Analysis of Software Artifacts

Hoare Logic: Proving Programs Correct

Jonathan Aldrich
Testing – The Big Questions

1. **What is testing?**
 - And why do we test?

2. **To what standard do we test?**
 - Specification of behavior and quality attributes

3. **How do we select a set of good tests?**
 - Functional (black-box) testing
 - Structural (white-box) testing

4. **How do we assess our test suites?**
 - Coverage, Mutation, Capture/Recapture...

5. **What are effective testing practices?**
 - Levels of structure: unit, integration, system...
 - Design for testing
 - Effective testing practices
 - How does testing integrate into lifecycle and metrics?

6. **What are the limits of testing?**
 - What are complementary approaches?
 - Inspections
 - Static and dynamic analysis
What are the limits of testing?

What we can test
- Attributes that can be directly evaluated externally
 - *Examples:* Functional properties: result values, GUI manifestations, etc.
- Attributes relating to resource use
 - Many well-distributed **performance** properties
 - Storage use

What is difficult to test?
- Attributes that **cannot easily be measured externally**
 - Is a design evolvable?
 - Is a design secure?
 - Is a design technically sound?
 - Does the code conform to a design?
 - Where are the performance bottlenecks?
 - Does the design meet the user’s needs?
 - Inspection; Patterns; Design Structure Matrices
 - Secure Development Lifecycle; STRIDE
 - Model checking; Alloy; see also Models
 - Plural (API usage); ArchJava; Reflexion models
 - Performance analysis; Profiling
 - Usability analysis

- Attributes for which **tests are nondeterministic**
 - Real time constraints
 - Race conditions
 - Rate monotonic scheduling
 - Analysis of locking

- Attributes relating to the **absence of a property**
 - Absence of security exploits
 - Absence of memory leaks
 - Absence of functional errors
 - Absence of non-termination
 - Microsoft’s Standard Annotation Language
 - Cyclone, Purify
 - Hoare Logic; ESC/Java
 - Termination analysis
Course Topics

- Classical quality assurance
 - Testing
 - Inspection
- Design analysis
 - Patterns
 - Frameworks

Formal specification and verification
- Hoare Logic: proving programs correct
- ESC/Java: automated property checking
- Plural: API usage verification

- Static analysis
 - Dataflow analysis
 - Model checking
 - Applications: Concurrency, security

- Special topics
 - Performance analysis
 - Security analysis
 - Reliability and defect prediction
 - Quality assurance in the organization: Microsoft, eBay, etc.
Testing and Proofs

- **Testing**
 - Observable properties
 - Verify program for one execution
 - Manual development with automated regression
 - Most practical approach now

- **Proofs**
 - Any program property
 - Verify program for all executions
 - Manual development with automated proof checkers
 - May be practical for small programs in the future

- So why study proofs if they aren’t (yet) practical?
 - Proofs tell us how to *think* about program correctness
 - Important for development, inspection
 - Foundation for static analysis tools
 - These are just simple, automated theorem provers
 - Many are practical today!
How would you argue that this program is correct?

/*@ requires len >= 0 && array.length == len @
@ ensures \result == @
@ \(\sum \text{int } j; 0 \leq j && j < \text{len}; \ \text{array}[j] \) @*/
float sum(int array[], int len) {
 float sum = 0.0;
 int i = 0;
 while (i < len) {
 sum = sum + array[i];
 i = i + 1;
 }
 return sum;
}

Notation from the Java Modeling Language (JML)
Hoare Triples

• Formal reasoning about program correctness using pre- and postconditions

• Syntax: \{P\} S \{Q\}
 • P and Q are predicates
 • S is a program

• Semantics
 • If we start in a state where P is true and execute S, then S will terminate in a state where Q is true
Hoare Triple Examples

