
Alias Analysis with bddbddb

Kevin Bierhoff
kevin.bierhoff [at] cs.cmu.edu

Star Project Report
17-754 Analysis of Software Artifacts

Spring 2005

Abstract

Context-sensitive inclusion-based alias analysis is very precise but also
computationally expensive. Whaley and Lam [5] recently proposed an
approach based on Binary Decision Diagrams that scales to realistic Java
programs. This report summarizes the approach, describes how the tool
bddbddb that implements the analysis is used, and discusses how it can
be employed to develop derived analyses based on alias information. In
particular, a tainted analysis is developed that reveals both strengths and
weaknesses of bddbddb as an analysis framework.

1 Introduction

Virtually all software written in imperative and object-oriented languages uses
mutable shared data structures. Unexpected sharing can lead to common errors
like race conditions or pre-condition violations. The pattern is often that one
client accesses data when another client does not expect it. The goal of alias
analysis is to understand sharing in a software system.

References to a particular object are called aliases. The context in which
a function is called greatly influences the aliases that function will produce.
Exhaustive exploration of all contexts used to be computationally infeasible.
Recently, Whaley and Lam proposed a scalable context-sensitive inclusion-based
alias analysis for Java [5] based on BDDs [2].

The implementation is publicly available on SourceForge under the name
bddbddb. Alias analysis primarily forms the input to derived analyses. This
report evaluates the tool and in particular its ability to support derived analyses.
A tainted analysis is developed that reveals strengths and limitations of the tool.

The remainder of this report is organized as follows. The research context
of alias analysis is summarized in section 2. Section 3 describes the approach
taken in bddbddb. Installation and hands-on usage of the tool is summarized
in section 4. Section 5 develops the tainted analysis, thereby discussing the
usefulness of the tool. The report concludes in section 6.

1

2 Alias Analysis

This section gives a brief introduction to alias analysis, thereby categorizing
existing work on the problem.

An alias analysis determines what references in a program may point to
which objects. That includes local variables in functions, arguments passed
between functions, and fields of objects pointing to other fields. While aliasing
is reasonably easy to figure out within a single function, the problem becomes
much harder when (possibly recursive) calls between functions are considered.
Thus it is foremost an interprocedural analysis.

Alias analysis is a long-standing problem because it is computationally ex-
pensive. In order to compare previous work with the approach of Whaley and
Lam [5], it is useful to categorize approaches to alias analysis along two axes.

• Unification-based vs. inclusion-based. Unification assumes that two ref-
erences either point to the same set of objects or to completely distinct
sets. Inclusion allows sets for different references to overlap.

• Context-insensitive vs. context-sensitive. A context-insensitive analysis
treats all calls to a function identically. Context-sensitivity means that
functions are analyzed depending on the calling context, which is essen-
tially the call stack. It turns out that context sensitivity is very important
to get precise results.

Context-insensitive unification-based approaches [4] easily scale to large pro-
grams, but they are also extremely imprecise. Context-insensitive inclusion-
based approaches scale somewhat, but are still imprecise. A scalable technique
for this approach [1] that is based on BDDs forms an important precursor to
Whaley and Lam’s work. Context-sensitive unification-based approaches [3]
also have serious scalability restrictions and are imprecise due to inclusion. Fi-
nally, context-sensitive inclusion-based approaches [6] are more expensive on
both axes. They are potentially very precise but until recently could not scale
to realistic programs.

3 Context-sensitive Inclusion-based Alias Anal-
ysis with BBDs

This section gives a description of the alias analysis that bddbddb performs. We
first discuss the approach taken, then describe its implementation, and finally
report experimental results.

3.1 Database-based Approach

What makes context-sensitive approaches computationally extremely expen-
sive is the exponential growth in the number of contexts for large programs.
Inclusion-based approaches are also more expensive than unification-based ones.

2

Whaley and Lam proposed the first context-sensitive inclusion-based alias anal-
ysis that scales to realistic programs. They could get their analysis to work on
programs with 1014 contexts and more [5]. Context sensitivity can be realized
in two ways.

