
 1

17-654: Analysis of Software Artifacts

Tool Evaluation:

EclipsePro Audit by Instantiations

Teams Diversity + Team13

Members:

Adlan Israilov
Brian Krausz
Majid Alfifi
Mohit Bhonde
Raul Vejar

 2

Index

Index .. 2
About the Tool .. 3
About the Experiments .. 4

1) “Hnefatafl”: Personal size, stand alone application .. 4
Rationale ... 4
Initial setup ... 4
Customization ... 4

2) “Ævol”: Medium size project, plug in application ... 4
Rationale ... 4
Initial setup ... 5
Customization ... 5

3) “SeisPM”: Large size project, enterprise application ... 5
Rationale ... 5
Setup ... 5
Customization ... 6

About the Results .. 8
1) “Hnefatafl”: Personal size, stand alone application .. 8

Metrics obtained .. 8
False positives ... 9
True irrelevant positives .. 9

2) “Ævol”: Medium size project, plug in application ... 9
Metrics .. 9
False positives ... 10
True positives .. 11
True irrelevant positives .. 13

3) “SeisPM”: Large size project, enterprise application ... 13
Metrics .. 13
False positives ... 16
True positives .. 16
True Irrelevant Positives.. 16

Conclusions .. 17
Advantages ... 17
Disadvantages ... 17
Final Conclusions.. 18

Assignment Efforts ... 19

 3

About the Tool

EclipsePro is a set of tools developed by Instantiations (www.instantiations.com) for
Eclipse environments that contain some of the characteristics of the CodePro suite of
the company which is a comprehensive toolset for java quality and testing in enterprise
environments.
EclipsePro is composed of two products:

1. EclipsePro Audit: a code analysis tool designed to detect defects, implement
basic repairs and provide reports on the findings.

2. EclipsePro Test: a jUnit test generator and editor which also provides code
coverage functions and report generation.

Both tools cost 519 US$ each, which includes only 90 days of maintenance and updates
where additional support is sold separately.
This report will be focused on EclipsePro Audit, which has recently seen (on January
25th) its 6th release and is available for trial or purchase at the company’s website.
EclipsePro Audit analyzes the static code structure looking for compliance with sets of
pre-loaded audit rules. The standard package of rules includes things like:

• Coding Style

• Comments

• Dead Code

• JavaDoc conventions

• Internationalization

• J2EE

• jUnit and Logging

• Naming conventions

• Performance

• Portability

• Program Complexity

• Possible Errors

• Security

• Spell Checking

• Threading
Of course, the rules can be extended with custom built ones through the rule editor.
The tool also includes a comprehensive set of over 350 quick fixes for some of the rules,
which allows developers to quickly fix some of the most common mistakes.
The Eclipse integrated interface, metric generation (such as LOC, comment lines,
number of functions, etc) and comprehensive reporting capabilities of the tool are
designed to make code inspections and audit an easier task.

 4

About the Experiments

Given that the main purpose of this exercise is to decide on the usefulness of the tool,
and that this can change depending on the domain on which it is applied, we decided to
carry out testing of the tool in different environments:

1) “Hnefatafl”: Personal size, stand alone application

Rationale

We wanted to evaluate EclipsePro from a smaller perspective on a smaller codebase.
For this reason we chose the Hnefatafl code the Diversity team used in the earlier
assignments. We knew that this code was written to be functional rather than well-made,
with reusability, security and performance relatively low on the list of priorities.

Initial setup

• Eclipse 3.4

• EclipsePro Audit 6.0

• Team Diversity Hnefatafl code

Customization

We opted to skip customizing the software and relying on the default options (under the
premise of being a single coder with limited time trying to quickly use the tool).

2) “Ævol”: Medium size project, plug in application

Rationale

The Ævol Studio project is a follow-up project of the previous year MSE team studio
project (Architecture Evolution). That team had several requirements, one of them was
to make it maintainable, so that follow-up teams would be able to easily understand and
modify it (modifiability, learnability).
Also there is a scalability requirement, which just recently emerged during the Quality
Attribute Workshop. It states that the tool should be able to create and process
architecture diagrams of a large size, up to 100 nodes or architecture instances.
Although, there was no direct call for performance (latency), scalability implies some
connection with it, for example response time issue (who wants a tool which will need a
several days to process your architecture diagram?)
Also, the team thought that this was a good opportunity to analyze the inherited tool on
some of the quality attributes described.

