

Application and Evaluation of

Rational Purify

Apr 24, 2007

Youngki Hong, Taeho Kong, Whanchul Kang,

Hyunwoong Park, Youngjin Ro, Hyeeun You

Contents

1 Introduction..3
1.1 Overview ..3
1.2 Working Environment...3
1.3 Purpose ...3
1.4 How it works...3

2 Tool Experience and Evaluation Approach ...4
2.1 Tool Experience (FileZilla Client and Server) ...4
2.2 Evaluation Approach...4

3 Application of Purify ..5
3.1 Result of in C program with injected defects ...5
3.2 Purify for Java...6

3.2.1 A simple Java program ..6
3.2.2 A more complicated Java program...8

4 Evaluation of Purify ...9
4.1 Soundness & Precision ..9
4.2 Usability..9

4.2.1 Ease of installation (setup)...9
4.2.2 Ease of Application ...10

4.3 Performance ..10
5 Conclusion ...11

5.1 Strengths & Weaknesses ...11
5.1.1 Strengths ...11
5.1.2 Weaknesses ...11

5.2 Would you continue using it? ..11
6 Future Work ...12
References...12
Appendix 1 : Source with injected memory defects ...13
Appendix 2. Different results according to different types of C-Compiler......................14

Deleted: 10

Deleted: 10

Deleted: 12

 3

1 Introduction

1.1 Overview

IBM Rational® Purify is a tool for runtime

analysis to help developers consider memory

issues during the development phase. Purify is

generally used for memory corruption detection,

memory leak detection, application performance

profiling, and code coverage analysis.

1.2 Working Environment

Purify provides memory leak detection for C/C++,

Java, Visual C++, and all VS.NET managed

languages in Windows, Linux and Unix

environments.

1.3 Purpose

It is very difficult to check memory leaks and

memory violations for a system since the bugs

usually show their symptoms intermittently.

Moreover, it is hard and time-consuming to find

the source of the memory leaks for large

development projects.

Purify can be used to reduce the cost for testing

and debugging this problem by allowing a user to

find defects quickly. It also provides detail

information such as reasons why the defects

occur or locations of bugs to aid identification of

defects related with memory issues. The memory

access defects which Purify usually finds are the

followings:

• Array Bound Checking Defects: Purify

checks defects in statistically or dynamically

allocated memory for array. Array bounds

read, array bounds write, and array bounds

write defect message can be addressed to this

type of defects.

• Memory Usage Defects: Purify checks

defects related with memory usage such as

un-initialized memory use, free memory use,

and free mismatch defects.

• Pointer Defects: It is not allowed to use

invalid or null pointers for reading, writing,

or freeing. Purify checks null pointer use and

invalid pointer use.

• Stack Related Defects: Purify shows the
stack use defect such as stack overflow and

stack out of bounds.

• Memory Allocation Failure and Memory

Leak: Purify informs when memory

allocation failure or memory leak occurs.

1.4 How it works

When it is linked with a program, Purify

automatically inserts its verification code to the

executable by parsing and adding to the object

code. Purify maintains a table which is used for

tracking the status of each byte of memory with

two bits; the first bit recording whether it is

allocated or not and the second bit recording

whether it is initialized or not. Figure 1-1 shows

four states which each byte of memory can have:

red (unallocated and un-initialized), yellow

(allocated but un-initialized), green (allocated and

initialized), and blue (unallocated but initialized).

Figure 1-1 States of memory in Purify

Formatted: Left

Deleted:

 4

2 Tool Experience and Evaluation
Approach

2.1 Tool Experience
(FileZilla Client and Server)

Our team chose FileZilla Client and Server to

experience Purify. FileZilla Client is an open

source FTP client for Windows. It supports FTP,

SFTP, and FTPS (FTP over SSL/TLS). FileZilla

Server is another FTP server product which

FileZilla Client can communicate with. It

supports FTP and FTP over SSL/TLS. [1] Both of

FileZilla Client and Server were developed in

C++.

Our team applied Purify to each of FileZilla

Client and Server. We set up data collection

option in Purify so that it can collect only

memory related defect and leak data without

collecting memory profiling data, since FileZilla

Client and Server were written by C++ language.

The results of tool experience are as follows.