• Summary-based approaches analyze each function in the program only
once and create a summary that can be parameterized with information
about a particular call site, e.g. information about the arguments to the
function. This approach is not so useful for alias analysis because it is hard
to create a good aliasing summary for a function (making the analysis less
precise).

• Cloning-based approaches analyze each function for each calling context
separately. This can be seen as a truly brute-force approach where func-
tions are conceptually cloned to match the call graph of the program one
to one. Context-sensitive alias analysis then becomes algorithmically triv-
ial: One can simply run a context-insensitive analysis on the expanded
program.

bddbddb implements a cloning-based approach to context sensitivity. It uses
a pre-computed call graph and a list of all possible contexts to build a points-to
relation. The relation contains tuples (c, v, h) which means that variable v can
point to object h in context c. (A similar relation is built for fields of objects.)

The underlying idea of this tool is that all information we as analysts have is
represented as relations between domains like in a relational database. Domains
include variables (V), objects (H), fields (F), methods (M), invocations (I), and
types (T). Objects are identified by their creation site. The creation site is a
new invocation, thus H ⊆ I.

The points-to relation is computed from various information about the pro-
gram to be analyzed, represented as relations including (details in [5]):

• Variable creation: vP0 ⊆ V ×H

• Storing a variable in a field: S ⊆ V × F × V

• Loading a variable from a field: L ⊆ V × F × V

• Context-sensitive call graph: IEc ⊆ C × I × C × M . (There is also a
context-insensitive version IE.)

• Formal and actual parameters.

• Variable and object typing information.

These relations are computed directly from the program. The points-to
relation is derived from them with Prolog-like deduction rules. The underlying
Datalog language forms a superset of normal SQL queries to a database. As a
simplified example, the following rules will compute the context-sensitive points-
to relation vPc for variables (ignoring fields).

3

vPc(c, v, h) : − vP0(v, h), IEc(c, h, ,). (1)
vPc(c1, v1, h) : − assignc(c1, v1, c2, v2), vPc(c2, v2, h). (2)
assignc(c1, v1, c2, v2) : − IEc(c2, i, c1,m), formal(m, z, v1), actual(i, z, v2). (3)

Note that formal and actual parameters are enumerated with numbers z =
0, 1, 2, The points-to relation starts with object creations in a particular
context (1). (This works because objects are identified by their creation site,
which counts as a method invocation.) It then builds the transitive closure
over variable assignments (2). Variable assignments are computed from the call
graph by matching formal and actual parameters between a method and its
invocation site (3). The reader can convince himself that repeated application
of these rules will reach a fix point when the two constructed relations do not
change any more.

The actual alias analysis as given in [5] contains three more rules that take
care of loads and stores from and to fields. It also uses typing information about
variables and objects to exclude impossible assignments, thereby improving pre-
cision.

3.2 Implementation with BDDs

The relation vPc becomes easily very large for realistic programs. Worse, the
deduction rules given above have to be applied possibly millions of times, each
time enlarging the relation. Thus the key to making the computation of the
relation feasible is to efficiently represent, manipulate, and join relations.

bddbddb uses Binary Decision Diagrams (BDDs, [2]) to this end. Hence the
name: BBD-Based Deductive DataBase. BBDs are an efficient way of repre-
senting and in particular manipulating binary functions. They were invented
to compactly represent functions whose elements share a lot of commonalities.
bddbddb uses ordered BDDs (enforcing a fixed variable ordering in the graph)
which have a unique minimal form.

A relation like vPc can be seen as a binary function in the following way:
vPc(c, v, h) = 1 iff (c, v, h) ∈ vPc. If we assign (binary) numbers to the members
of domains participating in a relation then we get a function {0, 1}n → {0, 1}.
This function can be represented as a BDD.

All operations necessary to apply Datalog rules can be expressed with well-
known operations on BBDs for which there exist efficient algorithms. bddb-
ddb uses the BDD implementations BuDDy1 and JavaBDD2 to manage BDDs.

