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Overview 
This document contains NASH team’s practical experience with an analysis tool, 

FindBugs. It consists of four main parts. Firstly, we talk about overall introduction of this 

project. Then we explain our evaluations about this tool and its advantages and disadvantages. 

Finally, we introduce a plan to adapt this tool into our Studio project. 

Introduction of the selected tool, FindBugs 
FindBugs is a static analysis tool to look for bugs in Java code. It is free software 

developed by The University of Maryland. Our practice is conducted with FindBugs 1.3.8 

version. 

Selection Rationale 
At the first time we select an analysis tool among given tool list; we want to use the tool 

that supports various complicated functions like Purify. However this kind of commercial 

tool’s trial version does not provide us restricted use. 

So, we established a couple of criteria to select tool. First, it should be a freeware to 

support its full use. Second, it should be active tool that authors or tool developers still 

elaborate to fix its bug even recently because we don’t want to use buggy tool. At last, we 

want to make this tool to help our Studio in terms of quality code. So, it should support Java 

language and easy installation and usage. 

Objective 
The main purpose of this project is to see how well the tool can find bugs and to access 

how meaningful the bugs are. Through these activities, we can acquire its efficiency as an 

analysis tool compared to our former experience of other tools. We can get its adaptability of 

FindBugs when using in our Studio as well. 

In addition, it is good opportunity to evaluate the open source software used in our Studio 

project. The results of this practicum cannot be crucial factor to evaluate open source 

software, but it could be auxiliary data to select COTs in our Studio project. 

Feature 
Our team chose some of main functions provided by FindBugs. When choosing target 

functions to evaluate, we consider the usefulness of functions and how convenient usage this 

tool gives. 

We decided to access the function to find all kinds of the bugs defined in the tool. However, 

we did not evaluate the extension of bug finding filters and historical analysis. 

 

Statistics of individual efforts 
HunJae Lee 9 hours 

SeongYong Lim 9 hours 

SeJoon Oh 9 hours 

Duri Kim 11 hours 

 

Evaluation 
This part contains our team’s procedure to conduct for this practicum and its results. This 
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part comprises the introduction of our evaluation criteria, how we conduct for this evaluation, 

the results, and our analysis about this tool and supporting examples. 

Evaluation Criteria 
Quantitative evaluation criteria 

� Ratio of true positives and false positives 

� Efficiency of the tool 

� True positives per KLOC 

� Code quality of the open source software 

� Total bugs found per KLOC 

 

Qualitative evaluation criteria 

� Usability – easy to install and run 

� Readability –precise description of bugs 

� Accuracy – real bugs or not 

 

 

Evaluation Approach 

Target functionality of our evaluation 
FindBugs features evaluated 

• The FindBugs provides several options about pattern filters. But, we were not 

sure which pattern or pattern type is true positives or not. So, we decided to 

find all kinds of the bugs defined in the tool and evaluate the result in our 

perspective 

FindBugs features not evaluated 

• The FindBugs also provides its extensibility through importing and exporting 

filters which are described by users. But, because of lack of time, we forgive 

to try it even though this extensibility seems very useful. 

• The organization which is developing the FindBugs is gathering the historical 

data from its users and shows some statistical results. But, we didn’t analyze 

with that results and didn’t provide our result. 

 

Customization 
There are options to select which kinds of bugs or issues you are going to detect, 

and you can also add filters to check certain kinds of bugs or issues by defining them 

and attaching them into the set of filters in the tool. For the evaluation of the tool, we 

have decided to detect all the kinds of bugs to see how well the tool finds bugs or 

issues and what kinds of them it is able to find; to do so, we checked the options of all 

the kinds of bugs. For the future usage, we would be able to use the checking options 

to find specific bugs or issues and the extensible filters to add a new kind of bugs or 

issues. 

Environment 
The FindBugs supports three types of its deployment types. To check whether 

there is any difference between them, we applied two types, eclipse plugin and 
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standalone GUI of the FindBugs. 

  

Resource 

• Actually, we applied out previous results of the assignments. But, it is easy to 

imagine that the quality of our codes is not good and the FindBugs can 

produce lots of bugs. 

• So, we need to focus on evaluating the FindBugs. First of all, we use sample 

program with seeded defects to find how well it finds the bugs which are 

seeded by us. For that purpose, we used Hnefatafl source with 5 seeded defects 

in the previous assignment. 

• Also, our Studio project is supposed to use several the result of Open Source 

project. So, through applying this tool to some Open Sources, we want to 

check the qualities. Those are Shindig, STRUTS, iBATIS, and Tomcat. 

 

Evaluation Result 

Evaluation of Seeded Defects  
We conducted a test for Hnefatafl framework, especially defect seeded version. 

The FindBugs cannot find any seeded bugs among 5 of them. 

Evaluation of Open Source software 

Source 
Size TRUE 

Positive 

(ratio) 

FALSE 

Positive 

(ratio) 

T.P./ 

KLOC 

Bugs/ 

KLOC Files LOC 

Shindig 922 28,682 68% 32% 1.185 1.848 

STRUTS 1,044 62,991 52% 48% 1.270 16.939 

iBATIS 205 14,228 64% 36% 3.584 5.623 

Tomcat 1,115 170,785 1063 
 

6.224 

 

After executing the tool, we checked all bugs and bug types whether each bugs 

should be generally considered or not to determine true positives. But, the number of 

bugs in Tomcat is too big to investigate. 

