
 1

CMU 17-654 & 17-754 Analysis of Software Artifacts Spring 2006
 Mini-Project 1: Tool or Analysis Practicum

The team name: OMPArchitectability

Daikon: Invariant Detection of Nemo in association with OMP Project

Eun-young Cho, Minho Jeung, Kyu Hou, Varun Dutt and Monica Page

{echo1, mjeung, kyuh, vdutt, mpage}@andrew.cmu.edu

1. Project Objective
Apply Daikon, a tool for dynamically discovering program invariants, to NEMO, an Overlay

Multicast Protocol, in order to gain insight into the group management aspect of OMP and
transfer this knowledge for usage in carrying out the MSE POSDATA studio project.

2. Background

2.1 About Daikon:

Daikon (refer to Figure 1 given below for architectural description) is an analysis tool for the
purpose of making inferences concerning invariants of a system [Ernst+]. Daikon is useful
because it is not necessary to annotate code in order to discover the invariants [Ernst+]. Instead
by running test suites on the code, invariants can be inferred from the test suites [Ernst+]. The
invariants of the system can provide guidance in the event that code needs to be modified by
outlining those occurrences that need to be preserved within the system [Ernst+].

By running a program multiple times using a particular test suite and choosing a path so as to
track the values of particular variables at particular points in the code, Daikon is able to infer
invariants from the running system[Ernst+].

 For the OMParchitectability project this is particularly of interest because the POSDATA,
SI company in Korea, studio project requires the use of Overlay Multicast Protocol (OMP) in
order to broadcast video stream to particular nodes through the use of group management.
Understanding invariants that are inherent in a multicast protocol could help:

• Understand the types of invariants that may be needed for implementation of OMP with
POSDATA

• Provide an overview of constraints and limitations that occur with multicast protocols and
group management

 Though the focus of the Daikon testing is not for OMP in general, the program of interest
is Nemo, a multicast protocol that uses group management. The main types of nodes represented
by Nemo are:

• Bootstrap Nodes: Nodes that are the leaders of cluster or a segment of a group. They
serve as the rendezvous point for publishers and subscribers

• Publishers: Publish data and send data to subscribers. They may also be known as co-
leaders

 2

• Subscribers: Receive data from publishers

 There are number of operations that are possible through Nemo, but in terms of group
management, two are of interest, joining a group and leaving a group. In terms of Daikon, it
would be of interest to see what invariants are inherent when joining a group and which are
inherent when leaving group. More specifically, what are the boundaries for parameters
associated with join and leave methods for a bootstrap node, a publisher and subscriber.

Figure 1: Architecture of the Daikon tool
(Taken from Daikon’s website at MIT)

2.2 About NEMO and Daikon’s scope on NEMO:

NEMO is an open source project that implements the concept of Overlay Multicast Protocol
(OMP, a networking protocol to share a single data stream between a large number of connecting
clients without degradation of the performance or increase in network cost). In the present
situation or scenario there is a requirement to deal with the high degree of variability in the
network. This variability arises from the dynamic situation of a large number of nodes
connecting (joining) or disconnecting (leaving), the network. The aim of any multicast protocol
is to achieve this variability without giving up on end to end latencies and incurring additional
network costs. NEMO, a peer to peer overlay multicast protocol example provides these
objectives by:

1. “Co-leaders” [NRPP04] i.e. have multiple leaders rather than a single leader in the
network to provide for connectivity to a number of clients.

2. “NACKS” [NRPP04] to provide for negative acknowledgements on lost packets.

 Due to the above two approaches, NEMO has been able to perform better than other
existing competing multicast protocols like NICE and NICE-PRM. NEMO is proposed as an
academic reference for the MSE studio project for team Trinity.

An important aspect of any OMP is group management (i.e. how to manage the existing
nodes and cater to them with data streams when there may be nodes leaving and joining the
group at runtime). The team decided to use Daikon’s invariant detection to learn about the

 3

parameter values that may exist in such dynamic situations of group management when some
nodes join and leave the network.

3. Experimental Setup

3.1 Daikon installation and Setup
In order to run Daikon, several steps should be done. First, download the latest version (daikon
4.2.4) of daikon which is daikon.zip in the website, http://pag.csail.mit.edu/daikon/download/
and unzip the file. Second, front-end program which enable daikon to run on a specific language
such as C and C++ is needed, but daikon already include the front-end program for java.

