
1

Analysis of Software Artifacts

Assignment #10

Mini-Project: Tool or Analysis Practicum

Team Nash Apr 7, 2009

HunJae Lee, SeongYong Lim, SeJoon Oh, Duri Kim

2

Contents

Overview ... 3

Introduction of the selected tool, FindBugs ... 3

Selection Rationale .. 3

Objective .. 3

Feature .. 3

Statistics of individual efforts .. 3

Evaluation .. 3

Evaluation Criteria ... 4

Evaluation Approach ... 4

Target functionality of our evaluation ... 4

Environment .. 4

Resource .. 5

Evaluation Result ... 5

Evaluation of Seeded Defects... 5

Evaluation of Open Source software.. 5

Analysis of evaluation results .. 5

Example bugs from FindBugs .. 6

Example of True Positives .. 6

Example of False Positives ... 7

Pros and Cons of FindBugs ... 7

Pros .. 8

Cons ... 8

With Studio Project ... 8

3

Overview
This document contains NASH team’s practical experience with an analysis tool,

FindBugs. It consists of four main parts. Firstly, we talk about overall introduction of this

project. Then we explain our evaluations about this tool and its advantages and disadvantages.

Finally, we introduce a plan to adapt this tool into our Studio project.

Introduction of the selected tool, FindBugs
FindBugs is a static analysis tool to look for bugs in Java code. It is free software

developed by The University of Maryland. Our practice is conducted with FindBugs 1.3.8

version.

Selection Rationale
At the first time we select an analysis tool among given tool list; we want to use the tool

that supports various complicated functions like Purify. However this kind of commercial

tool’s trial version does not provide us restricted use.

So, we established a couple of criteria to select tool. First, it should be a freeware to

support its full use. Second, it should be active tool that authors or tool developers still

elaborate to fix its bug even recently because we don’t want to use buggy tool. At last, we

want to make this tool to help our Studio in terms of quality code. So, it should support Java

language and easy installation and usage.

Objective
The main purpose of this project is to see how well the tool can find bugs and to access

how meaningful the bugs are. Through these activities, we can acquire its efficiency as an

analysis tool compared to our former experience of other tools. We can get its adaptability of

FindBugs when using in our Studio as well.

In addition, it is good opportunity to evaluate the open source software used in our Studio

project. The results of this practicum cannot be crucial factor to evaluate open source

software, but it could be auxiliary data to select COTs in our Studio project.

Feature
Our team chose some of main functions provided by FindBugs. When choosing target

functions to evaluate, we consider the usefulness of functions and how convenient usage this

tool gives.

We decided to access the function to find all kinds of the bugs defined in the tool. However,

we did not evaluate the extension of bug finding filters and historical analysis.

Statistics of individual efforts
HunJae Lee 9 hours

SeongYong Lim 9 hours

SeJoon Oh 9 hours

Duri Kim 11 hours

Evaluation
This part contains our team’s procedure to conduct for this practicum and its results. This

4

part comprises the introduction of our evaluation criteria, how we conduct for this evaluation,

the results, and our analysis about this tool and supporting examples.

Evaluation Criteria
Quantitative evaluation criteria

� Ratio of true positives and false positives

� Efficiency of the tool

� True positives per KLOC

� Code quality of the open source software

� Total bugs found per KLOC

Qualitative evaluation criteria

� Usability – easy to install and run

� Readability –precise description of bugs

� Accuracy – real bugs or not

Evaluation Approach

Target functionality of our evaluation
FindBugs features evaluated

• The FindBugs provides several options about pattern filters. But, we were not

sure which pattern or pattern type is true positives or not. So, we decided to

find all kinds of the bugs defined in the tool and evaluate the result in our

perspective

FindBugs features not evaluated

• The FindBugs also provides its extensibility through importing and exporting

filters which are described by users. But, because of lack of time, we forgive

to try it even though this extensibility seems very useful.

• The organization which is developing the FindBugs is gathering the historical

data from its users and shows some statistical results. But, we didn’t analyze

with that results and didn’t provide our result.

Customization
There are options to select which kinds of bugs or issues you are going to detect,

and you can also add filters to check certain kinds of bugs or issues by defining them

and attaching them into the set of filters in the tool. For the evaluation of the tool, we

have decided to detect all the kinds of bugs to see how well the tool finds bugs or

issues and what kinds of them it is able to find; to do so, we checked the options of all

the kinds of bugs. For the future usage, we would be able to use the checking options

to find specific bugs or issues and the extensible filters to add a new kind of bugs or

issues.

Environment
The FindBugs supports three types of its deployment types. To check whether

there is any difference between them, we applied two types, eclipse plugin and

5

standalone GUI of the FindBugs.

Resource

• Actually, we applied out previous results of the assignments. But, it is easy to

imagine that the quality of our codes is not good and the FindBugs can

produce lots of bugs.

• So, we need to focus on evaluating the FindBugs. First of all, we use sample

program with seeded defects to find how well it finds the bugs which are

seeded by us. For that purpose, we used Hnefatafl source with 5 seeded defects

in the previous assignment.

• Also, our Studio project is supposed to use several the result of Open Source

project. So, through applying this tool to some Open Sources, we want to

check the qualities. Those are Shindig, STRUTS, iBATIS, and Tomcat.

Evaluation Result

Evaluation of Seeded Defects
We conducted a test for Hnefatafl framework, especially defect seeded version.

The FindBugs cannot find any seeded bugs among 5 of them.