It turns out that the relations necessary for alias analysis have the property
of having many similar elements. In particular, the points-to relation does
depend on the context, but on the other hand the aliasing of similar contexts
is often quite similar. Intuitively this means that aliasing in a function is only
influenced by the last couple of functions on the call stack.

1www.itu.dk/research/buddy
2javabdd.sourceforge.net

4

3.3 Experimental Results

Whaley and Lam implemented their analysis for Java and ran it on the 20
most popular stand-alone Java applications developed on SourceForge3. These
applications contain up to 145,000 variables and produce up to 4×1014 context-
sensitive paths. bddbddb is still able to analyze each of these programs in under
20 minutes.

The authors developed a typed refinement analysis (see below) that builds
on the alias analysis and can be used to measure precision of the analysis. In
particular, it can compute the variables for whom the objects they can alias have
multiple types. Whereas this happens with the context-insensitive analysis for
an averaged 5 percent of all variables, context-sensitive analysis is able to drop
this fraction to averaged 0.4 percent. Detailed results can be found in [5].

This indicates that the gain in precision from the context-sensitive analysis
is on the order of a magnitude, thus justifying the increased overhead. At the
same time bddbddb proves that such a precise analysis is feasible for realistic
programs.

4 Using bddbddb

bddbddb4 can be freely acquired from SourceForge using CVS. The project con-
sists of several modules, notably the Java implementation itself, sources for an
Eclipse plugin, and a number of examples including the alias analysis presented
above. The author could not get the Eclipse plugin to run.

The actual implementation module comes complete with three required li-
braries, one of which is Whaley’s BDD implementation JavaBDD. Running bd-
dbddb then simply involves putting all these libraries in the classpath and using
net.sf.bddbddb.Solver as the main class for the Java VM. The application
takes the name of a textfile as an argument which contains the Datalog query
to be executed. Note that the normal 64 MB Java VM heap are usually not
enough to run the tool.

Datalog files consist of three parts. Examples can be found on the bddb-
ddb website.

• The domains involved in the query.

• The relations involved. They can be marked as “input” or “output”, or
they can be unmarked which makes them an intermediate relation (like
assignc in the alias query).

• The actual rules comprising the query.

Input relations are read from a file with the name of the relation. Out-
put relations are written to a file with their name. Intermediate relations are

3www.sourceforge.net
4bddbddb.sourceforge.net

5

computed but not written. The usual file format for relations is a text-based
representation of the BDD which is incomprehensible to the author. However,
by using “outputtuples” instead of “output”, a relation will be written to a text
file with one tuple per line. (”inputtuples” does the obvious analogue.) A blank
is used to separate the fields of the tuples. The first line in the file indicates the
domains for each column. This is the only format the author could find that
can be used for final, human readable analysis results. It is still quite tedious
to read.

A tuple is represented with natural numbers. Each number indicates a par-
ticular element in the respective domain. Usually there exists a “.map” file that
lists all elements of a domain. The author still had trouble figuring out what
number represents one element. Even though each line in the map starts with
a numeric identifier, this identifier does not correspond with the numbers ap-
pearing in tuples. Instead a number in a tuple indicates what line in the map
file to look at. To make things a little more tricky, bddbddb assigns numbers
to elements starting with zero. Thus element n appearing in a tuple can be
found at line n + 1 in the map file. The line contains a textual description of
the element which is usually quite descriptive.

4.1 Generating Domains and Initial Relations

bddbddb needs input in the form of existing relations to create new, derived
relations that represent analysis results. In order to make sense of the results
we also need a map file for each domain. As alluded to earlier, we can generate
a quite substantial initial set of relations and domains. This is not accomplished
with bddbddb, however, but with another tool written by Whaley called Joeq
which is also freely available from SourceForge5.

The module joeq core contains an infrastructure for compiling, traversing
and executing Java bytecode. Thus it essentially implements a pure-Java Java
VM. Whaley added the class joeq.Main.GenRelations to joeq core which
takes a Java class name as an argument and traverses all files reachable from
there to generate the set of domains and relations listed in section 3.1. This
process takes significant time and is probably not included in the performance
measurements reported above. The relations are directly written in the BDD
file format that bddbddb uses.