3.1.1. Setup the environment.
For windows user below environment setup is needed.

3.1.2. Run daikon

After successful compilation of the target programs, invariants of a program can be obtained by
daikon in two steps.
 1) Run the target program using Chicory front end to get the trace file

2) Run the java program with daikon option to get the invariants. The invariants are printed out
the console so that it is better to store the invariants in the file

Alternately, two steps for generating invariants explained above can be done using one command
as below.

3.1.3. Eclipse plug-in
Even though Daikon provides eclipse plug-in, it only supports daikon 4.0.0. Because we could
not find any website to download daikon 4.0.0 we tried to run the eclipse plug-in using daikon
4.2.4, but it did not work.

 4

3.2. NEMO Installation
Nemo is an open-source overlay multicast protocol for streaming applications provided by
Northwestern University. In order to run NEMO, NEMO source file and additional jar files are
need to Download. The source website is
http://www.aqualab.cs.northwestern.edu/projects/nemo/download.php and an additional jar files
belongs to apache project so they can download at http://jakarta.apache.org/.

3.3. NEMO execution
NEMO provides sample program named MulticastAgent.java to test overlay multicast protocol
provided by NEMO. The program can be run using three different set of parameters. When it
runs using one parameter which is port number, the agent program runs as a bootstrap. A
subscriber needs one more parameter, the address of bootstrap agent. A publisher needs
additional packet sending interval. In our experiment, we focused on the bootstrap so that we put
only one parameter in the MulticastAgent.java.

3.4. NEMO experiment challenges
The program that we focused on was the multicast agent which runs forever like server daemon
program. Daikon also ran forever and the trace file kept increasing. For that reason, we slightly
changed the NEMO program not to run forever and finally generated the trace file. Another
challenge was daikon needed large amount of memory to make trace file and get the invariants
from it. We had to increase java memory heap size up to 1024MB whiling running daikon. Last,
it took more than 20 minutes to get the trace file even though daikon consumed 100% of CPU
(Pentium 4 2.0MHz) and 1024MB memory

4. Analysis of Results

4.1 Group Management through NEMO:

To organize peer nodes into groups (or perform group management), NEMO organizes the
peers into clusters, where the clusters are put in layers such that every peer is a member of the
cluster at the lowest layer. In a cluster, a leader node is chosen from among the peers and this
leader becomes the member of the next higher layer. The formation of such clusters in each layer
is based on:

1. Network proximity
2. Bandwidth (in terms of latency) and
3. Peer lifetime

 5

The size of a cluster is measured in terms of the “degree” [NRPP04] degree of what? The
approach by the team was to use Daikon to collect the invariants at run time on these parameters
(see Table in Appendix 1), and make an analysis of these parameters. The analysis would further
provide guidance concerning whether NEMO as an OMP could be used on the MSE project.

4.2 Member Join:

The typical join operation occurs when a new node wants to join an existing hierarchy of
nodes; this is an important part of group management. When a new node comes into the network
it:

1. Polls a typical node (i.e. the first node ever to enter the hierarchy, which is in the highest
layer) and based on this polling (also called the “rendezvous point” [NRPP04]), it gets to
know the network addresses of the leaders or co-leaders in the current (top layer)

2. The new node then polls each of the nodes in the existing layer (top for the first time) and
tries to find the leader which minimizes its cost function to the greatest extent in that
layer. It again tries to get the leaders’ addresses in the next lower layer, until it reaches
the bottommost layers. At this point, whichever leader node minimizes the cost function
to the greatest extent is chosen and the new node joins its associated layer.

4.3 Member Leave:

The leave of a member could be in two different situations:

1. An announced leave
2. An unannounced leave

In case of an announced leave, a peer member from a cluster in a layer announces its leave to
the leader and leaves the cluster in that layer. If the peer member leaving is the leader itself, the
leader must announce its leave to the peers, the peers must select a new co-leader and then the
leader must leave the cluster in a layer by announcing to the new leader.

The team wanted to simulate this operation of join and leave (when there was already a layer
consisting of node(s) and a new node joined the cluster) and use Daikon’s invariants to provide
network data on such join and leave operations. To accomplish this task, the team created a
single node (called bootstrap node or publisher node) and allowed another node (called
subscriber node) to join the network. But the team soon found that as Daikon’s analysis is
performed at runtime, the program should end for Daikon to produce a trace file for meaningful
and compliable results on invariants.