- \{ \text{true} \} \ x := 5 \ \{ \ \}
- \{ \ \} \ x := x + 3 \ \{ \ x = y + 3 \ \}
- \{ \ \} \ x := x * 2 + 3 \ \{ \ x > 1 \ \}
- \{ x=a \} \text{ if } (x < 0) \text{ then } x := -x \ \{ \ \}
- \{ \text{false} \} \ x := 3 \ \{ \ \}
- \{ x < 0 \} \text{ while } (x! = 0) \ x := x-1 \ \{ \ \}
Strongest Postconditions

- Here are a number of valid Hoare Triples:
 - \(\{ x = 5 \} \ x := x \times 2 \ \{ \text{true} \} \)
 - \(\{ x = 5 \} \ x := x \times 2 \ \{ x > 0 \} \)
 - \(\{ x = 5 \} \ x := x \times 2 \ \{ x = 10 \ \| \ x = 5 \} \)
 - \(\{ x = 5 \} \ x := x \times 2 \ \{ x = 10 \} \)
 - All are true, but this one is the most useful
 - \(x=10 \) is the strongest postcondition

- If \(\{ P \} \ S \ \{ Q \} \) and for all \(Q' \) such that \(\{ P \} \ S \ \{ Q' \} \), \(Q \Rightarrow Q' \), then \(Q \) is the strongest postcondition of \(S \) with respect to \(P \)
 - check: \(x = 10 \Rightarrow \text{true} \)
 - check: \(x = 10 \Rightarrow x > 0 \)
 - check: \(x = 10 \Rightarrow x = 10 \ \| \ x = 5 \)
 - check: \(x = 10 \Rightarrow x = 10 \)
Weakest Preconditions

• Here are a number of valid Hoare Triples:
 • \(\{x = 5 \land y = 10\} \ z := x \div y \{ z < 1 \} \)
 • \(\{x < y \land y > 0\} \ z := x \div y \{ z < 1 \} \)
 • \(\{y \neq 0 \land x \div y < 1\} \ z := x \div y \{ z < 1 \} \)
 • All are true, but this one is the most useful because it allows us to invoke the program in the most general condition
 • \(y \neq 0 \land x \div y < 1 \) is the weakest precondition

• If \(\{P\} \ S \{Q\} \) and for all \(P' \) such that \(\{P'\} \ S \{Q\} \), \(P' \Rightarrow P \), then \(P \) is the weakest precondition \(wp(S,Q) \) of \(S \) with respect to \(Q \)
Hoare Triples and Weakest Preconditions

• \(\{P\} S \{Q\} \) holds if and only if \(P \Rightarrow wp(S,Q) \)
 • In other words, a Hoare Triple is still valid if the precondition is stronger than necessary, but not if it is too weak

• Question: Could we state a similar theorem for a strongest postcondition function?
 • e.g. \(\{P\} S \{Q\} \) holds if and only if \(sp(S,P) \Rightarrow Q \)
 • A: Yes, but it’s harder to compute
Quick Quiz

Consider the following Hoare triples:

A) \(y = 1 \} \{ z = y + 1 \} \{ x := z * 2 \} \{ x = 4 \}
B) \{ y > 2 \} \{ y = 7 \} \{ x := y + 3 \} \{ x > 5 \}
C) \{ y! = 0 \} \{ \text{false} \} \{ x := 2 / y \} \{ \text{true} \}
D) \{ y < 16 \} \{ x := 2 / y \} \{ x < 8 \}

- Which of the Hoare triples above are valid?

- Considering the valid Hoare triples, for which ones can you write a stronger postcondition? (Leave the precondition unchanged, and ensure the resulting triple is still valid)

- Considering the valid Hoare triples, for which ones can you write a weaker precondition? (Leave the postcondition unchanged, and ensure the resulting triple is still valid)
Hoare Logic Rules

• Assignment
 • \{ P \} x := 3 \{ x+y > 0 \}
 • What is the weakest precondition P?
 • What is most general value of y such that 3 + y > 0?
 • y > -3
Hoare Logic Rules

• Assignment
 • \{ P \} x := 3 \{ x+y > 0 \}
 • What is the weakest precondition P?

