JavaD: Bringing Ownership Domains to
Mainstream Java

Marwan Abi-Antoun®

& Institute for Software Research Intl (ISRI)
Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

Abstract

Ownership types have been receiving much attention from the research community.
However, few of the proposed designs have been implemented or evaluated on real
object-oriented implementations. AliasJava has been available for a few years and
has been applied on several case studies.

Currently, AliasJava is implemented as a non-backwards compatible extension
of the Java programming language. As a result, none of the tool support for Java
(from debugging and refactoring to syntax highlighting) is available for AliasJava
programs, making it harder to justify the case that Java programs are easier to
evolve with AliasJava annotations than without. Furthermore, this makes it harder
specify the ownership and aliasing annotations for a large legacy system, since the
program cannot be annotated partially and incrementally with AliasJava.

We present JavaD, a re-implementation of the AliasJava language and analysis
as a set of Java 1.5 annotations, using the Eclipse Java Development Tooling (JDT)
infrastructure and the Crystal Data Flow Analysis framework. We conclude with
some lessons learned and future plans.

1 Introduction

“The big lie of object-oriented programming is that objects provide encapsu-
lation” [12]. In particular, aliasing can cause a failure of encapsulation and
can be the source of many unintended side effects in object-oriented programs
(See Figure 1).

Aliasing cannot be eliminated entirely from useful object-oriented program;
in fact, many object-oriented design patterns rely on it. However, the research
community has recognized that aliasing must be controlled using language

17-754: Analysis of Software Artifacts 8 May 2006

class JavaClass {
private List signers;

public List getSigners() {
return this.signers;

}
+
// (Malicious) clients can mutate signers field!
class MaliciousClient extends ... {
public void addTrojanHorse(JavaClass c)
{
List signers = c.getSigners();
signers.add(this);
}
}

Fig. 1. In an early version of the JDK, the Class.getSigners method returned
the internal list of signers rather than a copy, allowing untrusted clients to pose as
trusted code by modifying the signers object through its alias.

support (see [7] for a good survey), and proposed several solutions, e.g., Islands
[12] and Universes [14] to name only a few.

We look in particular at one proposal, Ownership Domains [1], and its im-
plementation in a concrete language, AliasJava [4]. Unlike some of the other
approaches, which are only paper designs, AliasJava has had a publicly avail-
able open-source compiler for a few years [3]. In addition, it has been evaluated
on actual object-oriented programs (see case study in [4]). The Universes sys-
tem is the only other ownership-based system we are aware of that has been
applied in a case study involving a non-trivial system [11].

2 AliasJava

AliasJava [4] is a concrete implementation of the Ownership Domains system
proposed by Aldrich et al. AliasJava has a keyword domain to define ownership
domains. By default, each object has a private domain called owned. Figure
2 shows one possible fix for the aliasing bug identified earlier using the owned
annotation. AliasJava also uses the Java 1.5 type parameters syntax to define
domain parameters (e.g., class Sequence< Towner >) as well as binding
actuals to formals (e.g., Sequence< owned > seq). Figure 3 shows another
possible fix for the aliasing bug identified earlier, using domain parameters.
AliasJava also provides a small number of standard aliasing annotations to
describe data that is:

class JavaClass {
private owned List signers;

private owned List getSigners() {
return this.signers; }

public void foo() {
lent List x = this.getSigners();
// do stuff using x

}

Fig. 2. AliasJava re-implementation of the JavaClass: the list is declared owned;
the type checker now requires getSigners() to be marked private, since a public
method may not have owned in its signature. Clients can only call the public method
foo().

class JavaClass<data> {
private owned List signers;

public data List getSigners() {
data List copy = new List(Q);

for(int i = 0; I < this.signers.size();i++)
copy.add(this.signers.get(i));
return copy,

}

Fig. 3. AliasJava re-implementation of the JavaClass, returning a copy of the list of
signers in the domain identified by the domain parameter data. Alternatively, the
copy could have been returned in the global shared domain to avoid the need for a
parameter.

Confined with an object (owned) (default domain)
Passed linearly from one object to another (unique)
Shared temporarily (lent) within a method invocation
Shared persistently (shared) globally

3 JavaD: AliasJava with annotations

JavaD re-implements the AliasJava language and analysis as annotations using
the annotation facility in Java 1.5 [16]. In particular, Java programs with
JavaD annotations are legal Java 1.5 programs unlike AliasJava programs,
which are no longer legal Java programs.