In the case of the join and leave operations (for a new node joining/leaving existing nodes),
the program doesn’t come to an end; instead, like a server, it (passively) accepts new connections
and keeps running. This caused Daikon to run nonstop on the Nemo code of interest. The team
tried various ways of killing the process just after a join or a leave operation, but Daikon’s trace
file failed to capture such situations primarily as the tool running on the code also got killed with
the process.

 6

The end result was that the team could only simulate and generate the invariants when there
was a single node in the network (i.e. when there was no node in the network and the first node,
called the bootstrap, joined or left the network) for a time bound (short) period. No join requests
or leave requests to the bootstrap node were considered and the situation was kept very simple.
This allowed to program to end after a short period of time and thus Daikon could capture
invariants on this piece of running code due to its termination.

The team realized that Daikon as a tool is not very useful for NEMO (as it could only
simulate very simple situations for the join or leave of a single bootstrap node). When the
invariants were checked for a single node it was found that these invariants were very
informative and contained data on constants just before such a join request.

Based on these pre-join invariants, however, the team could still conclude many things.
Although the invariants were produced for simple situations, they proved to be useful for an
evaluation on the project in terms of whether the MSE team could conclusively carry on with
NEMO. The team realized the potential (more details are provided in later sections) of using
NEMO on the MSE project and Daikon’s invariants enabled the team to formulate this reasoning.

4. Lessons Learned

Throughout the project, the team learned a large number of lessons by using Daikon on an
OMP project like NEMO. Daikon’s dynamic invariants produced enabled the team to get
knowledge on NEMO’s setup as an OMP project and also form an opinion on whether NEMO
would provide useful support to the overall MSE project for the client POSDATA.

4.1 General characteristics of Daikon

1. The Daikon tool is a dynamic invariant detector. The tool’s results, due to the run time

characteristics, are largely dependent upon the test cases that are used to run the tool. The
team faced two situations, the choice of a number of test cases (in terms of different port
numbers) and the right choice of the test cases (which made the program terminate and
thus enabled Daikon to produce the relevant invariants that could be compiled into a
readable format).

2. The tool will only visit those portions of the code that are motivated by the test cases. The
quality of test cases also determines to a large extent the information contained in the
invariants.

3. The tool is very specific in its search for invariants. This is seen in the fact that the tool
only checks for invariants on the entry and exit of method definitions in classes and also
on the classes and objects of those classes. This can cause invariants on variables to be
detected if the same are defined inside a constructor rather than being defined outside in
the class definition.

4.2 Benefits to our project

 7

1. The tool produced invariants on variable value thresholds and other important networking

parameters like bandwidth, latency, heartbeats etc. This information was very useful to
predict the condition of the network where a node exists and another tries to join the
existing node, but the join is yet to happen.

2. Based on the expectations set by the team and the results produced by Daikon, the

analysis proved to be beneficial in understanding a simple OMP situation. The same
situation was used to make decisions of making NEMO a part of the MSE project.

3. The invariants detected by Daikon are automatic and the developers do not need to

provide annotations in the code for producing them.

4. The invariants detected are primarily of 4 types:
• Enter: For pre conditions that would be true when entering a program
• Exit: For post conditions that would be true when leaving a program
• Class: For any new class definition which is encountered in program execution,

where the invariants are static in nature and true for the class in general
• Object: True for the objects of the class, i.e. the invariants are true for all methods

for that class
These invariants provide useful information as described above.

4.3 Drawbacks

1. As already mentioned, the tool cannot scale up to situations where the program keeps

running forever. The team found the dynamic situations of join and leave in the NEMO
project almost impossible to check using Daikon. This is largely due to the fact that
Daikon is a dynamic invariant detector and runs as a normal plug-in to the existing java
compiler (Java 5). The tool would be good to use on code fragments that come to an end
of execution, but in the case of NEMO the code keeps running and the Daikon tool keeps
producing the trace of the invariants. As running Daikon is a 2 step process of first
generating the traces and then running the Daikon tool itself, the approach cannot work
for the never ending code situations.