• Assignment rule
 • \(wp(x := E, P) = [E/x] P \)
 • Resulting triple: \{ [E/x] P \} x := E \{ P \}
 • \[3 / x\] (x + y > 0)
 • = (3) + y > 0
 • = y > -3
Hoare Logic Rules

• Assignment
 • \{ P \} x := 3\ast y + z \{ x \ast y - z > 0 \}
 • What is the weakest precondition P?

• Assignment rule
 • \text{wp}(x := E, P) = [E/x] P
 • \[3\ast y+z / x\] (x \ast y - z > 0)
 • = (3\ast y+z) \ast y - z > 0
 • = 3\ast y^2 + z\ast y - z > 0
Hoare Logic Rules

• Sequence
 • \{ P \} x := x + 1; y := x + y \{ y > 5 \}
 • What is the weakest precondition P?

• Sequence rule
 • \(wp(S;T, Q) = wp(S, wp(T, Q)) \)
 • \(wp(x:=x+1; y:=x+y, y>5) \)
 • \(= wp(x:=x+1, wp(y:=x+y, y>5)) \)
 • \(= wp(x:=x+1, x+y>5) \)
 • \(= x+1+y>5 \)
 • \(= x+y>4 \)
Hoare Logic Rules

• Conditional
 • \{ P \} if x > 0 then y := z else y := -z \{ y > 5 \}
 • What is the weakest precondition P?

• Conditional rule
 • \(wp(\text{if } B \text{ then } S \text{ else } T, Q) \)
 \[= B \implies wp(S,Q) \land \lnot B \implies wp(T,Q) \]
 • \(wp(\text{if } x>0 \text{ then } y:=z \text{ else } y:=-z, y>5) \)
 \[= x>0 \implies wp(y:=z,y>5) \land x\leq0 \implies wp(y:=-z,y>5) \]
 • \(= x>0 \implies z > 5 \land x\leq0 \implies -z > 5 \)
 • \(= x>0 \implies z > 5 \land x\leq0 \implies z < -5 \)
Quick Quiz

Fill in the missing pre- or post-conditions with predicates that make each Hoare triple valid.

A) \{ x = y \} \ x := y \cdot 2 \ \{ \ \}

B) \{ \ \} \ x := x + 3 \ \{ x = z \}

C) \{ \ \} \ x := x + 1; \ y := y \cdot x \ \{ y = 2 \cdot z \}

D) \{ \ \} \ \text{if} \ (x > 0) \ \text{then} \ y := x \ \text{else} \ y := 0 \ \{ y > 0 \}
Hoare Logic Rules

• Loops
 • \{ P \} while (i < x) f=f*i; i := i + 1 \{ f = x! \}
 • What is the weakest precondition P?

• Intuition
 • Must prove by induction
 • Only way to generalize across number of times loop executes
 • Need to guess induction hypothesis
 • Base case: precondition P
 • Inductive case: should be preserved by executing loop body
Proving loops correct

• First consider *partial correctness*
 • The loop may not terminate, but if it does, the postcondition will hold

• `{P}` while `B` do `S` `{Q}`
 • Find an invariant `Inv` such that:
 • `P \Rightarrow Inv`
 • The invariant is initially true
 • `{ Inv && B } S {Inv}`
 • Each execution of the loop preserves the invariant
 • `(Inv && \neg B) \Rightarrow Q`
 • The invariant and the loop exit condition imply the postcondition
Loop Example

- Prove array sum correct

\{ N \geq 0 \}

\begin{align*}
 j & := 0; \\
 s & := 0;
\end{align*}

while (j < N) do

\begin{align*}
 j & := j + 1; \\
 s & := s + a[j];
\end{align*}

end

\{ s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) \}

How can we find a loop invariant?