Firstly, for the test of FileZilla Client, the

sequence of events was opening up an FTP

connection to FileZilla Server that is already

running, performed some operations, such as file

uploads and downloads, to FileZilla server, and

then log out. Figure 2-1 shows that Purify

detected three main memory leaks and no

memory defects.

Secondly, for the test of FileZilla Server, the

sequence of events was starting FileZilla Server

before receiving FTP requests so that it can listen

to FileZilla Client, performed some operations

like file upload and download from FileZilla

Client, and then disconnect FTP connection and

shutdown FileZilla Server. Figure 2-2 shows that

Purify only detected one main memory leakage.

Figure 2-1 Screenshot of FileZilla Client

Figure 2-2 Screenshot of FileZilla Server

2.2 Evaluation Approach

From the tool experience, we found that Purify

can be applied to find defect information like

memory leaks and to fix the defects. However,

the tool experience is not enough to evaluate

Purify closely. The major reason is that only

memory leakage information was detected in

FileZilla open source, even though the tool can

detect memory defects and memory profiling in

detail. The other reason is that this tool

experience was only based on the source codes

implemented by C++. This can underestimate the

capability of Purify that can detect memory

defects and leaks related to Java programs. We

derived C and Java program experiment cases

with three evaluation criteria to evaluate Purify in

more objective ways.

Deleted: the results of

Deleted: is

Deleted: may not be

Deleted: good

Deleted: provided

Deleted: open

Deleted: s

Deleted: For those reasons, our team

Deleted: additionally

Deleted: several

Deleted: and

Deleted: criteria

Deleted: as follows, so that we can

Deleted: much

 5

2.2.1 Application cases

We applied Purify to three application cases:

a simple C program, a simple Java program,

and a more complicated Java program..For

each experiment case, we injected several

intentional defects or memory leaks.

Experiment cases Kind of injected defects

C Simple
� 8 kinds of defects

� 2 kinds of memory leaks

Simple
� Simple memory leak: n

memory allocation & n-1

memory free

Java

More

complicated

� Comparison between a

method with memory
leak and a method with

very high memry

allocation without leak.
Table 2-1 Application Cases

Defects and leakage data will be collected for

applying the tool to C program, and profiling

data will be collected for applying the tool to

Java programs.

2.2.2 Evaluation Criteria

On the basis of data resulted from application

cases, we will evaluate Purify with the

following criteria.

Factor Definition & Criteria

Soundness
� The extent of how many false-

positives or false-negatives

Purify has

Usability
� How fast Purify can be

installed

� How easily Purify can be used

Performance

� The extent of how fast Purify

detects defects in comparison

with inspection
Table 2-2 Evaluation Criteria

3 Application of Purify

3.1 Purify for C

In order to validate our understanding of how

Purify can find memory defects, we created a

“memerrors.c” application into which we injected

8 memory defects and 2 memory leaks.

• 2 un-initialized memory defects: un-

initialized memory read (UMR) and un-

initialized memory copy (UMC)

• 2 invalid pointer defects: invalid pointer read
(IPR) and invalid pointer write (IPW)

• 2 beyond stack defects: beyond stack read

(BSR) and beyond stack write (BSW)

• 2 array bound defects: array bound read

(ABR) and array bound write (ABW)

• 2 memory leaks (MLK)

For the source code with injected memory defects,

refer to appendix 1.

As shown in figure 3-1, Purify detected 6

memory defects out of 8 and 2 memory leaks out

of 2 that we injected into the code.

Figure 3-1 Detection Defects with Purify

Since there was only one control flow and

function call, the line coverage was 100%.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted Table

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Deleted: Experiment

Deleted: There are…three …major

experimen…t… that are applied to

Purify.… …would intentionally … that

Deleted: to

Deleted: Purify could detect, and
validate whether Purify can actually

detecting such defects.

Deleted: i

Deleted: Complicated memory leak:

c…it

Deleted: C

Deleted: Experiment

Deleted: The …d…s…data needed to

evaluate Purify … applied to Purify

Deleted: was able to …among…among

Please refer to the following screenshots

to see the detected memory defects and

leaks.

Deleted: ¶
¶
Ev

Deleted: collected by Purify after doing

experiment…would …whether …can

detect all of defects, memory leaks. For

Deleted: .