2. Again, the tool uses a machine learning approach and based on test cases, produces a
large number of invariants, to the extent that some of them are spurious. A random
number generator function was used in the NEMO project, and Daikon produced one
invariant for each of the random values. This provided an example of spurious invariants
where the tool could have avoided this situation.

3. It took the team a large amount of time to make the NEMO project compile for the first
time; thus sometimes if the code does not compile properly and reports compile time
errors, testing it using dynamic tools like Daikon can almost become impossible.

4. Again the overhead involved in generating the test cases (identification of the right type
of test case for a project) took the team a large amount of time. Sometimes the time spent
could be comparable to time spent in doing a static code walkthrough or review on code
that is the size of NEMO (~3 MB).

 8

5. Conclusions

 In our approach Daikon as a dynamic invariant detecting tool was moderately helpful.
The reasons are as follows:

1. The tool could provide invariants for only very simple cases of NEMO. This was when
there is a single node (bootstrap) that joins and leaves the network. This was due to the
inability of Daikon to run successfully on non-terminating and forever running programs.
This fact is again attributed to the dynamic nature of Daikon.

2. The test-cases did not attain coverage of the entire code fragment of interest. This only

happened with some of the classes (related to the bootstrap node), whereas general
publisher and subscriber join and leave methods were never explored by Daikon. The tool
only traverses those paths in the program that are supported by the test cases and in our
case the test cases were constrained by the inability of the tool to execute on forever
running code fragments (as typical of NEMO)

However, there are several benefits that result as well. Below are some of the overall benefits
of using Daikon:

1. The tool could execute a simple case of an OMP on NEMO and provide insight into the

threshold values of network parameters.
2. The invariants produced with Daikon enabled the team to understand the OMP concepts

as depicted by NEMO in a better and more productive way.
3. Although the invariants could have been more useful if the Daikon tool could run on a

typical join or leave scenario, the team could draw an estimation of NEMO capability by
the simple analysis through the use of Daikon.

6. References

[NRPP04] Stefan Birrer and Fabián E. Bustamamte, “Nemo-Resilient Peer-to-Peer Multicast
without the Cost”
[Noh05] Kuyul Noh, Changki Kim, Jonggul Park, Jaeha Song, “The Evaluation of Daikon:
untilization of Daikon in the POI Data Inspection System”
[Kim02] Miryung Kim and Andrew Peterson, “An Evaluation of Daikon: A Dynamic Invariant
Detector”
[Prakash02] Amol Prakash, Mausam, “Tool Evaluation : DAIKON”
[Ernst+] Ernst, Michael D., Griswold, William G. Notkin, David. “Dynamically Discovering
Likely Program Invariants to Support Program Evolution”
http://pag.csail.mit.edu/daikon/
http://www.aqualab.cs.northwestern.edu/projects/nemo/gettingstarted.html

Appendix 1. Test Case

 9

Test Case:
There is only one bootstrap (leader node, like a server) in the network and this node is created using different port numbers like 1050
etc.

Code Segments Output from Daikon
package edu.nwu.nemo.examples;

public final class MulticastAgent
{ public static void main(String[] args)
 {

org.apache.log4j.Logger.getRoot().setLevel(org.apache.log4j.Level.WARN);
// comment out for more debug output
 }
}

edu.nwu.nemo.examples.MulticastAgent:::CLASS
edu.nwu.nemo.examples.MulticastAgent.logger has only one value
edu.nwu.nemo.examples.MulticastAgent.logger.getClass() ==
org.apache.commons.logging.impl.Log4JLogger.class

Expectations:
The expectations of the developers were to identify some aspects of logging, and the tool’s output confirmed that the logger class had only one value to log.
Were the Expectations met?
The expectations were met in terms of tool telling the number of values getting logged and also in terms of the class used by the logger for the logging operation. Some
values that the tool missed was the value that was the actual value that was logged.
package edu.nwu.nemo.examples.MulticastAgent;
switch (args.length)
 {
 case 3: …
 case 2:
 bootstrap = new SocketAddress[]
 {
 AgentId.parseAgentId(args[1]).getSocketAddress()
 };
 case 1:
 int port = Integer.parseInt(args[0]);
 InetSocketAddress addr = null;
 if (port > 0)
 {
 addr = new InetSocketAddress(InetAddress.getLocalHost(),
 port);
 }