Replace \(N \) with \(j \)

Add information on range of \(j \)
Loop Example

- Prove array sum correct

{ N ≥ 0 }

j := 0;
s := 0;
{ 0 ≤ j ≤ N && s = (∑ i | 0 ≤ i < j • a[i]) }

while (j < N) do

{0 ≤ j ≤ N && s = (∑ i | 0 ≤ i < j • a[i]) && j < N}

j := j + 1;
s := s + a[j];
{0 ≤ j ≤ N && s = (∑ i | 0 ≤ i < j • a[i]) }

end

{ s = (∑ i | 0 ≤ i < N • a[i]) }
Quick Quiz

Consider the following program:

```plaintext
{ N >= 0 }
i := 0;
while (i < N) do
  i := N
{ i = N }
```

Which of the following loop invariants are correct? For those that are incorrect, explain why.

A) i = 0
B) i = N
C) N >= 0
D) i <= N
Proof Obligations

• Invariant is initially true
 \{ N \geq 0 \}
 j := 0;
 s := 0;
 \{ 0 \leq j \leq N \&\& s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \}

• Invariant is maintained
 \{0 \leq j \leq N \&\& s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \&\& j < N\}
 j := j + 1;
 s := s + a[j];
 \{0 \leq j \leq N \&\& s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \}

• Invariant and exit condition implies postcondition
 0 \leq j \leq N \&\& s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \&\& j \geq N
 \Rightarrow s = (\Sigma i \mid 0 \leq i < N \cdot a[i])
Proof Obligations

• Invariant is initially true
 \[
 \{ N \geq 0 \} \\
 \{ 0 \leq 0 \leq N \land \land 0 = (\Sigma i \mid 0 \leq i < 0 \cdot a[i]) \} \quad \text{// by assignment rule}
 \]
 \[
 j := 0; \\
 \{ 0 \leq j \leq N \land \land 0 = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \} \quad \text{// by assignment rule}
 \]
 \[
 s := 0; \\
 \{ 0 \leq j \leq N \land \land s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \}
 \]

• Need to show that:
 \[
 (N \geq 0) \Rightarrow (0 \leq 0 \leq N \land \land 0 = (\Sigma i \mid 0 \leq i < 0 \cdot a[i]))
 \]
 \[
 = (N \geq 0) \Rightarrow (0 \leq N \land \land 0 = 0) \quad \text{// 0 \leq 0 is true, empty sum is 0}
 \]
 \[
 = (N \geq 0) \Rightarrow (0 \leq N) \quad \text{// 0=0 is true, P \land \land true is P}
 \]
 \[
 = \text{true}
 \]
Proof Obligations

- Invariant is maintained
 \[0 \leq j \leq N \land s = (\sum_{0 \leq i < j} a[i]) \land j < N\]
 \[0 \leq j + 1 \leq N \land s + a[j+1] = (\sum_{0 \leq i < j+1} a[i])\] // by assignment rule
 \(j := j + 1;\)
 \[0 \leq j \leq N \land s + a[j] = (\sum_{0 \leq i < j} a[i])\] // by assignment rule
 \(s := s + a[j];\)
 \[0 \leq j \leq N \land s = (\sum_{0 \leq i < j} a[i])\]

- Need to show that:
 \[(0 \leq j \leq N \land s = (\sum_{0 \leq i < j} a[i]) \land j < N)\]
 \[\Rightarrow (0 \leq j + 1 \leq N \land s + a[j+1] = (\sum_{0 \leq i < j+1} a[i]))\]
 \[= (0 \leq j < N \land s = (\sum_{0 \leq i < j} a[i]))\]
 \[\Rightarrow (-1 \leq j < N \land s + a[j+1] = (\sum_{0 \leq i < j+1} a[i]))\] // simplify bounds of j
 \[= (0 \leq j < N \land s = (\sum_{0 \leq i < j} a[i]))\]
 \[\Rightarrow (-1 \leq j < N \land s + a[j+1] = (\sum_{0 \leq i < j} a[i]) + a[j] + a[j]\) // separate last element
 // we have a problem – we need \(a[j+1]\) and \(a[j]\) to cancel out
Where’s the error?