Deleted: Usability

Deleted: Capability related to how fast

a user can install Purify and how easy a

Deleted: Soundness

Deleted: The extent of how many false-

positives or false-negatives Purify has

Deleted:
Figure 3-2 Good user view with
Deleted: Consistency

Deleted: s

... [5]

... [2]

... [6]

... [3]

... [4]

... [8]

... [7]

... [9]

... [1]

 6

3.2 Purify for Java

Java is generally known as it has few memory

related issue because it doesn't allow using

pointers and provides strict runtime checking

function with Java Virtual Machine (JVM).

Furthermore, JVM uses garbage collection to

solve unused memory problems. However, Java

still has some memory problem issues.

Purify enable users to find out potential memory

leaks by profiling the memory usage of a Java

program.

3.2.1 A simple Java program

We applied Purify to a simple Java program

which has a method causing intentional memory

leaks to evaluate its effectiveness. The basic steps

are the followings:

1) Run an analysis for memory leaks by

collecting memory profiling information in a

Java application.

Figure 3-2 Run Program Window

2) After the analysis gets started, perform a

garbage collection in Purify so that the

application to analyze becomes stable, and

then take a snapshot.

Figure 3-3 Garbage collection in Purify

3) On the application to be analyzed, generate

some memory leaks by pressing the start

button (This application is intentionally

written to have a memory leak problem.)

Figure 3-4 Generating memory leaks

4) As soon as the memory leak is generated, it is

shown that the height of the graph (i.e.,

current memory usage of the application)

rapidly increases. A couple of seconds later,

perform one more garbage collection and then

take another snapshot.

Figure 3-5 Current memory usage

5) At a glance, it is shown that the obvious

difference in height between the previous and

the next states of the graph. For more precise

comparison, view the difference by using the

Compare Runs feature with a call graph

representing the amount of current memory

usage of each method as the thickness of

edges. It is considered that the thicker edge

the more memory usage.

Deleted: 5

Deleted: 3

Deleted: 6

Deleted: 4

 7

Figure 3-6 Compare Run

Also, it is possible to see exact difference in

terms of the number of calls by using a

function list view. (e.g., the difference in

memory is 8.208 as below.)

Figure 3-7 Difference in memory

6) With the results shown in the step 5, it is

found that ‘run’ method of ‘Process’ class is

likely to contain memory leak defects. The

detail view of a method provides more precise

information in terms of callers and

descendants as well as the callee itself.

Furthermore, Purify provides ‘roughly’ where

each memory allocation—which can be used

as a yardstick for memory leaks—is carried

out in the source.

Figure 3-8 Detail view of a method

Figure 3-9 Source view of a method

7) In the source code, it is shown that the second

(i.e. lower) for-statement causes a memory

leak since one less element of ‘VBytes’ vector

is removed than added by the first (i.e. upper)

for-statement in ‘run’ method. � for (i=0;

i<cnt; i++).

Therefore, change ‘i<cnt' to ‘i<=cnt',

recompile the code and re-run the analysis,

and then it is shown that the memory leak

disappears as below.

Figure 3-10 Disappearance of memory leak

Formatted: Indent: Left: 0.17"

Deleted: 7

Deleted: 9

Deleted: 10

Deleted: 8

Deleted: 11

 8

3.2.2 A more complicated Java program

Now, we applied Purify to a more complex Java

program to evaluate its soundness. The program

has two methods: leakingRequestLog and noLeak.

The leakingRequestLog method causes memory

leak. The noLeak method causes the highest

memory allocation, but no memory leak because

all of the objects it used get garbage collected at

the end of the method. The main method of the

program iterates the two methods. For capturing

exact snapshot, we made a main thread sleep to

slow down leaking process.

Figure 3-12 shows snapshot memory profile data

which is captured after the garbage collector is

invoked.

Figure 3-11 Memory in Use profile data for a more

complex Java program

As we have seen in the previous simple example,

the amount of memory leakage can be estimated

by looking at the difference in the y-axis value

between the second and third snapshot point

values in Figure 3-12. However, since this

program has two methods, we can’t know where

the leakage occurs (in other words, which method

causes the leakage) from figure 3-12.

Figure 3-13 is a call graph, which shows the

chain of methods called between the second and
third snapshots. The call graph displays methods

with significant memory usage, and the method

that used most of the memory in runtime is

highlighted with box and bold-colored line. The

highlighted method is the first candidate for

possible memory leak. We can see that both

highlighted leakingRequestLog method and non-

highlighted noLeak method.