socketFactory = new SharedPacketSocket(new PacketSocket(addr));

edu.nwu.nemo.examples.MulticastAgent.main(java.lang.String[]):::ENTER
args has only one value
args.getClass() == java.lang.String[].class
args[] == [32541460]
args[] elements == "32541460"
args[].toString == [1050]
args[].toString elements == "1050"
size(args[]) == 1
edu.nwu.nemo.examples.MulticastAgent.SESSION_IDENTIFIER[] elements ==
size(args[])-1
size(args[])-1 in edu.nwu.nemo.examples.MulticastAgent.SESSION_IDENTIFIER[]

 10

 break;
}

Expectations:
The expectations were that the tool indicates the test case before starting the analysis.
Were the Expectations met?
The expectations were met in terms of tool telling the number of values that were input by the programmers and also the nature and the type of this value.
package edu.nwu.nemo.bll.NemoBootstrapService;
public void setup(IPacketSocketFactory socketFactory,
 ITimestampFactory tsmpFactory,
 IEpochServiceFactory epochServiceFactory, IReefConfiguration
config,
 SocketAddress[] bootstrap)

edu.nwu.nemo.bll.NemoBootstrapService.setup(edu.nwu.net.api.IPacketSocketFactory,
edu.nwu.util.api.ITimestampFactory, edu.nwu.reef.api.IEpochServiceFactory,
edu.nwu.reef.api.IReefConfiguration, java.net.SocketAddress[]):::ENTER
this.sock == null
this.nodeId == null
this.agent == null
this.epochService == null
this.config == null
this.callback == null
this.handler == null
socketFactory has only one value
socketFactory.getClass() == edu.nwu.net.wfl.SharedPacketSocket.class
tsmpFactory has only one value
tsmpFactory.getClass() == edu.nwu.util.bll.TimestampFactory.class
epochServiceFactory has only one value
epochServiceFactory.getClass() == edu.nwu.reef.bll.EpochServiceFactory.class
config has only one value
config.getClass() == edu.nwu.nemo.bll.NemoConfiguration.class
bootstrap has only one value
bootstrap.getClass() == java.net.SocketAddress[].class
bootstrap[] == []

edu.nwu.nemo.bll.NemoBootstrapService.setup(edu.nwu.net.api.IPacketSocketFactory,
edu.nwu.util.api.ITimestampFactory, edu.nwu.reef.api.IEpochServiceFactory,
edu.nwu.reef.api.IReefConfiguration, java.net.SocketAddress[]):::EXIT
edu.nwu.nemo.bll.NemoBootstrapService.logger ==
orig(edu.nwu.nemo.bll.NemoBootstrapService.logger)
edu.nwu.nemo.bll.Configuration.loggerConf ==
orig(edu.nwu.nemo.bll.Configuration.loggerConf)
this.config.clusterType == orig(edu.nwu.nemo.core.EClusterType.CONST)
edu.nwu.nemo.core.EClusterType.LINEAR ==
orig(edu.nwu.nemo.core.EClusterType.LINEAR)
edu.nwu.nemo.core.EClusterType.EXPONENTIAL ==
orig(edu.nwu.nemo.core.EClusterType.EXPONENTIAL)

 11

this.config.defaultJitter == orig(size(bootstrap[]))
bootstrap[] == orig(bootstrap[])
this.sock has only one value
this.nodeId has only one value
this.agent has only one value
this.epochService has only one value
this.config has only one value
this.callback has only one value
this.handler has only one value
bootstrap[] == []
edu.nwu.nemo.bll.NemoBootstrapService.logger.getClass() ==
edu.nwu.nemo.dll.RpPacketHandler.logger.getClass()
edu.nwu.nemo.bll.NemoBootstrapService.logger.getClass() ==
orig(edu.nwu.nemo.bll.NemoBootstrapService.logger.getClass())
edu.nwu.nemo.bll.NemoBootstrapService.logger.getClass() ==
orig(edu.nwu.nemo.bll.Configuration.loggerConf.getClass())