 5

Initial setup

• Eclipse Europa v3.3.2 has been installed (the project is directly dependant on
this version of Eclipse).

• Source code of Architecture Evolution Tool v1.2 as checked out from project’s
repository.

• Downloaded and installed EclipsePro Audit 6.0.

Customization

• Disabled EclipsePro Audit v5.5.0 auto-fix feature to ensure that changes won’t

cause program failure.

• Created our own preferred set of rules, that is a new Audit Set of Rules.

a. AETool_audit_set has been created based on default set of rules provided

by EclipsePro Audit.

b. Many rules has been eliminated considering the nature of AETool project

(Rich Client Platform development, plug-ins)

c. Refined set of rules ready to apply on AETool project.

3) “SeisPM”: Large size project, enterprise application

Rationale

The Seismic Project Management System (SeisPM) (Saudi Aramco) is a J2EE web
application which provides workflow in addition to interfaces with legacy seismic
processing systems. The objective of this project is to use the tool in a real-life
environment following objectives typical to the needs of any such project.
The first purpose of the exercise was to use the tool as a metric gathering system.
Specifically, we need to know for each system the number of classes, lines of code,
average number of methods per class, and average number of lines per method.
The second purpose is to find violations in terms of the following:

• Style: find statistics about the code conformance to java coding standards

• Adherence to Effective Java: find violations of Java best practices

• Security: find segments of code that may lead to security problems

• Performance: find segments of code that may lead to poor performance while
there exist better alternatives

Setup

• Eclipse 3.3

• EclipsePro Audit 6.0

The “src” directory from the application was copied into an eclipse project. The code
was compiled and needed libraries added to the path because the analysis will not run
without the code being compiled in eclipse (this wasted a lot of time- the tool will just
run forever without telling anything). After that, different analyses were run by
following the simple menu provided by the tool.

 6

Customization

The tool provides the following way for choosing which classification of violations to
look for when running the analysis.

When calculating metrics, it’s possible to customize how the tool provides violations
warnings. For example the following shows how to set the max average value for “ok”
number of lines. If it is not satisfied the tool will report it as violation or warning.

 7

 8

About the Results

Each project was evaluated individually, the final output HTML reports are attached to
this report as evidence (although the ones of the third project where censored to remove
references to the real code because of privacy issues of the company).

1) “Hnefatafl”: Personal size, stand alone application

Metrics obtained

LOC: 459
Comments: 88
Number of Lines: 806
Methods: 45

Rule Occurrences

Always Override toString 5
Avoid Subtyping Cloneable 1
Badly Located Array Declarators 1
Clone Method Usage 1
Conditional Operator Use 1
Constants in Comparison 24
Convert Class to Interface 1

Dangling Else 6
Declare Default Constructors 1
Enumeration Constant Naming Convention 5
Exception Declaration 1
Explicit "this" Usage 7
Field Javadoc Conventions 8
File Comment 10
Hiding Inherited Fields 1
Import of Implicit Package 1

Import Order 1
Local Declarations 28
Method Javadoc Conventions 68
Missing Block 21
Multiplication Or Division By Powers of 2 1
Non-private Constructor in Static Type 2
Numeric Literals 31
Obey General Contract of Equals 1
Obsolete Modifier Usage 8

Override both equals() and hashCode() 1
Override Clone Judiciously 4
Package Naming Convention 1
Questionable Name 5
Restricted Superclasses 1
Spell Check Comments 12
Spell Check Identifiers 5
Static Field Naming Convention 1
String Concatenation 1
String Literals 4
Too Many Violations 3
Type Javadoc Conventions 11
Unnecessary Import Declarations 1
Unnecessary Return Statement Parentheses 1
Variable Declared Within a Loop 5
Variable Should Be Final 33
Variable Usage 1

 9

False positives

There was only one false positive, though much of the testing was subjective based on
coding style.
False Positive: Obey General Contract of Equals - Missing identity check
(RulesMove.java – Line 40)
The explanation states that “the equals method should compare the identity of the
receiver and the argument, returning true if they are the same.” This is exactly what that
block of code does:
public boolean equals(Object o) {

 if(o instanceof RulesMove) {

 RulesMove m = (RulesMove)o;

 if(m.getSource().equals(this.getSource()) &&

m.getDestination().equals(this.getDestination()))

 return true;

 }

 return false;

}

True irrelevant positives

All the errors not highlighted as false positives, are considered true positives, although
not relevant since they regard style issues and a project this small did not have any
coding standard to enforce.