If these relations are not sufficient for a specific Datalog query, it will es-
sentially be necessary to create the missing relation directly from the program
text. This can be done by either extending the functionality in GenRelations
or by using a different analysis framework. It probably requires a traversal of
the program’s AST. The new relation has to be written in bddbddb’s BDD or
tuple format.

5joeq.sourceforge.net

6

5 Writing a Tainted Analysis with bddbddb

This section demonstrates how a custom analysis can be written with bddbddb.
The alias analysis presented in section 3.1 by itself is not so useful for finding

bugs in a program. However, there is a variety of analyses that rely on aliasing
information to reveal possible problems. Examples include the detection of state
that is shared between threads and finding security vulnerabilities like leaking
out references to internal data structures. Also, a comparison between the static
type of a variable and the types of the objects it can point to can reveal potential
to strengthen the static variable type. A modified version of this type refinement
analysis was used to measure the precision of the analysis as reported in section
3.3.

In order to evaluate the usefulness of bddbddb for writing interesting analyses
the author attempted to implement a tainted analysis with it. A string is tainted
when it comes from an untrusted source, in particular from user input. It is a
security vulnerability to use such tainted strings for operating system calls and
other sensitive operations. Tainted strings should be checked, e.g. against a
regular expression, before used in this way. They essentially become untainted.

A tainted analysis with bddbddb then involves tracking references to tainted
strings through assignments and the like, essentially detecting aliases to tainted
strings. However, a number of issues have to be solved.

1. We only want to track strings, so other kinds of objects should be excluded
from the analysis.

To make this happen, the author used a nice feature of bddbddbwhich is
to identify a certain element of a domain by its name in the map file. In
this case this is the Java type for strings. So the starting point of our
tainted analysis can look as follows (compare it to the alias analysis query
in section 3.1).

tainted(v, h) : − vP0(v, h), hT (h, ”java.lang.String”)

This essentially says that any object that is created as a string is by default
tainted. Note that we are building a context-insensitive analysis here.

2. If two strings are concatenated, the result will be tainted whenever one
of the original strings was. Concatenation does not involve aliasing of the
original strings but instead creates a new string that has to be tracked
depending on the original ones.

To realize this, we build an intermediate relation conc ⊆ V ×V that records
concatenations. conc(v1, v2) means that v1 was created by concatenating
v2 with something else. The following rules build the relation and carry
taintedness over concatenations.

7

conc(v1, v2) : − IE(i, ”java/lang/String/java/lang/Stringconcat(java/lang/String)”),
actual(i, , v2),
Iret(i, v1).

tainted(v1, h) : − tainted(v2, h), conc(v1, v2).

3. The following rules handle fields with a separate relation taintedH. They
rely on (context-insensitive) alias information vP about the objects touched
by store (S) and load (L) operations. For a store v1.f = v2, we determine
what tainted strings v2 references and what objects v1 points to. Loads
v2 = v1.f are handled similarly.

taintedH(h1, f, h2) : − S(v1, f, v2), vP (v1, h1), tainted(v2, h2).
tainted(v2, h2) : − L(v1, f, v2), vP (v1, h1), taintedH(h1, f, h2).

4. A single string reference can be tainted in some parts of the program and
untainted in others. This in particular will happen if the string is matched
against a regular expression.

Realizing this is more trouble than just writing appropriate Datalog queries.
Since we are tracking the taintedness of references, a possible approach to
resolve this issue is to introduce a fresh variable and assign the matched
string to it. This could be done by manipulating the source code wher-
ever a string is matched. We also need an input relation matched which
has only one column that indicates variables which should be considered
untainted due to matching. Unfortunately, the input relations for bddb-
ddb are generated directly from Java bytecode, and simple variable assign-
ments are optimized away by the compiler.

Just having the matched relation is good enough if it is possible to mark
a “real” variable that comes after the match. This in particular can be
the return value of the method in which the match is performed. This
solution worked for the example program used for testing, but in general
is not good enough.