Expectations:
The configuration is set right and setup is initialized in a proper order.
Were the Expectations met?
The expectations were met in terms of tool telling the number of values that were setup by the code but there was no information on the nature and the type of values.
package edu.nwu.nemo.bll.NemoBootstrapService;
On each and every method of NemoBootstrapService class namely: setup,
teardown, getName, toString

this.config.degree == this.config.numPrmAgents
this.config.degree == this.config.crewSize
this.config.degree == this.nodeId.id.id[this.config.numStreams]
this.config.useLowPriority == this.config.useLossRate
this.config.useLowPriority == this.config.usePrm
this.config.useLowPriority == this.config.useScheduling
this.config.useLowPriority == this.config.useDynamicPositioning
this.config.useLowPriority == this.config.schedBySuccessors
this.config.useLowPriority == this.config.ignoreDuplicates
this.config.useLatency == this.config.useNacks
this.config.useLatency == this.config.useHistory
this.config.useLatency == this.config.useProactiveForwarding
this.config.useLatency == this.config.useRefinement
this.config.costEstimationProb == this.config.leaderRefinementProb
this.config.costEstimationProb == this.config.clusterMergeProb
this.config.costEstimationProb == this.config.alternateAgentsProb
this.config.costEstimationProb == this.config.responseTimeAlpha
this.config.minClusterRefinementThreshold ==
this.config.minLeaderRefinementThreshold

 12

this.config.minClusterRefinementThreshold == this.config.costAlphaDown
this.config.degree == 3
this.config.numStreams == 1
this.config.useLowPriority == false
this.config.cacheSize == 16
this.config.useLatency == true
this.config.prmProb == 0.02
this.config.clusterType has only one value
this.config.packetInterval == 100
this.config.dataSize == 1000
this.config.costEstimationProb == 0.05
this.config.clusterRefinementProb == 0.2
this.config.undersizedLeaderRefinementThreshold == 0.5
this.config.oversizedLeaderRefinementThreshold == 1.0
this.config.maxClusterRefinementThreshold == 0.9
this.config.minClusterRefinementThreshold == 0.1
this.config.maxLeaderRefinementThreshold == 0.8
this.config.timePerThresholdIncrease == 5000.0
this.config.jitterFactor == 4.0
this.config.minimalJitter == 200
this.config.randomSubsetSize == 10
this.config.streamPenalty == 10.0
this.config.heartbeatInterval == 10000
this.config.gracePeriod == 15000
this.config.rpHeartbeatInterval == 2000
this.config.rpGracePeriod == 7000

Expectations:
The values are initialized and the developers learn some rules in terms of the network parameters.
Were the Expectations met?
The expectations were met in terms of tool telling:

1. The number of parameter agents, crew size (number of nodes in a layer) and number of independent node streams all are same and map to the degree.
2. The low priority (i.e. priority among the network nodes in a layer is set), to, the loss rate, network parameter used, scheduling, dynamic positioning,

scheduling by leader nodes or ignoring duplicates. The low priority assignment could be a function of the following parameters.
3. The latency of the network (or the delay in Overlay Multicast group management) could be based on use of negative acknowledgements, history of operation

of the network, proactive forwarding or refinement. Thus, the latency could be a function of these parameters.
4. The cost estimation probability of the network is a function of the leader refinement probability, cluster merge probability, alternate agent probability or

response time.
5. The thresholds for minimum cluster refinement and minimum leader refinement are equal, whereas the minimum cluster refinement threshold is a function of

the cost parameter.
6. Some constant values are assigned to degree (3), number of streams (1, as it is a bootstrap node only) and parameter probability of 0.02. The cluster type has

 13

only one node (bootstrap) and is correctly assigned a value of 1.
7. Nemo uses a machine learning genetic algorithm and this algorithm assigns hard values which are improved as the network performs the overlay multicast

protocol. Some of these parameters include the grace period between packets, heart beat and jitter factor.
package edu.nwu.nemo.dll.Callback;
callback = new Callback(sock);

public class Callback implements IStreamAgentCallback,
IStreamMulticastCallback,
 IStreamRpCallback
{…
}

edu.nwu.nemo.dll.Callback:::CLASS
edu.nwu.nemo.dll.Callback.UNIFORM.min == cern.jet.random.Uniform.shared.min
edu.nwu.nemo.dll.Callback.UNIFORM.max == cern.jet.random.Uniform.shared.max
cern.jet.random.Uniform.shared.min ==
edu.nwu.nemo.dll.Callback.PROB_RELIABLE
edu.nwu.nemo.dll.Callback.logger has only one value
edu.nwu.nemo.dll.Callback.logger.getClass() ==
org.apache.commons.logging.impl.Log4JLogger.class
edu.nwu.nemo.dll.Callback.UNIFORM has only one value
cern.jet.random.Uniform.shared has only one value
cern.jet.random.Uniform.shared.max == 1.0