3.1 Motwation

AliasJava is currently implemented using a modified version of the Barat in-
frastructure [5] . More specifically, we wanted to re-implement the AliasJava
language and analysis using the Eclipse Java Development Tooling (JDT) [19]
infrastructure, and the Crystal data flow analysis framework [2].

Since it is a non-backwards compatible extension to the Java programming
language, AliasJava programs have only basic tool support available to them.
We think re-implementing the language and the analysis as annotations im-
proves the adoptability of the ownership domains technique by mainstream
Java developers as follows:

e Improved tool support: all the capabilities of the Eclipse integrated de-
velopment environment become available to AliasJava programs, from ad-
vanced debugging capabilities to refactoring to syntax highlighting;

e Ease of extensibility: using annotations would make it easier to add ex-
tensions to the AliasJava language in a non-breaking way. Some of the
candidates include external uniqueness [9] and read-only references;

e Support for Incrementality: using annotations gives the ability to in-
crementally and partially specify annotations. This is necessary for dealing
with large code bases, and would enable us in turn to conduct case studies to
evaluate ownership domains on large real-world object-oriented programs.

Since the main purpose of this project is to address the adoptability of Alias-
Java, usability is a primary consideration. Although annotations may be more
verbose than an elegantly designed language, we tried to make JavaD anno-
tations as usable as possible, using the following strategies:

e Generate only warnings: the analysis only generates warnings and does
not generate errors about inconsistent annotations;

e Use reasonable defaults: we supply reasonable defaults to reduce the
annotation burden. We reuse the same defaults as AliasJava;

e Be consistent: when using only annotations, there are several restrictions
that a language designer has to deal with, such as only being able to add
annotations to variable declarations. In particular, there may be some cases
where an extra temporary variable may need to be declared, just for the
sake of adding annotations to it. This point will be revisited when we talk
about new expressions, cast expressions (both implicit and explicit), and
method /constructor invocation.

e No runtime checks: finally, the approach involves purely a analysis static

1" Although open-sourced, the Barat infrastructure [5] is not maintained at the
same level as the Eclipse much larger open source project. In particular, the Barat
infrastructure does not support Java 1.5.

and does not interfere with the running of the program: in particular, unlike
AliasJava, where there may be some runtime exceptions?related to bad
casts, programs annotated with JavaD behave in exactly the same way as
they did before. The annotations have no effect whatsoever at runtime.

3.2 Annotation Design

We have defined the following Java 1.5 annotations. For maximum flexibil-
ity, all annotation values are strings or arrays of strings. All the annotations
that are plural take an array of strings®. The annotations are illustrated by
examples from the fully annotated Sequence client example.

@Domain: Specify the actual annotation, the actual parameters, and the
actual array parameters on a variable, field, method return type, method
parameter.

e Format: parameter < parameter, ... > [arrayParameter,...] where
- parameter can be any alias annotation, or refer to the public domain
of an object, e.g., seq.iters;

- < parameter, ... > (angle brackets) optional annotation for the or-
dered list of actual domain parameters;
- [parameter, . ..] (square brackets) optional annotation for the ordered

list of actual array parameters, by order of array dimension.
e Applies to: parameter, field, local variable, method, constructor 4
e Examples:
@omain ("unique<Towner, owned>")
Sequencelterator sequencelterator = new Sequencelterator (head);

public static void main(@Domain("lent[shared]")String args[]) {

b

@Domains: declare domains on a type (class or interface).
e Format: name
e Applies to: type (class or interface)
e Examples:
@Domains({"iters"})

2 AliasJava has the option of generating .java files from annotated .archj files; in
that case, the .java files will have the additional runtime checks.
3 Java 1.5 allows the following syntactic sugar: Single-element array-valued

single-member annotation can be written without the curly braces { ...}, e.g.,
@Domains ("iters") or @omain({"iters"}). The array syntax requires curly
braces, e.g., @omain({"iters", "owned"})

class Sequence

@DomainParams: declare domain parameters on a type (class or interface).
e Format: name
e Applies to: type (class or interface)
e Examples:
@DomainParams ({"Towner"})
class Sequence

@DomainInherits: pass parameters to super class and implemented inter-
faces
e Format: typename < parameter,... >
e Applies to: type (class or interface)
e Examples:
@DomainParams ({"Towner", "list"})
@omainInherits({"Iterator <Towner>"})
class Sequencelterator implements Iterator

@DomainParams ({"Towner"})
interface Iterator {

@DomainReceiver: declare annotation on the receiver.
e Format: name
e Applies to: constructor or method
e Examples:

3.3 Examples

In this section, we illustrate how to annotate an abstract data type, which
is an important benchmark for flexible ownership systems. Figure 5 shows
the original AliasJava program. Figure 6 shows snippets from the equivalent
JavaD program.