Figure 3-12 Memory Call Graph from the compared

runs

Figure 3-14 is a function list view, which enables

us to confirm the exact leak by comparing

method list of the two snapshots. The

leakingRequestLog method has 480,000 as

difference of current method bytes allocated. On

other hand, the noLeak method has 0 as

difference of current method bytes allocated.

Figure 3-13 List of methods invoked in two snapshots

From these two Java examples, we can know

about memory leakage of Java programs through

memory profiling function of Purify. The tool

also enables us review and modify the source

code if we have the source code. Thus, Purify

gives sound results when users can capture clear

snapshots.

Deleted: 13

Deleted: 12

Deleted: 14

 9

4 Evaluation of Purify

4.1 Soundness & Precision

Purify is a relatively sound memory defect

detection tool since as described in the section 3.1

it has correctly detected 8 out of 10 injected

defects (i.e., 75% detection; six memory defects

in terms of Invalid Pointer defect, Beyond Stack

defect and Array Bound Defect, and two memory

leaks). The detection of memory defects from

C/C++ applications such as Invalid Pointer defect,

Beyond Stack defect, and Array Bound Defect is

important to developers because the memory

defects may cause the entire software system to

be broken out. It is usually difficult for

developers to find those defects during code

inspection. We could find those defects easily by

the help of Purify. Therefore, Purify can be used

to effectively prevent the program corruption

caused by memory defects. Discovery of two

memory leaks with little time and effort is

certainly valuable to decrease memory leaks

before delivering an application, because an

accumulated memory leak having begun with a

small one may cause a significant problem if the

application runs for a long time.

Purify for C/C++ did not shown any false

positives which mean detecting false, imprecise

defects. However, there were a couple of false

negatives that Purify was not able to find

uninitialized memory defects (i.e., copies and

reads) which means that it missed some defects

injected. The uninitialized memory defects

(UMR and UMC) may be trivial or important

depending on circumstances where a software

system is developed. However, they would be

very critical, for example, in banking systems

because uninitialized memory defects may wrong

change the balance of a banking account. IBM

Rational which created Purify mentions that it

should be able to detect uninitialized memory

defects but it could not.

It is different from C/C++ that Purify provides

only a memory leak analysis way for Java by

collecting memory profiling information. More

precisely, Purify just offers information only

about memory usages and not directly points out

the where and why of memory leaks at all. You

may expect that some methods of the code-which

occupy a great deal of (current) memory usage at

the point of time of an analysis snapshot-are the

most possible spots to cause memory leaks.

In short, Purify is very sound in terms of Java

memory leak analysis because it just shows

memory profiling information with which

developers may or may not detect memory leaks.

From another perspective, some may argue that

Purify is unsound in a sense that it often shows

the methods which had occupied the most amount

of memory usage (i.e., used as an indication of

possible memory leaks) but which are not

actually memory leaks. However, what Purify is

supposed to do is just showing memory usages,

not exactly showing memory leaks. In other

words, as long as you can certainly take a

snapshot at the desired point of time under clear

conditions, Purify always indicates actual

memory leaks. For this reason, Purify is sound

analysis tool for finding memory leaks for Java.

4.2 Usability

4.2.1 Ease of installation (setup)

Generally, the installation of Rational Purify

Windows version is not much difficult for users

who are familiar with Windows applications. It

uses IBM Rational Setup Wizard which is very

similar with other setup wizards such as

Microsoft Visual Studio setup wizard or

Microsoft Office setup wizard. Therefore, even

though a user has never installed Rational Purify

before, the installation does not cause serious

confusing to the user. Actually, all of six group

members completely installed the application

within 3 minutes. In conclusion, the installation

of Rational Purify is very easy and not time-

consuming.

 10

There is only one problem in terms of usability

while an ordinary user tries to install Rational

Purify. The application uses a special tool, IBM

Rational License Key Administrator, for

validating users’ license key. If a user is not

familiar with the way of license key validation of

IBM Rational, then the user can be confused for a

while. Fortunately, IBM Rational License Key

Administrator looks very simple and most of

users can find correct way of license key

validation intuitively and quickly.