Expectations:
To see what are the callback values when a single bootstrap node. Callback is used in the scriber and publisher nodes to join and release a connection.
Were the Expectations met?
The expectations were met in terms of tool telling:

1. The values of minimum and maximum for callbacks were set to reliable transmission probability between two nodes (initialized to value 0) and value 1.0 (one
bootstrap node) respectively.

package edu.nwu.nemo.bll.StreamRp;

public class StreamRp implements IStreamRp
{ …..

public StreamRp(Configuration config, AgentId id,

 IStreamRpCallback callback, ITimestampFactory factory)
 {…. }

}

edu.nwu.nemo.bll.StreamRp.StreamRp(edu.nwu.nemo.bll.Configuration,
edu.nwu.reef.api.AgentId, edu.nwu.nemo.api.IStreamRpCallback,
edu.nwu.util.api.ITimestampFactory):::ENTER
config.degree == config.numPrmAgents
config.degree == config.crewSize
config.degree == id.id.id[config.numStreams]
config.useLowPriority == config.useLossRate
config.useLowPriority == config.usePrm
config.useLowPriority == config.useScheduling
config.useLowPriority == config.useDynamicPositioning
config.useLowPriority == config.schedBySuccessors
config.useLowPriority == config.ignoreDuplicates
config.useLatency == config.useNacks
config.useLatency == config.useHistory
config.useLatency == config.useProactiveForwarding
config.useLatency == config.useRefinement
config.prmProb == config.clusterSplitProb
config.clusterType == edu.nwu.nemo.core.EClusterType.CONST
config.clusterType.id == config.defaultJitter
config.packetInterval == config.epochInterval

 14

config.costEstimationProb == config.leaderRefinementProb
config.costEstimationProb == config.clusterMergeProb
config.costEstimationProb == config.alternateAgentsProb
config.costEstimationProb == config.responseTimeAlpha

edu.nwu.nemo.bll.StreamRp.StreamRp(edu.nwu.nemo.bll.Configuration,
edu.nwu.reef.api.AgentId, edu.nwu.nemo.api.IStreamRpCallback,
edu.nwu.util.api.ITimestampFactory):::EXIT
config.degree == config.numPrmAgents
config.degree == config.crewSize
config.degree == orig(config.degree)
config.degree == orig(config.numPrmAgents)
config.degree == orig(config.crewSize)
config.degree == id.id.id[config.numStreams]
config.degree == orig(id.id.id[post(config.numStreams)])
config.degree == id.id.id[orig(config.numStreams)]
config.degree == orig(id.id.id[config.numStreams])
config.numStreams == orig(config.numStreams)
config.numStreams == size(this.rps[])
config.useLowPriority == config.useLossRate
config.useLowPriority == config.usePrm
config.useLowPriority == config.useScheduling
config.useLowPriority == config.useDynamicPositioning
config.useLowPriority == config.schedBySuccessors
config.useLowPriority == config.ignoreDuplicates
config.useLowPriority == orig(config.useLowPriority)
config.useLowPriority == orig(config.useLossRate)
config.useLowPriority == orig(config.usePrm)
config.useLowPriority == orig(config.useScheduling)
config.useLowPriority == orig(config.useDynamicPositioning)
config.useLowPriority == orig(config.schedBySuccessors)
config.useLowPriority == orig(config.ignoreDuplicates)
config.cacheSize == orig(config.cacheSize)
config.useLatency == config.useNacks
config.useLatency == config.useHistory
config.useLatency == config.useProactiveForwarding
config.useLatency == config.useRefinement
config.useLatency == orig(config.useLatency)
config.useLatency == orig(config.useNacks)

 15

config.useLatency == orig(config.useHistory)
config.useLatency == orig(config.useProactiveForwarding)
config.useLatency == orig(config.useRefinement)
config.costEstimationProb == config.leaderRefinementProb
config.costEstimationProb == config.clusterMergeProb
config.costEstimationProb == config.alternateAgentsProb
config.costEstimationProb == config.responseTimeAlpha
config.costEstimationProb == orig(config.costEstimationProb)
config.costEstimationProb == orig(config.leaderRefinementProb)
config.costEstimationProb == orig(config.clusterMergeProb)
config.costEstimationProb == orig(config.alternateAgentsProb)
config.costEstimationProb == orig(config.responseTimeAlpha)

Expectations:
The values are set and the methods are worked for get the rendezvous-point.

