecalt makes invocation of all public methods 
and constructors of a class during its analysis. Therefore, it will analyze all methods depending 
on their level of access. Our observations show that Eclat generate test cases for all public 
methods that it finds a fault-revealing, illegal, or new behavior for. This is helpful for a test 
engineer because it identifies methods that can have defects and also allows the test engineer to 
see what other ways his methods can be further tested.  
 
One of the difficult things when doing testing is determining the granularity of testing and the 
trying to gain the right coverage. Creating input for tests is a challenge and Eclat offers a solution 
to overcoming that challenge. Our evaluation show that Eclat’s results are often valid and its use 
of Daikon and the invariants it produce offer a test engineer insight into the hidden invariants 
that often occur in software development. Having these invariants show up in code is a good way 
of documenting the design of modules. The fact that Eclat makes these explicit in unit tests also 
allows a test engineer to now use his unit tests to verify use cases that may exist for which his 
unit test is being created. This also offers the added benefit of traceability of requirements to 
code.  

4.5 Issues 
 
There were two main issues that arose during the evaluation of Eclat. We found that Eclat does 
not operate well with: 
 

1. Interactive programs 
2. Top-level Java exceptions thrown within an analyzed class 

 
When we attempted to have Eclat generate inputs for a class that was used in an interactive 
program – i.e. a program that requires input from a user – Eclat got stuck at the program point 
where input was required from the user during the execution of the program. Eclat provided no 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

way for this input to be done explicitly and simply halted at that program point. Although Eclat 
supports the provision of program arguments to a class during its execution via the command 
given to Eclat, it does not allow input to a program while analysis is being done on that program.  
 
Another issue we encountered during evaluation was that Eclat would not do analysis on a class 
that had methods that declared that the method throws a java.lang.Exception. When this situation 
occurred, Eclat would throw an exception stating that a java.lang.RuntimeException was already 
being caught. When this type of situation occurs, Eclat produces the source code the 
instrumented version of the class that is uses for dynamic analysis. The exception thrown by 
Eclat mentions the line in that source file where the exception occurs. This allows a test engineer 
or user to further investigate the error. This is exactly what we did.  
 
On examining the source file generated, we observed that the instrumented file that is generated 
by Eclat does exception handling by first catching a java.lang.Exception and then more specific 
types of exceptions. An extract of the faulting code is below: 
 
1      try 
2      { 
3         retval_instrument = internal$getValue(); 
4         daikon.tools.runtimechecker.Runtime.numNormalPptExits++; 
5      } 
6      catch (Exception t_instrument) 
7      { 
8         daikon.tools.runtimechecker.Runtime.numExceptionalPptExits++; 
9         methodThrewSomething_instrument = true; 
10         throw t_instrument; 
11      } 
12      catch (java.lang.RuntimeException t_instrument) 
13      { 
14         methodThrewSomething_instrument = true; 
15         daikon.tools.runtimechecker.Runtime.numExceptionalPptExits++; 
16         throw t_instrument; 
17      } 
18      catch (java.lang.Error t_instrument) 
19      { 
20         daikon.tools.runtimechecker.Runtime.numExceptionalPptExits++; 
21         methodThrewSomething_instrument = true; 
22         throw t_instrument; 
23      } 
 
The exception thrown by Eclat occurs on line 12 of the above code. The message given by the 
thrown exception is “exception java.lang.RuntimeException has already been caught”. This 
indicates that this exception was already caught by some handler previously in the code. The 
team suspects that the issue may lie with the ordering of the exception catches from lines 6 – 18 
of the code extract. The catching of a java.lang.Exception before the other more specific types of 
exceptions may be the culprit of this error.  
 
However, we cannot draw a conclusion on this as we are not familiar with the inner workings of 
the Daikon analysis tool. The exception message thrown by Eclat does however indicate that our 
suggestion may be the likely cause of this error.   
 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

5 Future Improvements  
 
From the previous sections, we have tried to demonstrate the various ways the Eclat tool can be 
used and how it can be used to help a developer to do his/her unit testing more efficiently. By 
applying Eclat to a small-scale application, we noted some things that we liked about Eclat as 
well as what we would have liked to have seen. In this section, we will air out a number of things 
we think that could greatly improve Eclat’s usability and functionality.  
 
The following describes some of the improvements that we identified. 
 