2) “Ævol”: Medium size project, plug in application

Architecture Evolution project (AETool) is a set of plug-ins for Eclipse. The following
tables represent analysis results for each of the most important plug-ins in AETool.

ID Plug-in

1 edu.cmu.archevol.edit

2 edu.cmu.archevol.diagram

Metrics
Plug-in # Execution time

(seconds)

LOC 'umber of

comments

'umber of

Lines

'umber of

Methods

1 6 1860 273 3340 140

2 10 12104 1782 18605 907

 'umber of violations detected

Maintainability Plug-in #1 Plug-in #2

File comment 1 107

String concatenation 29 52

Multiple return statements 28 216

Use “for” loop instead of “while” loop 6

Variable usage 1 1

Code in comments 34 84

Comment local variables 74 752

Unused field, label, method 3

Missing image file (plug-ins development)

Undefined property (plug-ins development)

Exception creation 13

Convert class to Interface 1

Use of instanceof should be minimized 4 175

Add methods to interface

Close where created 1

Empty catch clauses 4 1

Variable should be final 34

 10

String concatenation in a loop

Performance

Variable declared within a loop 7 106

Method invocation in loop condition 3 12

Methods should be static 13 101

Append string

Define initial capacity 1 52

Define load factor 14

Index Arrays with integers

Prefers interfaces to reflection

Correctness

Enforce Singleton property with private constructor 1 1

Illegal main method

Float and String comparison

Invalid loop construction 65

Empty methods, statements, classes 50

Possible null pointer 52 534

Recursively call with no check

Use == to compare with Null

Dangling else 1 1

Total true positives: 2588

Total false positives: 35

False positives

• Couldn’t distinguish code comments from text comments.

Example: No difference between // Text and // System.out.println();

• Couldn’t recognize variables, which should have been declared as constants

(final).

Example#1: From the table we can see that under Plug-in#1 column ‘Variable

should be final’ category equals 0, which means EclipsePro Audit was not able

to recognize the following code example:

Example#2:

 11

where

True positives

1. First example

a. Class: edu.cmu.archevol.edit.ArchevolEditPlugin

b. Line in the code: 42

c. Severity: Medium

d. Warning message: Singleton class has a constructor that is not private

e. Issue: ArchevolEditPlugin can be instantiated more than once.

f. Why it’s an issue: AETool allows editing properties of architecture

evolution diagram and ArchevolEditPlugin defines the way how those

properties could be modified. Having more than two shared instances of

that class does not make sense and might cause an unexpected behavior

during runtime.

 12

2. Second example

a. Class: edu.cmu.archevol.edit.ArchitectureInstanceItemProvider

b. Line in the code: 675

c. Severity: Medium

d. Warning message: Method invoked in a loop condition.

e. Issue: aips.size() invoked in a for loop multiple times.

f. Why it’s an issue: Not efficient use of memory. Such type of mistakes

with higher impact might affect performance of our project.

 13

True irrelevant positives

• Threw a “Dangling else” warning, when it was not needed. It is correct to say it

is dangling because the if part is not “blocked”, but it is harmless and not a

violation of the coding style.

Example:

3) “SeisPM”: Large size project, enterprise application

Metrics
Metric 'ame Value

Abstractness 2.5%

Average Block Depth 1.13

Average Cyclomatic Complexity 1.86

Average Lines Of Code Per Method 9.48

Average Number of Constructors Per Type 0.34

Average Number of Fields Per Type 4.09

Average Number of Methods Per Type 11.71

Average Number of Parameters 1.00

Comments Ratio 19.9%

Efferent Couplings 188

Lines of Code 25,877

Number of Characters 1,410,297

Number of Comments 5,152

Number of Constructors 69

Number of Fields 1,087

Number of Lines 43,283

Number of Methods 2,331

Number of Packages 35

 14

Number of Semicolons 13,859

Number of Types 199

Weighted Methods 5,921

Security Violations

The tool found almost 976 security violations, 70 of them are regarded as “High” and
the rest as “Medium”