4 We use the @T'arget feature, e.g., @Target(ElementType. PARAMETER, ..) to
specify where a specific annotation is allowed (in this case, on constructor or method
parameters).

~
- —R——-—
- Seguence

client 1 ‘I]

ohjects | I
f T

11
1

Fig. 4. The Sequence abstract data type uses a linked list for its internal representa-
tion. A public iters domain holds its iterators. A private owned domain holds the
linked list. Link declarations specify that iterator objects in the iters domain have
permission to access objects in the owned domain; outside objects cannot directly
access Cons cells. Both domains can access the domain parameter Towner.

4 Tool Design and Implementation

The tool design and implementation has been heavily inspired from the orig-
inal AliasJava compiler [3]. The analysis consists of:

e Annotation management: associate with each AST node an annotation
value;

e First Pass (visitor-based analysis): retrieve the explicit annotations
from the AST nodes (for types, variables, and methods) and propagate
them to expressions;

e Second Pass (visitor-based analysis): check the annotations on each
expressions using the AliasJava rules.

We discuss each one in turn.

4.1 Annotation Information

For each AST node, the tool maintains the following information:

e Annotation: represents the ownership domain (e.g., owned or seq.iters)
or the alias annotation on a reference type (e.g., lent);

o Parameters: represent the formal or actual domain parameters on a refer-
ence type;

¢ ArrayParameters: represent the annotations on each array dimension for
array types;

e Mapping from formals to actuals.

class Sequence<Towner> assumes owner -> Towner {
domain owned;
public domain iters;
link owned -> Towner;
link iters -> Towner, iters —-> owned;
owned Cons<Towner> head;
void add(Towner Object o) { head = new Cons<Towner>(o,head); }
iters Iterator<Towner> getIter() {
return new Sequencelterator<Towner, owned>(head); }

class Cons<Towner> assumes owner -> Towner {
Cons(Towner Object obj, owner Cons<Towner> next)
{ this.obj=obj; this.next=next; }
Towner Object obj;
owner Cons<Towner> next;

b

interface Iterator<Towner> {
Towner Object next();
boolean hasNext();

b

class Sequencelterator<Towner, list> implements Iterator<Towner>
assumes list -> Towner {
private list Cons<Towner> current;
public Sequencelterator(list Cons<Towner> head) {current = head; }
public boolean hasNext() { return current !'= null; }
public Towner Object next() {
Towner Object obj = current.obj; current = current.next; return obj; 7}

public class SequenceClient {
domain state;
final state Sequence<state> seq = new Sequence<state>();
void doSomething(state Object o) { System.out.println("Iterated on " + 0);
public void run() {
state Object obj = new Integer(5);
seq.add(obj);
seq.add(new Integer(7));

seq.iters Iterator<state> i = this.seq.getlter();
while (i.hasNext()) {

state Object cur = i.next();

doSomething(cur) ;

}
}
} 8

Fig. 5. Sequence example in AliasJava. Adapted from the AliasJava distribution [3].

@Domains({"iters"}) @DomainParams({"Mowner", "Towner"})
class Sequence {
©@Domain ("owned<owned,Towner>") Cons head;
void add(@Domain("Towner")Object o) {
head = new Cons(o,head); }
@Domain("iters<Towner>") Iterator getIter() {
@omain("unique<owned, Towner, owned>")
Sequencelterator sequencelterator = new Sequencelterator (head);
return sequencelterator;
}
}
@DomainParams ({"Mowner", "Towner"})
class Cons {
Cons (@omain("Towner")0Object obj,@Domain("Mowner <Mowner, Towner>")Cons next) {
this.obj=obj; this.next=next; }
@Domain("Towner") Object obj;
@Domain("Mowner<Mowner, Towner>") Cons next;
}
@DomainParams ({"Towner"})
interface Iterator {
@omain("Towner") Object next();
boolean hasNext();
}
@DomainParams ({"Mowner", "Towner", "list"}) @DomainInherits({"Iterator<Towner>"})
class Sequencelterator implements Iterator {
@Domain("unique")Sequencelterator (@Domain("list<Mowner, Towner>") Cons head) {
current = head; }
@Domain("list <Mowner, Towner>")
private Cons current;
public boolean hasNext() { return current !'= null; }
public @Domain("Towner") Object next() {
@omain("Towner")Object obj = current.obj;
current = current.next;
return obj;
}
@Domains ({"state"})
public class SequenceClient {
final @Domain("state<owned, state>") Sequence seq = new Sequence();
void doSomething(@Domain("state")0Object o) { ... }
public void run() {
@omain("state")0Object obj = new Integer(5);
seq.add(obj) ;
@Domain("unique")Integer int7 = new Integer(7);
seq.add(int7);
@omain("seq.iters<state>") Iterator i = this.seq.getlter();
while (i.hasNext()) {
@omain("state") Object cur = i.next();
doSomething(cur); 9