Analysis of evaluation results 
Evaluation Criteria  Analysis result  

Efficiency    0 among 5  

     � Cannot find semantic bugs  
  T.P. about 60% vs. F.P. about 40% 

     � 60% of bugs are to be considered  

Usability    2 clicks to run 

  One update site for Eclipse plug in 

  Exe file to install the standalone  

Readability    Bug description with rationale, possible cases, and 

examples  

Accuracy    Not bugs, but recommendations 

 
• As the result, the FindBugs cannot any semantic bugs which are not detected by 
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mechanical pattern matching method. 

• In our perspective, we should consider about 60 percent of the bugs found by the 

FindBugs as true positives.  

• Users can easily install via the eclipse update site or execute with only 2clicks. 

• Each bug is described with its rationale, possible cases and examples.  

• But, the FindBugs just provides not bugs, but possible bug patterns. 

 

Example bugs from FindBugs 

Examples of Relevant True Positives 
1. At the catch function with an exception, there is a condition that no exception 

is caught when exception is not thrown. 

 

 
   

2. A result set, rs only start with index 1. But the counter of the loop, i, starts 

from 0 and it means that it tries to access a result set field with index 0. 

 

 
   

while (rs.next()) { 

for (int i = 0; i < cols; i++) { 

String value = rs.getString(i); 

             print(value + "\t"); 

      } 

println(""); 

} 

try { 

String prop_pool_ping_query = null; 

if (props == null) { 

throw new RuntimeException("SimpleDataSource: The properties map passed 

to the initializer was null.");    

} catch (Exception e) { 

log.error("SimpleDataSource: Error while loading properties. Cause: " + e.toString(), e); 

throw new RuntimeException("SimpleDataSource: Error while loading properties.  

 Cause: " + e, e); 

}  
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Examples of Irrelevant True Positives 

The main functionality of FindBugs is to detect bugs or issues in Java program 

sources, in general. The bugs or issues include not only possible bugs, but also best 

practices in general Java programming. Thus we were not able to find any reason to 

decide the issues or recommendations from FindBugs are not relevant to our studio 

project. It is because we need to detect all kind of bugs or issues in our Java codes to 

improve the quality of the codes; that is, all the true positives are relevant to our 

studio project. 

Examples of False Positives 
1. The FindBugs warns a Cloneable class which does not define or use clone 

method. But, the class has a protected clone() method. 

 

 
 

2. The FindBugs warns the class, TestCase, defines a function, setup(), that 

doesn't call super.setUp(). But, the extended class, PropertyTest, calls 

super.setup(). 

 

 
    

 

Pros and Cons of FindBugs 
As a result of the evaluation, we were able to identify various pros and cons of the 

FindBugs. Follows are the summary of the pros and cons. However, since we did not evaluate 

the full functionalities of the FindBugs, these pros and cons are limited to the boundary of our 

evaluation. For example, data mining features of the FindBugs was not tested because we did 

not have historical data for that. Thus most our evaluation was focused on the bug detecting 

functions. 

public class PropertyTest extends StrutsTestCase { 

private XWorkConverter converter; 

   public void setUp() throws Exception { 

       super.setUp(); 

  "PropertyTest" uses StrutsTestCase's super setup() 

  … 

 } 

}  

public class Template implements Cloneable { 

  ... 

protected Object clone() throws CloneNotSupportedException { 

       return super.clone(); 

 } 

}  
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Pros 
• FindBugs well detected the bugs (or possibly bugs) and it provides clear rationale for 

each bugs. 

• FindBugs looks good to improve code quality because it detected not only bugs, but 

also bad programming practices. 

• The extensible filter plug-in framework of the FindBugs deserves a mention. While it 

has a lot of filters corresponding to bug types, it provides a way for developers to 

extend its capability by adding any needed filters. 

Cons 
• FindBugs has detected only syntactic issues, but not semantic errors 

For example, when we conducted a test against our bug seeded code, it did not detect 

any seeded bug. The reason was that all the seeded bugs were semantic bugs, not 

technical bugs. 

• While FindBugs have detected many possible bugs, some of the bugs were not real 

bugs. Some issued bugs were related to programming practice or coding standard. In 

other word, if a development decide to use another set of coding standard, the result of 

the tool would not be sufficiently reasonable. 

• Even after getting result from the tool, we had to investigate if the issued bugs were 

real or not. It was because we could not get substantial evidence to believe that all the 

issues would be real. The nature of the development of filters added such kind of 

suspect. Each filter corresponding to each bug could be developed by individual 

developers. This meant that all filters could not have a level of standard quality. 

Therefore the issued bugs could be only issues; we had to judge the reality of issues. 

 

With Studio Project 
After evaluation, we decided to use FindBugs in our studio project for following purposes. 

• A part of evaluation of Open Source Software – we are about to use dozen of open 

source software. However we did not have an effective mean to verify its quality – 

code quality. This tool enabled us to examine its code quality in a very comprehensive 

way. Even though this tool could not perfectly prove the quality of the codes, we think 

it provide a reasonable clue to determine how the quality is.  

• A tool for code review – if we start implementation, we are about to conduct code 

reviews for our codes. FindBugs will be really helpful tool for us to be able to perform 

code reviews effectively. Of course, this tool will not be able to totally replace our 

code review activities. Even after running this tool, we will have to do code reviews to 

determine if the issued bugs are real bugs. However, if we use this tool as a part of 

activities of our code review, it would certainly help us to raise the quality of our code 

review; for example, it could find possible bugs which we could miss in our manual 

reviews. 