4.2.2 Ease of Application

Purify is easy to use because it supports

visualization, various views, and access to source

files.

First, Purify presents memory related issues in

visual ways. It shows the results with different

symbols and colors. Especially, when Purify is

applied to C/C++ programs, each type of defects

is shown in red, yellow, green, or blue. Since red

and yellow color parts can be critical, users can

easily recognize where critical issues occur. It

also shows error detection view hierarchically.

Second, Purify provides various views, which

enable users to easily understand the analysis

result. For example, when Purify is applied to

Java programs, it shows memory profiling

information in memory, call graph, function list

view, and object list views. Third, Purify supports

users to access to the source code where the

problem occurs when the source files exist.

However, Purify has some limitations in usability.

Capturing usable snapshots requires much works

for users. If users are not able to capture usable

snapshots, the result given by Purify can be

confusing to users. Also, since it is a dynamic

analysis tool, Purify can't notify exact location of

defects to users.

4.3 Performance

In this section, we observe the whole examining

time with Purify and the inspection. When we use

Purify for detecting memory leak defects, we

have to spend time to compile and execute the

source code. Our team used C/C++ source code

having 40 lines, so we estimated that time as

about 3 minutes because we need compile time,

Purify execution time and result analysis time.

Also, we can expect that the entire time for

analysis with Purify will not increase sharply

according to the amount of LOC.

However, the general review rate for source code

inspection is 200 lines of code/hour on average

[5]. Based on this factor, we can estimate that we

will spend about 15 minutes about inspection

time of 40 lines. On the other side, the time for

inspection will be increase according to the

amount of LOC.

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400

LOC

M
in

Inspection Purify

Figure 4-1 Time estimation to detect memory leak

We can detect memory leaks easily if a program

is small size. However, if the program is huge

size, the detecting memory leak line by line can

be time consuming and cost a lot. We could find

those memory leaks very easily with the memory

leak detection function of Purify. Besides, all

defects detected from Purify cannot be found in

the inspection. It is because the defects of

memory leak can be found in run-time.

Thus, in the viewpoint of performance, the

examining speed with Purify can be much faster

than that with code inspection for finding

memory leak related defects in the code. Purify

can save a time and a cost.

 11

5 Conclusion

5.1 Strengths & Weaknesses

5.1.1 Strengths

1) Usability

• Usable visualization of analysis results (e.g.,

a user can easily distinguish of what type

each defect found is by seeing the color of its

description.)

• Ease of installation and conformance to other

common applications

• Various views in terms of memory defects

and leaks (e.g., memory usage graph, call

graph, function list view and object list view)

• Ease of access to source code files so as to

figure out where a memory defect or leak is

caused.

• Running an analysis without having source
code (i.e., taking advantage of dynamic

analysis)

• Details in terms of memory leaks results (i.e.,

number of calls, current method bytes

allocated, number of objects and source files)

2) Soundness

• Consistent profiling for current memory

usages in Java applications

• Detection of different types of possible

memory defects such as invalid pointer errors,

beyond stack errors and array bound errors

3) Performance

• Higher effectiveness to find memory defects

and leaks compared with code inspection

5.1.2 Weaknesses

1) Usability

• Unrealistically and artificially modified
source code required to properly perform an

analysis so as to figure out the two points of

time between before and after a memory leak

• Purify does not exactly show in what line of

code a memory defect is caused and can not

indicate it at all in some cases

• High dependency on manual inputs from a

user to complete an analysis (e.g., a user

should manually let Purify precisely know

where to take snapshots for Java application

analysis)

2) Soundness

• Unable to detect uninitialized memory

defects

3) Performance

• Memory profiling which usually heavily

affects the performance of Java application

tested

5.2 Would you continue using it?

So far, we have identified strength and weakness

on the basis of results of several experiments.

According to the strength and weakness, we can

say that Purify analysis tool can be good enough

to be applied to development project such as

Studio project, even though applying it to Java

based development project needs some additional

efforts to determine whether memory leaks

shown by Purify is actually defects or not.