A full-featured solution would be to detect string matches statically and
introduce pseudo-variables into the input relations that essentially are ar-
tificial versions of the manual variable assignments discussed above. The
matched relation could then also be generated automatically. This how-
ever would require to change the generation of initial relations from the
program, something that was beyond the scope of this report. The au-
thor instead manually created the matched relation and considers it upon
variable assignments as follows. Essentially, assignments only propagate
taintedness if the target variable is not marked as matched.

tainted(v1, h) : − A(v1, v2), tainted(v2, h), !matched(v1).

8

5. A tainted string is not a problem per se. Our analysis just has to point
out tainted strings that are handed off to sensitive operations. These
operations by definition can only be identified by the programmer. Thus
we need an input relation that captures this intent. We call it untainted
here. It is similar to matched except that it is not a purely technical
workaround but actually captures design intent. If a variable appears in
this relation it means that it better never be tainted. From that we can
generate an output relation violation that will contain all strings that are
tainted but should be untainted.

violation(v, h) : − tainted(v, h), untainted(v).

The full Datalog file for tainted analysis can be found in the appendix.
It contains all rules shown above (augmented to observe typing information
upon assignments and loads) as well as the context-insensitive version of the
underlying alias analysis. The matched relation is also considered at creation
sites to allow annotating string constants as untainted.

This analysis is good enough to find out that in the example file TaintedExample.java
used for programming assignment 2 tainted strings can make it to the sensitive
method unless the return value of filter is appropriately marked in the matched
relation. The analysis takes about 12 seconds on a Pentium 4 1.7 GHz processor
with 512 MB RAM.

Even though this analysis works, it is somewhat tedious in practice: The
two input relations matched and untainted have to be written by hand. That
involves finding the right variables in the variable map file, figuring out its
number (line number minus 1) and writing this number into the relation. For-
tunately, variables are described quite unambiguously in the map, which helps
a lot. However, this process could be completely automated by augmenting the
generation of input relations from the source as discussed above. The untainted
relation could be generated from annotations in the source code.

The analysis output, the violation relation, will also contain just numbers.
The user now has to go ahead and look up the variables and objects it actually
references. There should be some (pretty trivial) tool support to automate this
process.

6 Conclusion

Understanding program information as relations and representing those rela-
tions as Binary Decision Diagrams are the key ideas that enable bddbddb to
perform a context-sensitive inclusion-based analysis on realistic programs with
reasonable overhead and high precision [5]. As we have seen, the analysis pro-
cess consists of two stages, (1) creating basic relations from the program text (or
bytecode) and (2) deriving new relations using Datalog queries on the database
of existing relations. The tool is efficient enough to support manipulations of
relations with millions of entries.

9

This report investigates how new kinds of analyses that depend on aliasing
information can be written with bddbddb. It turns out that Datalog is able to
express interesting analyses. As long as the basic relations generated are suffi-
cient, it is relatively painless and intuitive to write new analyses. In particular,
no explicit flow functions or lattices have to be implemented. It is enough to
specify an appropriate query. If existing relations are not sufficient, those have
to be generated from the source text, which requires more work. However, it
is probably still easier than implementing flow functions. The output format of
bddbddb can undergo some minor improvements to make it more readable.

The tainted analysis implemented by the author seems to be on the border
of what bddbddb can do: Ideally it would require new input relations, but as
a workaround those can be provided manually. The deeper reason why tainted
analysis is not entirely straightforward is that one reference can be tainted in
parts of the program and untainted in others. bddbddb does not support this
kind of information very well (or rather, its default input relations don’t). It
would be desirable to get analysis information depending on the position in the
source code, which is what flow functions naturally support.

Nonetheless the scalability of bddbddb is impressive and the paradigm of
treating static analyses as database queries is very intuitive and easy to use.
The tool is easily installed and seems to be in a mature enough stage to be used
by outsiders (like the author).

References

[1] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to
analysis using bdds. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 103–114, 2003.

[2] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(9):677–691, Aug 1986.

[3] M. Fähndrich, J. Rehof, and M. Das. Scalable context-sensitive flow analysis
using instantiation constraints. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 253–263, 2000.