• Prove array sum correct

\{ N \geq 0 \}
j := 0;
s := 0;

while (j < N) do

\[j := j + 1; \]
\[s := s + a[j]; \]

end

\{ s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) \}
Corrected Code

- Prove array sum correct

{ N \geq 0 }
j := 0;
s := 0;

while (j < N) do

 s := s + a[j];
 j := j + 1;

end

{ s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) }
Proof Obligations

- Invariant is maintained
 \[
 \{0 \leq j \leq N \quad \& \& \quad s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \quad \& \& \quad j < N\}\]
 \[
 \{0 \leq j + 1 \leq N \quad \& \& \quad s + a[j] = (\Sigma i \mid 0 \leq i < j + 1 \cdot a[i])\} \quad \text{by assignment rule}
 \]

- Need to show that:
 \[
 (0 \leq j \leq N \quad \& \& \quad s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \quad \& \& \quad j < N)
 \Rightarrow (0 \leq j + 1 \leq N \quad \& \& \quad s + a[j] = (\Sigma i \mid 0 \leq i < j + 1 \cdot a[i]))
 = (0 \leq j < N \quad \& \& \quad s = (\Sigma i \mid 0 \leq i < j \cdot a[i])
 \Rightarrow (-1 \leq j < N \quad \& \& \quad s + a[j] = (\Sigma i \mid 0 \leq i < j + 1 \cdot a[i])) \quad \text{simplify bounds of } j
 = (0 \leq j < N \quad \& \& \quad s = (\Sigma i \mid 0 \leq i < j \cdot a[i])
 \Rightarrow (-1 \leq j < N \quad \& \& \quad s + a[j] = (\Sigma i \mid 0 \leq i < j + 1 \cdot a[i]) + a[j]) \quad \text{separate last part of sum}
 = (0 \leq j < N \quad \& \& \quad s = (\Sigma i \mid 0 \leq i < j \cdot a[i])
 \Rightarrow (-1 \leq j < N \quad \& \& \quad s = (\Sigma i \mid 0 \leq i < j \cdot a[i])) \quad \text{subtract } a[j] \text{ from both sides}
 = \text{true} \quad \text{0 \leq j \Rightarrow -1 \leq j}
Proof Obligations

• Invariant and exit condition implies postcondition

\[0 \leq j \leq N \land s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \land j \geq N \]
\[\Rightarrow s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) \]
\[= 0 \leq j \land j = N \land s = (\Sigma i \mid 0 \leq i < j \cdot a[i]) \]
\[\Rightarrow s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) \]
\[// because (j \leq N \land j \geq N) = (j = N) \]
\[= 0 \leq N \land s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) \Rightarrow s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) \]
\[// by substituting N for j, since j = N \]
\[= \text{true} \quad // because P \land Q \Rightarrow Q \]
Quick Quiz

• For the program below and the invariant \(i \leq N \), write the proof obligations. The form of your answer should be three mathematical implications.

\[
\begin{align*}
\{ N \geq 0 \} \\
\{ 0 \leq N \} \\
i := 0; \\
\{ i \leq N \} \\
{\text{while } (i < N) \text{ do}} \\
\quad \{ i \leq N \land i < N \} \\
\quad \{ N \leq N \} \\
\quad i := N \\
\quad \{ i \leq N \} \\
\quad \{ i \leq N \land i \geq N \} \\
\quad \{ i = N \} \\
\end{align*}
\]

• Invariant is initially true:

• Invariant is preserved by the loop body:

• Invariant and exit condition imply postcondition:
Invariant Intuition

- For code without loops, we are simulating execution directly
 - We prove one Hoare Triple for each statement, and each statement is executed once

- For code with loops, we are doing one proof of correctness for multiple loop iterations
 - Don’t know how many iterations there will be
 - Need our proof to cover all of them
 - The invariant expresses a general condition that is true for every execution, but is still strong enough to give us the postcondition we need
 - This tension between generality and precision can make coming up with loop invariants hard
Session Summary

• While testing can find bugs, formal verification can assure their absence.

• Hoare Logic is a mechanical approach for verifying software.
 • Creativity is required in finding loop invariants, however.
Further Reading