Fig. 6. Sequence example in with JavaD annotations (with explicit “owner”).

4.2 First-Pass Analysis

The first pass is visitor-based ® analysis to perform the following:

Identify Problematic Patterns. During this pass, we identify problematic
code patterns that will need to be replaced with equivalent constructs, namely
by declaring a local variable and adding the appropriate annotations to it ¢.

Read Annotations from AST. The Java 1.5 annotations that are added to
a program become part of the AST. The visitor locates these nodes in the AST
and parses their contents” . n addition, the visitor infers default annotations
for some program constants that cannot be annotated: e.g., it infers unique
on NullLiteral AST nodes and StringLiteral AST nodes. The annotations that
are read are stored in a hash table mapping each AST node to an annotation
structure. This mapping is used by the second pass analysis to check the
correctness of the annotations.

Propagate Local Annotations. The AST visitor also propagates annota-
tions to all the expression nodes in the AST, by translating formals to actuals.
This visitor vists AST nodes corresponding to:

ArrayAccess: handle array access expressions

ArrayCreation: mark array creation expressions as unique

Arraylnitializer: mark array initialize expressions as unique

Assignment

CastExpression: check for unsupported constructs

ClassInstanceCreation: check for unsupported constructs

FieldAccess

ConditionalExpression: propagate annotations for condition expressions, i.e.,

expression 7 thenExpression : elseExpression;

e InfixExpression: mark string concatenations (using infix 4+ operator) as
unique

e MethodDeclaration: retrieve annotation from node

e MethodInvocation: translate formals to actuals, and store for expression

e NullLiteral: mark array initialize expressions as unique

5 This visitor must be a post-order visitor, in order to correctly check expressions
such as Iterator i = this.seq.getIter(). A post-order visitor will ensure that
the correct annotation for the FieldAccess (this.seq) is generated before that of
the MethodInvocation (getIter()).

6 Using the Eclipse built-in refactoring (“Extract Local Variable”), this operation
can be performed by the user with very little effort

7 We used JavaCC [13] to generate a small parser for the annotation string when it
can get complex (e.g., as in the @Domain case). In most other cases, we used simple
string manipulations in Java.

10

owned

<

lent

Fig. 7. Arrow means data can flow between variables with two annotations.

QualifiedName: propagate annotation, translate formals to actuals, and
store for expression

ReturnStatement: check for unsupported constructs
SingleVariableDeclaration: retrieve annotation from node

StringLiteral: mark string constants as unique

ThisExpression

TypeDeclaration: retrieve annotation from node
VariableDeclarationFragment: retrieve annotation from node

4.8 Second-Pass Analysis

Check Rules. The second pass consists also of an AST Visitor to check
the AliasJava rules. This visitor visits the following nodes and checks the
corresponding rules:

TypeDeclaration: inheritance rules
FieldDeclaration: declaration rules
SingleVariableDeclaration: declaration rules
VariableDeclarationFragment: declaration rules
MethodDeclaration: check method rules
Assignment: check assignment, initializers
ClassInstanceCreation: constructor rules
MethodInvocation: method call rules
ReturnStatement: assignment

FieldAccess: assignment

Value flow analysis Checking the assignment rule requires a value flow
analysis, based on the following rules in AliasJava:

e A variable with any type annotation can be assigned a unique value

e lent variables can be assigned a value with any type annotation

e Values with type annotations owned and shared, as well as declared domains
kept separate from each other

11

The value flow analysis cannot be implemented as a regular dataflow analysis
because it does not correspond to a lattice (See Figure 7). We reused the Live
Variables Analysis (LVA) from the Crystal Data Flow analysis framework.
LVA is invoked intra-procedurally at each method boundary using a separate
visitor that looks for a variable with a specific binding information.