[4] B. Steensgaard. Points-to analysis in almost linear time. In ACM Symposium
on Principles of Programming Languages, pages 31–41, 1996.

[5] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2004.

[6] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for
c programs. In SIGPLAN Conference on Programming Language Design
and Implementation, pages 1–12, 1995.

10

Appendix: Tainted Analysis Datalog File

Context-insensitive tainted analysis
#
Author: Kevin Bierhoff

.basedir "pa.joeq"

Domains

.include "fielddomains.pa"

.bddvarorder N0_F0_I0_M1_M0_V1xV0_VC1xVC0_T0_Z0_T1_H0_H1

joeq Relations

vP0 (v:V0, h:H0) input
S (base:V0, field:F0, src:V1) input
L (base:V0, field:F0, dest:V1) input
actual (invoke:I0, num:Z0, actualparam:V1) input
formal (method:M0, num:Z0, formalparam:V0) input
Mret (method:M0, v:V1) input
Mthr (method:M0, v:V1) input
Iret (invoke:I0, v:V0) input
Ithr (invoke:I0, v:V0) input
mI (method:M0, invoke:I0, name:N0) input
IE0 (invoke:I0, target:M0) input
vT (var:V0, type:T0) input
hT (heap:H0, type:T1) input
aT (type:T0, type:T1) input
cha (type:T1, name:N0, method:M0) input
hP0 (ha:H0, field:F0, hb:H1) input
IEfilter (ccaller:VC1, invoke:I0, ccallee:VC0, target:M0) input
cA (vcdest:VC0, dest:V0, vcsrc:VC1, source:V1) input

vPfilter (v:V0, h:H0)
IEcs (ccaller:VC1, invoke:I0, ccallee:VC0, target:M0)

context insensitive pointer analysis

A (dest:V0, source:V1)
vP (v:V0, h:H0) output
hP (ha:H0, field:F0, hb:H1)
IE (invoke:I0, target:M0)

tainted relations

11

marks internal variables that are untainted copies of matched variables
matched (v:V0) inputtuples
explicit untainted annotations e.g. for OS call sites
untainted (v:V0) inputtuples

tainted variables
tainted (v:V0, h:H0) outputtuples
tainted fields
taintedH (ha:H0, field:F0, hb:H1) outputtuples
variables that result from concatenations of other variables
conc (dest:V0, source:V1) outputtuples
violations of the untainted annotations (above)
violation (v:V0, h:H0) outputtuples

context insensitive pointer rules

vP(v,h) :- vP0(v,h).
IE(i,m) :- IE0(i,m).
vPfilter(v,h) :- vT(v,tv), aT(tv,th), hT(h,th).
vP(v1,h) :- A(v1,v2), vP(v2,h), vPfilter(v1,h).
hP(h1,f,h2) :- S(v1,f,v2), vP(v1,h1), vP(v2,h2).
vP(v2,h2) :- L(v1,f,v2), vP(v1,h1), hP(h1,f,h2), vPfilter(v2,h2). split
A(v1,v2) :- formal(m,z,v1), IE(i,m), actual(i,z,v2).
A(v2,v1) :- Mret(m,v1), IE(i,m), Iret(i,v2).
A(v2,v1) :- Mthr(m,v1), IE(i,m), Ithr(i,v2).

context insensitive tainted rules

tainted(v, h) :- vP0(v, h), hT(h, "java.lang.String"), !matched(v1).
tainted(v1, h) :- A(v1,v2), tainted(v2,h), vPfilter(v1,h), !matched(v1).
taintedH(h1,f,h2) :- S(v1,f,v2), vP(v1,h1), tainted(v2,h2).
tainted(v2,h2) :- L(v1,f,v2), vP(v1,h1), taintedH(h1,f,h2), vPfilter(v2,h2).
conc(v1, v2) :- \

IE(i, "java/lang/String/java/lang/Stringconcat(java/lang/String)"), \
actual(i,_,v2), \
Iret(i,v1).

tainted(v1, h) :- tainted(v2, h), conc(v1, v2).
violation(v,h) :- tainted(v,h), untainted(v).

12