Our team’s Studio project is to develop

DBAuditor system that supports DB performance

test according to TPC (Transaction Processing

Council) standard. For doing this, DBAuditor

system has 7 major components, such as (1)

Project management, (2) Schema Builder, (3)

Data Generator, (4) Query Executor, (5) ACID

test, (6) System Usage Monitoring, and (7)

Report management. We will implement

DBAuditor system using Java for improving

platform independency. Furthermore, we will

implement (6) System Usage Monitoring

component using C, and will wrap it with Java

using JNI (Java Native Interface). For this reason,

 12

DBAuditor system has a characteristic of having

Java as well as C program.

For this kind of characteristics of our project,

Purify can be effectively applied to our Studio

project. There are two major reasons as follows.

Firstly, C program for System Usage Monitoring

component can be effectively and efficiently

analyzed by Purify, due to its high usability,

soundness for defects, and performance for

detecting defects.

Secondly, Java program for most of components

in DBAuditor system can be efficiently analyzed

by Purify. The major reason is that Purify

provides high performance for analyzing memory

leaks in Java program. However, it may require

more efforts to determine whether profiling data

actually indicates memory leaks or not, or it may

be recommended that it should be better to being

used with other complementary analysis tools.

To sum up, Purify is very appropriate to be

applied to projects that have a goal to develop a

system using C as well as Java at the same time,

due to its high usability, soundness for detecting

defects, and performance for detecting easily.

6 Future Work

We analyzed C-source with three C-Compilers,

Visual Studio 6.0 C-Compiler, Visual Studio

2005 C-Compiler, and Dev-C Compiler. We

expected same result regardless of type of C-

Compiler. However, purify produced in different

results according to C-Complier. For more

different defects according to the type of C-

Compiler, see the Appendix 2. We were very

confused why this happen. We are not sure

whether problems are caused by defect detection

of smart compiler or by mismatch between Purify

and each C-Compiler. Therefore, Purify should

consider a consistency of analysis regardless of

type of Compiler.

References
[1] http://en.wikipedia.org/wiki/FileZilla

[2] http://www-306.ibm.com/software/awdtools/purify/

[3] http://en.wikipedia.org/wiki/IBM_Rational_Purify

[4] Goran Begic, etc., ‘An introduction to runtime analysis

with Rational PurifyPlus’ (http://www-

128.ibm.com/developerworks/rational/library/mar07/be

gic_pratt/index.html), 2007

[5] Alison A. Gately, ‘Design and Code Inspection

Metrics’, ASM 1999

[6] http://www.ing.iac.es/~docs/external/purify/purify-

4_1.pdf

[7] Jim Patrick, Handling memory leaks in Java programs,

IBM Pervasive Computing, 01 Feb 2001, (http://www-

128.ibm.com/developerworks/java/library/j-leaks)

[8] Sanjay Gupta, Preventing Memory Leaks in a Java

Application with Rational Purify: A Case Study, Wipro

Technologies, 04 Dec 2003, (http://www-128.ibm.com

/developerworks/rational/library/1499.html)

[9] Satish Chandra Gupta, Java memory leaks - Catch me

if you can, Rational Software, IBM, 16 Aug 2005

 13

Appendix 1 : Source with injected

memory defects

#include <stdio.h>

#include <stdlib.h>

#include <malloc.h>

#include <memory.h>

#include <fcntl.h>

int *plk = NULL;

int *mlk = NULL;

void genUMC(int *pi) {

 int j;

 pi = j; / Expect UMC: j is un-initialized, copied into

*pi */

}

void genUMR() {

 int i=10, j;

 genUMC(&i);

 j = i + 2; /* Expect UMR: Using i, which is now junk

value */

}

void genIPR() {

 int *ipr = (int *) malloc(4 * sizeof(int));

 int i = *(ipr - 1000); /* Expect IPR */

 int j = *(ipr + 1000);

 free(ipr);

}

void genIPW() {

 int *ipw = (int *) malloc(5 * sizeof(int));

 (ipw - 1000) = 0; / Expect IPW */

 *(ipw + 1000) = 0;

 free(ipw);

}

char *append(const char* s1, const char *s2) {

 const int MAXSIZE = 128;

 char result[128];

 int i=0, j=0;

 for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {

 result[i] = s1[j];

 }

 for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {

 result[i] = s2[j];

 }

 result[++i] = '\0';

 return result;