Violation Counts by Severity

Violation Severity Violation Count

High 70

Medium 906

Low 0

Violations by Audit Rule

Audit Rule Count

Avoid Inner Classes 9

Avoid Package Scope 84

Command Injection 2

Cross-Site Scripting 1

Deprecated Method Found 8

Deserializeability Security 186

Do Not Implement Serializable 17

Don't Return Mutable Types 311

Enforce Cloneable Usage 137

Instance Field Security 88

Log Forging 2

Missing Catch of Exception 10

Mutability Of Arrays 2

Path Manipulation 1

Process Control 2

Request Parameters In Session 61

Serializeability Security 32

Static Field Security 21

Too Many Violations 1

Use of Random 1

“Style” Violations

The following shows the results of style analysis.
Violation Counts by Severity

Violation Severity Violation Count

High 190

Medium 4,822

Low 2,305

Violations by Audit Rule

Audit Rule Count

Block Depth 46

Brace Position 208

Constant Field Naming Convention 39

Constructors Only Invoke Final Methods 10

Cyclomatic Complexity 46

Dangling Else 42

Empty Catch Clause 40

Explicit "this" Usage 1,165

Field Javadoc Conventions 613

File Comment 189

Instance Field Naming Convention 22

Instance Field Visibility 88

Large Number of Fields 35

Large Number of Methods 29

Large Number of Parameters 50

Line Length 1,138

Local Variable Naming Convention 234

Method Javadoc Conventions 1,507

Method Naming Convention 46

Missing Block 141

 15

Non-terminated Case Clause 3

Numeric Literals 291

Package Javadoc 29

Package Naming Convention 8

Package Prefix Naming Convention 29

Questionable Name 33

Redundant Assignment 1

Source Length 27

Space Around Operators 665

Too Many Violations 156

Type Javadoc Conventions 295

Use equals() Rather Than == 14

Variable Usage 29

White Space Usage 49

Violations of guidelines from “Effective Java”

The classification “Effective Java” is not exclusive as there are other violations that also
come from “Effective Java” such as security and performance violations. However,
when “Effective Java” is chosen then all violations from other categories that are based
on “Effective Java” book will be reported.
The following are the results:
Violation Counts by Severity

Violation Severity Violation Count

High 85

Medium 3,980

Low 3

Violations by Audit Rule

Audit Rule Count

Allow compareTo to Throw Exceptions 1

Always Override toString 173

Avoid null Return Values 2

Boolean Method Naming Convention 66

Constant Field Naming Convention 39

Constructors Only Invoke Final Methods 10

Declare As Interface 328

Empty Catch Clause 35

Favor Static Member Classes over Non-Static 1

Field Javadoc Conventions 613

Instance Field Naming Convention 19

Large Number of Parameters 60

Local Variable Naming Convention 231

Method Javadoc Conventions 1,541

Method Naming Convention 15

Method Parameter Naming Convention 162

Minimize Scope of Local Variables 177

Non-private Constructor in Static Type 4

Obey General Contract of Equals 9

Overloaded Methods 10

Override both equals() and hashCode() 8

Package Naming Convention 8

Package Prefix Naming Convention 29

Prefer Interfaces To Reflection 2

Questionable Name 33

Reusable Immutables 9

Static Field Naming Convention 12

String Concatenation in Loop 16

String Created from Literal 2

Too Many Violations 52

Type Javadoc Conventions 295

Unnecessary Exceptions 105

Use Interfaces Only to Define Types 1

 16

False positives

The tool found the following as violating the style standards when it’s not.
Invalid boolean method name: "contains" should be prefixed with 'can', 'equal', 'equals', etc.

 15 public static boolean contains(String str1, String str2)

 16 {

 17 return str1.indexOf(str2) != -1;

 18 }

True positives

The tool provided very useful information for parts of the code that may be a security
problem. Such as Log Forging where information from HTTP Requests is logged to the
log file if there is a problem. This is a security risk because hackers can send any
suspicious code that can get to the log and may do harm. There were 2 such cases.

The tool found a very important violation (True Positive) which is the following code:

 74
public void setListOfStages2DRecords(ArrayList listOfStages2DRec

ords) {

 75 listOfStages2DRecords = listOfStages2DRecords;

 76 }

This may have gone untested but the intention is to use this keyword for the left side
field. It’s not clear why the tool considered this as style rather than something else.

The following are some of the violations with their corresponding item in “Effective
Java” book.
Issue reported Item # in “Effective Java”

compareTo() in Server.java doesn’t through
ClassCastException

11: Consider implementing Comparable

Two cases in GetImageServlet.java where null was
returned instead of an empty list.