5.1 GUI based application 
 
The tool at the moment is a command-driven application. There are a number of commands and 
parameters that are deemed useful in the generation of Eclat test cases. And as described in the 
installation as well as in the execution of the tool, a developer would need to refer constantly for 
the commands and parameters. By creating a GUI-based application, this takes some pressure of 
the developer and makes his/her life much simpler.  
 

5.2 Handling interactive applications 
 
The tool at the moment does not have the ability to handle applications that deal with user-
interactions. The reason for this is that code that involves user input, somehow and for some 
reason causes the tool to stall and stay idle. It informs the developer that a user input is needed 
but the tool doesn’t have the ability to take in any input and hence just stalls. This is an important 
aspect for real-time and embedded applications. 
 

5.3 Incorrect handling of base exceptions 
 
In the current version of Eclat, there seems to be some inconsistency in the way the tool analysis 
the application when the base exceptions are used. Exceptions, such as java.lang.Exception 
which is the base exception, cause the tool to terminate with some errors. By inspecting the 
invariant files generated by the tool, it informs the developer that it needs a specific type of 
exception and not a base exception. So if a method is supposed to throw a NullPointerException, 
the method should throw this specific exception instead of the base exception. This is a concern 
to the developer as they might not know what kind of exceptions a method is throwing but would 
like to catch all kinds of exceptions but the tool doesn’t promote it. 
 
   
 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

5.4 No descriptive information on failures 
 
Any time the tool crashes or fails in generating a test file, the developer is left at figuring out 
what exactly made the tool to behave in that manner. It is unclear by looking at the tool’s log 
messages on exactly what has happened. This could be improved greatly as it will save time on 
the developer’s end in preventing the developer to spend hours and hours on the reasons on why 
the application code or the parameters that were inputted failed.  
 

5.5 Inadequate documentation 
 
The current documentation that exists for the Eclat tool is in a form as a development manual. 
This manual consists of a brief installation guide, followed by a simple example on how to run 
the tool. The improvement that could be made here is to extend the documentation to include: 
Information on providing users with some commonly asked questions from other developers or 
testers. 

� A better comprehensive documentation for each of the bugs that are listed in their bug 
tracker. 

� Information on the various commands presented in a helpful readme.txt or as a help 
option in the tool.  

� Providing more examples on various types of applications. For e.g. applications using 
threads, command-line applications, exceptions, etc.  

 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

6 Conclusion 

In the end, we found Eclat to be a useful tool with a lot of potential, although it is not yet in a 
state that we think will greatly benefit developers and testers in the industry. Eclat has a nice 
concept that will greatly be appreciated especially in the testing phase of a software project. It 
will also cut-down on costs and improve the quality of the product that is being tested on. The 
neat thing about this tool is the ability to work with Daikon in providing the various invariants 
for generating the inputs when simulating the behavior of the application.  
 
However, on small-scale applications, we think that by using Eclat to generate our test cases as 
indicated in Section 3.2, Eclat was able to identify a number of different inputs that would have 
caused the application to fail. We don’t think we have enough data to support our claim on 
whether the tool will help developers/testers on a large scale as we have not done any sort of 
analysis on these applications.  



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

Appendix A 

Eclat Input samples 

Input sample 1: Normal input 
====================================================================== 
round: 1 
INPUT CLASSIFIED AS <normal> 
====================================================================== 
 
  1. Preference var1 = new Preference(); 
 
 
  -------------------------------------------------------------------- 
  Test expression evaluation (line 1). 
 
  EXCEPTIONS: none. 
 
  INVARIANT VIOLATIONS:  
  none. 
 
  -------------------------------------------------------------------- 
  Explanation: 
  No properties were violated and no errors were thrown. This  
  indicates normal execution.  
 
 

Input sample 2: Fault-revealing input  
====================================================================== 
round: 2 
INPUT CLASSIFIED AS <fault> 
====================================================================== 
 
  1. Preference var1 = new Preference(); 
 
  2. int var19954 = var1.getValue(1); 
 
 
  -------------------------------------------------------------------- 
  Prep code evaluation (lines 1 through 1). 
 
  EXCEPTIONS: none. 
  INVARIANT VIOLATIONS:  
  none. 
 
  -------------------------------------------------------------------- 
  Test expression evaluation (line 2). 
 