Were the Expectations met?
The expectations were met in terms of tool telling:

1. The number of parameter agents, crew size (number of nodes in a layer) and number of independent node streams all are same and map to the degree.
2. The low priority (i.e. priority among the network nodes in a layer is set), to, the loss rate, network parameter used, scheduling, dynamic positioning, scheduling

by leader nodes or ignoring duplicates. The low priority assignment could be a function of the following parameters.
3. The latency of the network (or the delay in Overlay Multicast group management) could be based on use of negative acknowledgements, history of operation of

the network, proactive forwarding or refinement. Thus, the latency could be a function of these parameters.
4. The cost estimation probability of the network is a function of the leader refinement probability, cluster merge probability, alternate agent probability or

response time.
package edu.nwu.nemo.dll.JoinPacket;
ON each and every method of JointPacket class
Namely: JoinPacket, getLayer, decode, encode

edu.nwu.nemo.dll.JoinPacket:::CLASS
edu.nwu.nemo.dll.JoinPacket.VERSION ==
size(edu.nwu.nemo.dll.JoinPacket.FIELDS[])-1
edu.nwu.nemo.dll.JoinPacket.FIELDS has only one value
edu.nwu.nemo.dll.JoinPacket.FIELDS.getClass() ==
edu.nwu.net.api.IPacketField[].class
edu.nwu.nemo.dll.JoinPacket.FIELDS[] contains no nulls and has only one value, of
length 1
edu.nwu.nemo.dll.JoinPacket.FIELDS[] elements has only one value
edu.nwu.nemo.dll.JoinPacket.FIELDS[].getClass() == [edu.nwu.net.dll.SimpleField]
edu.nwu.nemo.dll.JoinPacket.FIELDS[].getClass() elements ==
edu.nwu.net.dll.SimpleField.class
size(edu.nwu.nemo.dll.JoinPacket.FIELDS[]) == 1
edu.nwu.nemo.dll.JoinPacket.FIELDS[edu.nwu.nemo.dll.JoinPacket.VERSION+1..]
== []
edu.nwu.nemo.dll.JoinPacket.FIELDS[] elements ==

 16

edu.nwu.nemo.dll.JoinPacket.FIELDS[edu.nwu.nemo.dll.JoinPacket.VERSION]

Expectations:
JointPacket is used for joining the requested packet (node).

Were the Expectations met?
The expectations were met in terms of tool telling:

1. The invariants as shown above demonstrate that one node joins the network and forms a part of a FIELD (which represents a cluster in a layer).
2. The version maintains the information of who is the leader in a particular FIELD and in our case of one node, the single node is also the leader

package edu.nwu.nemo.dll.LeavePacket;

public class LeavePacket extends Packet
{ …
public LeavePacket()

 {
 …
 }
}

edu.nwu.nemo.dll.LeavePacket:::CLASS
edu.nwu.nemo.dll.LeavePacket.VERSION ==
size(edu.nwu.nemo.dll.LeavePacket.FIELDS[])
edu.nwu.nemo.dll.LeavePacket.FIELDS has only one value
edu.nwu.nemo.dll.LeavePacket.FIELDS.getClass() ==
edu.nwu.net.api.IPacketField[].class
edu.nwu.nemo.dll.LeavePacket.FIELDS[] == []
edu.nwu.nemo.dll.LeavePacket.FIELDS[].getClass() == []

Expectations:
 LeavePacket is used for leaving the requested packet (node).

Were the Expectations met?
The expectations were met in terms of tool telling:

1. The invariants as shown above demonstrate that one node leaves the network and forms a part of a FIELD (which represents a cluster in a layer).
2. The version maintains the information of who is the leader in a particular FIELD and in our case of one node; the single node is also the leader. This leader

gives up the leadership before leaving the network.