}

void genBSRandBSW() {

 char *name = append("IBM ", append("Rational ",

"Purify"));

 printf("%s\n", name); /* Expect BSR */

 name = '\0'; / Expect BSW */

}

void genABRandABW() {

 const char *name = "IBM Rational Purify";

 char *str = (char*) malloc(10);

 strncpy(str, name, 10);

 str[11] = '\0'; /* Expect ABW */

 printf("%s\n", str); /* Expect ABR */

}

void genMLK() {

 mlk = (int *) malloc(1 * sizeof(int)); /* Expect MLK */

 mlk = NULL;

}

int main() {

 printf("Hello Purify!\n");

 printf("Generating UMR & UMC:\n"); genUMR();

 printf("Generating IPR:\n"); genIPR();

 printf("Generating IPW:\n"); genIPW();

 printf("Generating BSR & BSW:\n");

genBSRandBSW();

 printf("Generating ABR & ABW:\n");

genABRandABW();

 printf("Generating MLK:\n"); genMLK();

 return 0;

}

 14

Appendix 2. Different results according

to different types of C-Compiler.

A2-1 Detection Defect with Visual Studio 6.0 C-

Compiler

A2-2 Detection Defect with Visual Studio 2005 C-

Compiler

A2-3 Detection Defect with Dev-C Compiler

Page 5: [1] Deleted HyeEun You 4/24/2007 4:53:00 AM

There are

Page 5: [1] Deleted HyeEun You 4/24/2007 4:52:00 AM

three

Page 5: [1] Deleted HyeEun You 4/24/2007 5:00:00 AM

major experimen

Page 5: [1] Deleted HyeEun You 4/24/2007 5:09:00 AM

t

Page 5: [1] Deleted HyeEun You 4/24/2007 4:53:00 AM

 that are applied to Purify.

Page 5: [1] Deleted HyeEun You 4/24/2007 4:54:00 AM

Page 5: [1] Deleted HyeEun You 4/24/2007 4:54:00 AM

would intentionally

Page 5: [1] Deleted HyeEun You 4/24/2007 4:55:00 AM

 that

Page 5: [2] Deleted HyeEun You 4/24/2007 5:03:00 AM

Complicated memory leak: c

Page 5: [2] Deleted HyeEun You 4/24/2007 5:04:00 AM

it

Page 5: [3] Deleted HyeEun You 4/24/2007 5:12:00 AM

The

Page 5: [3] Deleted HyeEun You 4/24/2007 5:12:00 AM

d

Page 5: [3] Deleted HyeEun You 4/24/2007 5:13:00 AM

s

Page 5: [3] Deleted HyeEun You 4/24/2007 5:12:00 AM

data needed to evaluate Purify

Page 5: [3] Deleted HyeEun You 4/24/2007 5:05:00 AM

 applied to Purify

Page 5: [4] Deleted HyeEun You 4/24/2007 5:38:00 AM

was able to

Page 5: [4] Deleted HyeEun You 4/24/2007 5:42:00 AM

among

Page 5: [4] Deleted HyeEun You 4/24/2007 5:42:00 AM

among

Page 5: [4] Deleted HyeEun You 4/24/2007 5:41:00 AM

Please refer to the following screenshots to see the detected memory defects and leaks.

Page 5: [5] Deleted HyeEun You 4/24/2007 4:50:00 AM

Page 5: [5] Deleted HyeEun You 4/24/2007 4:50:00 AM

Ev

Page 5: [6] Deleted HyeEun You 4/24/2007 5:16:00 AM

collected by Purify after doing experiment

Page 5: [6] Deleted HyeEun You 4/24/2007 5:18:00 AM

would

Page 5: [6] Deleted HyeEun You 4/24/2007 5:17:00 AM

whether

Page 5: [6] Deleted HyeEun You 4/24/2007 5:18:00 AM

can detect all of defects, memory leaks. For doing this, we would use four major

evaluation

Page 5: [6] Deleted HyeEun You 4/24/2007 5:24:00 AM

 as follows

Page 5: [7] Deleted HyeEun You 4/24/2007 5:25:00 AM

Capability related to how fast a user can install Purify and how easy a user can use Purify

Page 5: [8] Deleted HyeEun You 4/24/2007 5:45:00 AM

Figure 3-2 Good user view with hierarchical structure

Page 5: [9] Deleted HyeEun You 4/24/2007 5:25:00 AM

Consistency

Capability related to how exactly

Purify can detect defects

regardless of used compilers