  EXCEPTIONS:     java.lang.IndexOutOfBoundsException 
  INVARIANT VIOLATIONS:  
     violated on entry : precondition  : index == size(this.prefValue[])-1 
     violated on entry : precondition  : this.prefKey has only one value 
     violated on entry : precondition  : size(this.prefValue[]) == 1 
 
 
  -------------------------------------------------------------------- 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

  Explanation: 
  During execution of the last method call, a throwable was  
  thrown. No important preconditions were violated, so this  
  suggests a meaningful input. Since the throwable is  
  considered severe, this suggests a bug. 
 

Input sample 3: Illegal input  
====================================================================== 
round: 2 
INPUT CLASSIFIED AS <illegal> 
====================================================================== 
 
  1. Preference var1 = new Preference(); 
 
  2. var1.setListValue((java.util.ArrayList)null); 
 
 
  -------------------------------------------------------------------- 
  Prep code evaluation (lines 1 through 1). 
 
  EXCEPTIONS: none. 
  INVARIANT VIOLATIONS:  
  none. 
 
  -------------------------------------------------------------------- 
  Test expression evaluation (line 2). 
 
  EXCEPTIONS: none. 
 
  INVARIANT VIOLATIONS:  
     violated on entry : precondition  : this.prefKey has only one value 
     violated on entry : precondition  : value has only one value 
     violated on entry : precondition  : size(this.prefValue[]) == 1 
     violated on exit  : postcondition : this.prefKey has only one value 
     violated on exit  : postcondition : this.prefValue has only one value 
H    violated on exit  : obj invariant : this.prefValue != null 
 
 
  -------------------------------------------------------------------- 
  Explanation: 
  During execution of the last method call, at least one  
  important postcondition was violated. Since one of the  
  arguments was null, I will classify this input as illegal.  

 

Code samples  

Code sample 1: Preference.java 
 
import java.util.*; 
 
public class Preference  
{ 
 private String prefKey; 
 private ArrayList prefValue; 
 
 public Preference() { 
  prefValue = new ArrayList(); 
 } 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

 
 public String getKey() { 
  return prefKey; 
 } 
 
 public void setKey(String value) { 
  prefKey = value; 
 } 
 
 public int getValue(int index) { 
  return ((Integer)prefValue.get(index)).intValue(); 
 } 
 
 public void setValue(int value) { 
  prefValue.clear(); 
  prefValue.add(Integer.valueOf(value)); 
 } 
 
 public ArrayList getListValue() { 
  return prefValue; 
 } 
 
 public void setListValue(ArrayList value) { 
  prefValue = value; 
 } 
} 
 

6.1.1 Code sample 2: PreferenceUnitTest.java 
 
import junit.framework.Assert; 
import junit.framework.TestCase; 
import java.util.*; 
 
public class PreferenceUnitTest extends TestCase { 
 
 Preference pref = null; 
  
 public static void main(String[] args) { 
     junit.textui.TestRunner.run(PreferenceUnitTest.class); 
 }  
  
 protected void setUp() throws Exception { 
  super.setUp(); 
  pref = new Preference(); 
 } 
 
  
 protected void tearDown() throws Exception { 
  super.tearDown(); 
  pref = null; 
 } 
   
 public void testPreference()  
 { 
  pref.setKey("one"); 
  pref.setValue(1); 
   
  Assert.assertTrue(pref.getValue(0) == 1); 
  
  ArrayList listVals = new ArrayList(); 
  listVals.add(0, Integer.valueOf(100)); 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

  listVals.add(1, Integer.valueOf(200)); 
  listVals.add(2, Integer.valueOf(300)); 
  listVals.add(3, Integer.valueOf(400)); 
   
  pref.setListValue(listVals); 
   
  listVals = pref.getListValue(); 
  int initVal = 100; 
  for(Iterator iter = listVals.iterator(); iter.hasNext(); initVal+=100) 
  { 
   int currVal = ((Integer)iter.next()).intValue(); 
   Assert.assertEquals(initVal, currVal); 
  } 
 } 
} 

Code sample 3: PreferenceEclatTest.java 
 
// This file of JUnit tests was automatically created by the 
// Eclat tool for generating test cases.  See 
// http://pag.csail.mit.edu/eclat/ for more details. 
 