5 Evaluation

We tested and evaluated the JavaD tool on the following examples.

5.1 AliasJava Examples

We tested the JavaD tool by taking some of the aliasing examples available
in the ArchJava distribution and converting them from AliasJava syntax to
Java syntax, with JavaD annotations.

5.2 Courses Fxamples

We were also able to annotate a small Java program that corresponds to a
three-tier course registration system. The tool identified several instances of
unsupported coding patterns discussed later. We used the Eclipse refactoring
(“Extract Local Variable”) to replace them by supported coding patterns. In
addition, we used the Eclipse Find/Replace feature to replace all instances of
java.lang.String with @Domain("shared")String.

In addition, we replaced all uses of java.util.ArrayList by the annotated
Sequence Abstract Data Type. This in turn required changes to use the Iter-
ator constructor to iterate over the elements of the loop.

We found the JavaD tool helpful in pinpointing incorrect annotations. The
most common annotation errors involved not passing the appropriate para-
meters, and forgetting to mark variables (used in annotations) as final. There
are some remaining expected ® warnings regarding missing annotations on re-
turn types of various library functions on java.lang.String.

Annotating the courses example took a couple of hours, not including several
interruptions to fix problems in the tool.

8 Currently, the tool does not support annotating library code. This is deferred for
future work.

12

6 Limitations and Future Work

6.1 Missing Features.

Due to time constraints, the following features were not implemented:

e Add support for method parameters;

e Add back support for the owner annotation (the current support in the
AliasJava compiler is broken); the original Sequence example shown earlier
did make good use of it (See Figure 5). However, we rewrote it by passing
the Mowner as an explicit domain parameter (the first one) (See Figure 6);

e Add different checks for public and private domains;

e Add additional sanity checks for the annotations; e.g., checks that the
@DomainInherits does not reference to a nonexistent superclass or imple-
mented interfaces; other needed checks include not allowing “owned”, ”lent”
or "unique” as private domains in the @Domains annotation;

e Improve some of the error messages, Some of the error messages are quite
cryptic, e.g., 7 Alias parameters [| of new Course(objCourseFile.readLine())
instance don’t match [objectsDom]| alias parameters of receiver at call ...”
(for the “Before” construct in Figure 8). In this case, the developer has
no indication that she must simply declare two local variables and add
annotations to them;

e Add domain link specifications (@DomainLinks and @DomainAssumes) and
the associated checks.

Some tool-specific future work might involve:

e Create an Eclipse builder so the analysis is invoked continuously as the
program is being modified;

e Add the ability to suppress certain warnings; and in turn, add the ability to
re-run the analysis without any suppressions to make sure that developers
are not simply suppressing warnings instead of fixing the bugs;

e Add the ability to turn off defaults; from a program comprehension point of
view, we think that having all annotations spelled out is preferable, since a
developer does not have to understand both the significance of the presence
of an annotation, as well as the absence thereof? .

9 There was a time when, in some unsafe languages, it was possible to have variables
without type annotations, and the type was assumed to be some default; thankfully,
this is now a passing trend.

13

6.2 Limitations of Java 1.5 annotations

Java 1.5 annotations are too limiting. Some of their limitations include:

e A declaration cannot have multiple annotations for the same annotation
type;

e Annotation types cannot have members of the their own type;

e Annotation types cannot extend any entity (class, interface or Annotation
ete).

e It is only legal to use single-member annotations for annotation types with
multiple members, as long as one member is named value, and all other
members have default values. Otherwise, the more verbose syntax is re-
quired, e.g., @Name (first = "Joe", last = "Hacker").

These restrictions prevent us from having shorthand constant annotations for

some of the frequently used ones, e.g., @owned instead of @omain (¢ ‘owned’’).
However, such constants cannot be used in annotations such as @omain (annotation
= Qowned, parameters = {Qowned}). To avoid having multiple ways of per-
forming the same thing, in the end, we resorted to using strings, and doing our

own parsing @omain(‘‘owned <owned>’’). This means that the developer
using annotations is more likely to introduce minor mistakes, by misspelling
standard annotations, since the auto-complete feature is not available for free-

form strings. However, the analysis will catch such problems early enough.

The lack of “positional” arguments prevented us from expressing constructs of
the form @Domains ({"publicl", "public2"}, private = {"privatel", "private2"}).

In addition, Java 1.5 annotations cannot be added to certain expressions.
In particular, we found two kinds of expressions to be problematic, namely
New Expressions (See Figure 8) and Cast Expressions (See Figure 9). These
expressions will need to be replaced with equivalent constructs, namely by
declaring a local variable and adding the appropriate annotations to it.

As an an alternative, we could have used stylized comments, but we think
that comments would have been much less structured, and much easier to
overlook by developers than annotations. Most editors, including the Eclipse
editor, highlight annotations differently than comments!'®. Furthermore, the
stylized comments are bound to look like commented out code, which goes
against many coding guidelines.

10'We are not aware of empirical evaluations that evaluated whether comments or
annotations help or hinder program comprehension.

14

Before:

while (objCourseFile.ready()) {
this.vCourse.add(new Course(objCourseFile.readLine()));

}

After:

while (objCourseFile.ready()) {
@omain("shared")String line = objCourseFile.readLine();
@omain("objectsDom <objectsDom>")Course course = new Course(line);
this.vCourse.add(course);

}

Fig. 8. Re-writing a new expression by declaring a local variable with the appropriate
annotations.

Before:
ArrayList vCourse = objStudent.getRegisteredCourses();
for (int i=0; i<vCourse.size(); i++) {
if (((Course) vCourse.get(i)).conflicts(objCourse)) {
lock.releaselock();
return "Registration conflicts";

}
After:
@Domain("lent")ArrayList vCourse = objStudent.getRegisteredCourses();
for (int i=0; i<vCourse.size(); i++) {
@Domain("lent<objectsDom>")Course course = (Course) vCourse.get(i);
if (course.conflicts(objCourse)) {
lock.releaselLock();
return "Registration conflicts";

Fig. 9. Re-writing cast expression by declaring a temporary local variable.

6.3 Future Work

There are several directions that we can pursue next.

6.3.1 Support Libraries

We would like to support adding annotations to the standard JDK libraries
and other third-party libraries. There are two approaches: one that involves
annotating the library. A preferred approach is to not make changes to li-
brary or third-party code (which may not be available, and when it is, evolves
separately), and to place annotations in separate files.

15

Even when storing annotations in separate files, there should be a way to also
reduce the annotation burden, e.g., by using pattern matching to annotate
all parameters or return types of type java.lang.String be annotated with
@Domain(‘ ‘shared’’).

6.3.2 Support Additional Alias Types

As discussed earlier, an important goal of this project is to support extensi-
bility. In particular, we hope to develop new kinds of annotations to support
“external uniqueness” [9], “readonly” reference [14], among many possible
ones.

6.3.83 Support Annotation Inference

Annotating existing code is difficult and time-consuming, since one has to
first determine the appropriate ownership parameters, and annotate almost
every line of code with a reference type (assuming the default is not suitable).
We hope this tool will serve as a good starting point to infer annotations
interactively. In particular, Eclipse provides the functionality to graphically
preview refactorings (in this case, the addition of annotations) before they are
actually applied to the program.

One interactive annotation inference tool based purely on a static analysis that
we are aware of [10] makes use of additional annotations to guide the infer-
ence algorithm: for instance, the user can supply an @Complete annotation as
a hint to the inference algorithm to indicate that the list of ownership parame-
ters may not be extended. We are also thinking about using “@Suggest(...)”
annotations to let the user provide various hints to the inference algorithm or
to have the algorithm generate its suggestions as “@Suggested(...)” annota-
tions. One of the benefits of using annotations is that the inference algorithm
can in no way break an existing program by inserting bad annotations.

6.3.4 Tolerate Local Inconsistencies.

Cooper mentions how “certain references are not used in ways that could cause
aliasing bugs and could therefore be considered harmless aliases. It may be
possible to extend AliasJava to incorporate an annotation for such references”
[10]. Based on our own experience, we agree that it might be useful to have
escape mechanisms to tolerate small local inconsistencies and to suppresses
warnings on innocuous code. Another example is to allow, under certain con-
ditions, to have a class override a method defined in an interface, and to
change some of the aliasing annotations on the overridden methods (currently
prohibited by AliasJava rules).

16

6.3.5 Generic Qunership

We have ported the AliasJava language and analysis to the Eclipse infrastruc-
ture and made use of a Java 1.5 language feature, which makes it possible,
at least in principle, to also handle generics in case studies. However, due to
time constraints, we did not study the implications of using Java 1.5 generics
with JavaD annotations, although the Sequence example would be a prime
candidate.

It may very well be the case that adding ownership annotations to Java 1.5
with generics will be too verbose. A promising alternative approach is to com-
bine ownership and generic types, as is being proposed by Potanin et al in
[15]. This is an area that we will be watching closely.

7 Conclusion

We presented a re-implementation of the AliasJava language and analysis as
a set of Java 1.5 annotations, using the Eclipse Java Development Tooling
(JDT) infrastructure and the Crystal Data Flow Analysis framework.

We think this tool can encourage additional case studies to first annotate
and then maintain real object-oriented implementations to evaluate the true
benefits of using ownership domains for program understanding and evolution.

We think this tool could also spur future activity, notably in the areas of
extending the language with richer annotations and building interactive an-
notation inference tools.

References

[1] Jonathan Aldrich and Craig Chambers. Ownership Domains: Separating
Aliasing Policy from Mechanism. Proc. European Conference on Object-
Oriented Programming, Oslo, Norway, June 2004.

[2] Jonathan Aldrich and David Dickey. The Crystal Data Flow Analysis
Framework. http://www.cs.cmu.edu/~aldrich/courses/654/

[3] Jonathan Aldrich. ArchJava Downloads. http://www.archjava.org/

[4] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias
Annotations for Program Understanding. Proc. Object Oriented Programming
Systems, Languages and Applications, Seattle, Washington, November 2002.

17

[5] Boris Bokowski and Andr Spiegel. BaratA Front-End for Java. Freie Universitat
Berlin Technical Report B-98-09, December 1998.

[6] David Clarke and Sophia Drossopoulou. Ownership, Encapsulation, and the
Disjointness of Type and Effect. Proc. Object-Oriented Programming Systems,
Languages and Applications, Seattle, Washington, November 2002.

[7] David Clarke. Object Ownership & Containment. Ph.D. Thesis, University of
New South Wales, Australia, July 2001.

[8] David G. Clarke, James Noble, and John M. Potter. Simple Ownership
Types for Object Containment. Proc. European Conference on Object-Oriented
Programming, Budapest, Hungary, June 2001.

[9] Dave Clarke and Tobias Wrigstad. External Uniqueness is Unique Enough.
Proc. European Conference on Object-Oriented Programming, Darmstadt,
Germany, July 2003.

[10] Will Cooper. Interactive Ownership Type Inference. School of Computer Science
Senior Thesis, Carnegie Mellon University. 2005.

[11] Hachler, Thomas. Applying the Universe type system to an industrial
application: case study. Master Project Report, Departement of Computer
Science, Swiss Federal Institute of Technology, 2005.

[12] John Hogg. Islands: Aliasing Protection in Object-Oriented Languages. Proc.
Object-Oriented Programming: Systems, Languages and Applications, Phoenix,
Arizona, October 1991.

[13] JavaCC. Available at https://javacc.dev.java.net/

[14] Peter Miiller and Arnd Poetzsch-Heffter. Universes: A Type System for
Controlling Representation Exposure. In A. Poetzsch-Heffter and J. Meyer
(Hrsg.): Programmiersprachen und Grundlagen der Programmierung, 10.
Kolloquium, Informatik Berichte 263, 1999,/2000.

[15] Alex Potanin, James Noble, Dave Clarke, Robert Biddle. Featherweight Generic
Ownership. In 7th Workshop on Formal Techniques for Java-like Programs -
FT{JP’2005.

[16] Sun Microsystems, Inc. Java Specification Requests JSR 175: A Metadata
Facility for the JavaTM Programming Language.

[17] Eclipse Java Development Tooling (JDT) core. http://dev.eclipse.org/
viewcvs/index.cgi/jdt-core-home/main.html?rev=1.97

[18] Object Technology International, Inc. Eclipse Platform Technical Overview,
2003. http://www.eclipse.org/whitepapers/eclipse-overview.pdf

[19] Eclipse Java Development Tooling (JDT) core. http://dev.eclipse.org/
viewcvs/index.cgi/jdt-core-home/main.html?rev=1.97

[20] Werner Dietl and Peter Muller. Exceptions in Ownership Type Systems. In E.
Poll, editor, Formal Techniques for Java-like Programs, pp. 4954, 2004.

18