27: Return zero-length arrays, not nulls

in many methods, the following used: ArrayList l =
new ArrayList(); rather than List l = new
ArrayList();

34: Refer to objects by their interfaces

some exceptions handlers just do nothing 47:Don't ignore exceptions

INTViewerConstants is an interface that has only

constants

17: Use interfaces only to define types

True Irrelevant Positives

However there was few true positives but irrelevant. For example, the project team is
aware of cross-site scripting and that is how the system deals with the legacy systems
that are running on several UNIX machines scattered in the environment.

Violation Recommendation Severity Resource
Li

ne

Cross-Site

Scripting

User data should never directly be put onto a

web site, the path should be eliminated.
High ExecRemoteCmd.java 60

 17

Conclusions

Advantages

• Very simple to use “out of the box”. Item functions are very obvious and clearly

labeled.

• The tool has "Explain" feature which exists for every audit rule and color-coded flags

for severities and categories. This provides very useful summary about that audit and

what it means so developers can "fix" the code.

• The tool provides several metrics such as comments ratio, average lines of code per

method etc which is not available on Eclipse by default (a much-welcomed feature). It

would be even more useful if more information is provided about what is the best

practice to have for such metrics. This is in one way similar to what the tool already

provides as default values for what is considered “high” violation as shown earlier.

• A large amount of customization, while still providing a reasonable default rules set. All

of the CodePro’s audit rules are defined using the extension points. We can easily add

our new rules by adding a plug-in with a new set of audit rules. Java doc is provided.

• Rules sets provide a great flexibility of sharing knowledge from project to project and

enforcing standards inside the team (if audition is done constantly)

• Rules sets can be customized during the audit, by switching on or off some rules

• Auto fix function allows user to make automatic fixes for some specific type of code

style violations (significantly reduces time and automates process of fixing errors)

Disadvantages

• Reporting is simplistic. For example, CSV reports aren’t in a format that allows for

calculations to be done on them. It would be good if it's possible to include the

description of the summaries with the reports generated.

• Some rules are partially redundant, which can get bothersome. Example: Dangling Else

and Missing Block often go hand-in-hand

• Cannot count comments logically. Usually breaks down big comment blocks on

multiple small ones and counts them as separate blocks of comments.

• Autofix function is on by default, which might cause unexpected behavior of analyzed

project in after the first run of EclipsePro Audit.

• Does not provide data flow analysis

• There is some overlap between violations. Tool do not have option to group output by

code, that is show all violations per line of code or block of code.

• Not very often, but it makes a mistakes. Usually in case when you need to predict usage

of entity, like “Variable should be declared as final” audit rule.

• It also does not do a very good job in recognizing the context of using classes or their

instances. Sometimes it gives some weird recommendations to replace abstract classes

with interfaces just because it does not have methods or variables. It does not take in

account that some code is generated (by technologies like GMF).

 18

Final Conclusions

While this does seem like a useful tool for encouraging teams to use a uniform coding
style, it seems less useful for actually identifying errors, and rarely more-so than other
forms of testing. This, along with the price tag, makes its applicability towards smaller
projects, especially those with only one coder, questionable at best.

In mid-size projects, the tool was useful to identify some possible errors like “null
pointer” or “code style issues”, however you must very carefully applying it for a
complex projects with comprehensive object-oriented concepts applied since the tool
seems to make more mistakes in those settings.

In large-size projects, the tool is extremely useful to enforce good practices across the
team and the chances of finding bugs increases with a larger codebase. It is also very
good at finding problems with attributes such as performance, security and extendibility,
as long as the defects are typical and simple (which in large projects are abundant).

Overall the tool seems to have a nice balance between flexibility and usability. The
reporting capabilities still have room for improvement, but as a “developer’s tool” it is
sufficient. The price tag is a little expensive for individual projects, especially given the
offer of free tools available which do not cover as much functionality but provide many
of the basic features. The tool also does not cover other aspects of quality and testing
such as test managing, pre/post condition assertions, dynamic and performance analysis;
although this last one is understandable since other tools inside the CodePro toolset
provide support for these.

This tool would make a nice complement to other techniques such as inspections, but it
is doubtful it could replace them. In fact, the tool is advertised as something that will
make inspections more efficient by providing style compliance and basic analysis so
that the inspection can focus on the more important issues.

 19

Assignment Efforts

Test 1: 4 hours
Test 2: 8 hours
Test 3: 8 hours
Report writing/consolidation: 8 hours
Presentation preparation: 5 hours

Total: 33 hours

Additional time was spent by all members in identifying the tool, installing it and
becoming familiarized with it. This was not tracked.