Evaluation of Open Source software

Source
Size TRUE

Positive

(ratio)

FALSE

Positive

(ratio)

T.P./

KLOC

Bugs/

KLOC Files LOC

Shindig 922 28,682 68% 32% 1.185 1.848

STRUTS 1,044 62,991 52% 48% 1.270 16.939

iBATIS 205 14,228 64% 36% 3.584 5.623

Tomcat 1,115 170,785 1063

6.224

After executing the tool, we checked all bugs and bug types whether each bugs

should be generally considered or not to determine true positives. But, the number of

bugs in Tomcat is too big to investigate.

Analysis of evaluation results
Evaluation Criteria Analysis result

Efficiency 0 among 5

 � Cannot find semantic bugs
 T.P. about 60% vs. F.P. about 40%

 � 60% of bugs are to be considered

Usability 2 clicks to run

 One update site for Eclipse plug in

 Exe file to install the standalone

Readability Bug description with rationale, possible cases, and

examples

Accuracy Not bugs, but recommendations

• As the result, the FindBugs cannot any semantic bugs which are not detected by

6

mechanical pattern matching method.

• In our perspective, we should consider about 60 percent of the bugs found by the

FindBugs as true positives.

• Users can easily install via the eclipse update site or execute with only 2clicks.

• Each bug is described with its rationale, possible cases and examples.

• But, the FindBugs just provides not bugs, but possible bug patterns.

Example bugs from FindBugs

Examples of Relevant True Positives
1. At the catch function with an exception, there is a condition that no exception

is caught when exception is not thrown.

2. A result set, rs only start with index 1. But the counter of the loop, i, starts

from 0 and it means that it tries to access a result set field with index 0.

while (rs.next()) {

for (int i = 0; i < cols; i++) {

String value = rs.getString(i);

 print(value + "\t");

 }

println("");

}

try {

String prop_pool_ping_query = null;

if (props == null) {

throw new RuntimeException("SimpleDataSource: The properties map passed

to the initializer was null.");

} catch (Exception e) {

log.error("SimpleDataSource: Error while loading properties. Cause: " + e.toString(), e);

throw new RuntimeException("SimpleDataSource: Error while loading properties.

 Cause: " + e, e);

}

7

Examples of Irrelevant True Positives

The main functionality of FindBugs is to detect bugs or issues in Java program

sources, in general. The bugs or issues include not only possible bugs, but also best

practices in general Java programming. Thus we were not able to find any reason to

decide the issues or recommendations from FindBugs are not relevant to our studio

project. It is because we need to detect all kind of bugs or issues in our Java codes to

improve the quality of the codes; that is, all the true positives are relevant to our

studio project.

Examples of False Positives
1. The FindBugs warns a Cloneable class which does not define or use clone

method. But, the class has a protected clone() method.

2. The FindBugs warns the class, TestCase, defines a function, setup(), that

doesn't call super.setUp(). But, the extended class, PropertyTest, calls

super.setup().

Pros and Cons of FindBugs
As a result of the evaluation, we were able to identify various pros and cons of the

FindBugs. Follows are the summary of the pros and cons. However, since we did not evaluate

the full functionalities of the FindBugs, these pros and cons are limited to the boundary of our

evaluation. For example, data mining features of the FindBugs was not tested because we did

not have historical data for that. Thus most our evaluation was focused on the bug detecting

functions.

public class PropertyTest extends StrutsTestCase {

private XWorkConverter converter;

 public void setUp() throws Exception {

 super.setUp();

 "PropertyTest" uses StrutsTestCase's super setup()

 …

 }

}

public class Template implements Cloneable {

 ...

protected Object clone() throws CloneNotSupportedException {

 return super.clone();

 }

}

8

Pros
• FindBugs well detected the bugs (or possibly bugs) and it provides clear rationale for

each bugs.

• FindBugs looks good to improve code quality because it detected not only bugs, but

also bad programming practices.

• The extensible filter plug-in framework of the FindBugs deserves a mention. While it

has a lot of filters corresponding to bug types, it provides a way for developers to

extend its capability by adding any needed filters.

Cons
• FindBugs has detected only syntactic issues, but not semantic errors

For example, when we conducted a test against our bug seeded code, it did not detect

any seeded bug. The reason was that all the seeded bugs were semantic bugs, not

technical bugs.

• While FindBugs have detected many possible bugs, some of the bugs were not real

bugs. Some issued bugs were related to programming practice or coding standard. In

other word, if a development decide to use another set of coding standard, the result of

the tool would not be sufficiently reasonable.

• Even after getting result from the tool, we had to investigate if the issued bugs were

real or not. It was because we could not get substantial evidence to believe that all the

issues would be real. The nature of the development of filters added such kind of

suspect. Each filter corresponding to each bug could be developed by individual

developers. This meant that all filters could not have a level of standard quality.

Therefore the issued bugs could be only issues; we had to judge the reality of issues.

With Studio Project
After evaluation, we decided to use FindBugs in our studio project for following purposes.

• A part of evaluation of Open Source Software – we are about to use dozen of open

source software. However we did not have an effective mean to verify its quality –

code quality. This tool enabled us to examine its code quality in a very comprehensive

way. Even though this tool could not perfectly prove the quality of the codes, we think

it provide a reasonable clue to determine how the quality is.

• A tool for code review – if we start implementation, we are about to conduct code

reviews for our codes. FindBugs will be really helpful tool for us to be able to perform

code reviews effectively. Of course, this tool will not be able to totally replace our

code review activities. Even after running this tool, we will have to do code reviews to

determine if the issued bugs are real bugs. However, if we use this tool as a part of

activities of our code review, it would certainly help us to raise the quality of our code

review; for example, it could find possible bugs which we could miss in our manual

reviews.