// TODO: Add correct package name. 
// package your.package.here; 
 
import junit.framework.*; 
import junit.textui.*;  
import java.util.*;  
 
public class PreferenceEclatTest extends junit.framework.TestCase { 
 
  public PreferenceEclatTest(String name) { 
    super(name); 
  } 
 
  public static void main(String[] args) { 
    junit.textui.TestRunner.run(suite()); 
  }  
 
  public static Test suite() { 
    TestSuite suite = new TestSuite(); 
 
    // Inputs labeled as fault 
    suite.addTest(new PreferenceEclatTest("test_0_getValue")); 
    suite.addTest(new PreferenceEclatTest("test_1_getValue")); 
 
    // Inputs labeled as normal, new behavior 
    suite.addTest(new PreferenceEclatTest("test_2_getValue")); 
    suite.addTest(new PreferenceEclatTest("test_3_setValue")); 
    return suite; 
  }  
 
  // Eclat labeled this input as potentially fault-revealing. 
  public void test_0_getValue() throws Exception {  
 
    Preference var1 = new Preference(); 
    var1.setValue(3); 
    int var30603 = var1.getValue(0); 
    var1.setValue(-1); 
 
    // Execution of the following method call violates properties 
    // that were true in the execution provided to Eclat: 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

    // Execution of the following method throws java.lang.IndexOutOfBoundsException. 
    int var41136 = var1.getValue(var30603); 
 
    // TODO: Replace this call by the correct assertion. 
    junit.framework.Assert.assertTrue(false); 
  } 
 
 
  // Eclat labeled this input as potentially fault-revealing. 
  public void test_1_getValue() throws Exception {  
 
    java.util.ArrayList var0 = new java.util.ArrayList(); 
    Preference var1 = new Preference(); 
    var1.setListValue(var0); 
    var1.setValue(-2); 
    var1.setValue(-1); 
    int var30503 = var1.getValue(0); 
 
  // Execution of the following method call violates properties 
  // that were true in the execution provided to Eclat: 
  // Execution of the following method throws java.lang.ArrayIndexOutOfBoundsException. 
    int var41212 = var1.getValue(var30503); 
 
    // TODO: Replace this call by the correct assertion. 
    junit.framework.Assert.assertTrue(false); 
  } 
 
 
  // Eclat labeled this input as a normal input that exhibits. 
  // behavior different from the execution provided to Eclat. 
  public void test_2_getValue() throws Exception {  
 
    Preference var1 = new Preference(); 
    var1.setValue(3); 
    var1.setValue(-5); 
 
    // Execution of the following method call violates properties 
    // that were true in the execution provided to Eclat: 
    //   precondition  violated on entry: var1.prefKey != null 
    //   postcondition violated on exit : var1.prefKey != null 
    //   postcondition violated on exit : var41217 == 1 
    //   postcondition violated on exit : var41217 == var1.prefValue.size() 
    int var41217 = var1.getValue(0); 
 
    // TODO: Replace this call by the correct assertion. 
    junit.framework.Assert.assertTrue(false); 
  } 
 
 
  // Eclat labeled this input as a normal input that exhibits. 
  // behavior different from the execution provided to Eclat. 
  public void test_3_setValue() throws Exception {  
 
    java.util.ArrayList var0 = new java.util.ArrayList(); 
    var0.add(0, 1); 
    Preference var1 = new Preference(); 
    var1.setListValue(var0); 
 
    // Execution of the following method call violates properties 
    // that were true in the execution provided to Eclat: 
    //   precondition  violated on entry: var1.prefKey != null 
    //   precondition  violated on entry: value == 1 
    //   postcondition violated on exit : var1.prefKey != null 



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

    var1.setValue(-3); 
 
    // TODO: Replace this call by the correct assertion. 
    junit.framework.Assert.assertTrue(false); 
  } 
} 

�



Carnegie Mellon University 
School of Computer Science 
Master of Software Engineering                    
_____________________________________________________________________________________________________________________ 

 ���

References 
 
 
[Daikon] 

 
Daikon page http://pag.csail.mit.edu/daikon/ 
 

[Eclat] Eclat page. http://pag.csail.mit.edu/eclat/ 
  
[Ernst 2005a] Ernst, M., Pacheco, C., Eclat: Automatic Generation and Classification of Test 

Inputs. MIT, 2005. Available at 
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-968.pdf 
 
 

[Ernst 2005b] Ernst, M., Pacheco, C., Automatic Generation and Classification of Test 
Inputs. MIT, 2005. Available at 
http://www.csail.mit.edu/research/abstracts/abstracts04/html/82/82.html 
 

 
�


