Analysis of Software Artifacts

Dataflow Analysis: Examples and Correctness

Jonathan Aldrich
Outline

• Dataflow Analysis Frameworks
 • Lattices
 • Abstraction functions
 • Control flow graphs
 • Flow functions
 • Worklist algorithm

• Example Dataflow Analyses
 • Constant Propagation
 • Reaching Definitions
 • Live Variable Analysis

• Dataflow Analysis Correctness
 • Termination
 • Soundness
Worklist Dataflow Analysis Algorithm

\[
\text{worklist} = \text{new } \text{Set}();
\text{for all node indexes } i \text{ do }
\begin{align*}
\text{input}[i] &= \bot_A; \\
\text{input}[\text{entry}] &= \iota_A; \\
\text{worklist.add(all nodes);}
\end{align*}
\]

\[
\text{while (!worklist.isEmpty()) do }
\begin{align*}
i &= \text{worklist.pop();} \\
\text{after} &= f_A(\text{input}[i], \text{node}(i)); \\
\text{for all } k \in \text{succ}(i) \text{ do }
\begin{align*}
\text{newinput} &= \text{input}[k] \sqcup \text{after} \\
\text{if } (!\text{newinput} \sqsubseteq \text{input}[k])) \\
\text{input}[k] &= \text{newinput;} \\
\text{worklist.add}(k);
\end{align*}
\end{align*}
\]
Worklist Dataflow Analysis Algorithm

\[
\text{worklist} = \text{new Set(); for all node indexes } i \text{ do}
\]
\[
\text{input}[i] = \perp_A;
\]
\[
\text{input}[\text{entry}] = \iota_A;
\]
\[
\text{worklist.add(all nodes);}
\]

\[
\text{while (!worklist.isEmpty()) do}
\]
\[
i = \text{worklist.pop();}
\]
\[
\text{after} = f_A(\text{input}[i], \text{node}(i));
\]
\[
\text{for all } k \in \text{succ}(i) \text{ do}
\]
\[
\text{newinput} = \text{input}[k] \sqcup \text{after}
\]
\[
\text{if } !(\text{newinput} \sqsubseteq \text{input}[k])
\]
\[
\text{input}[k] = \text{newinput};
\]
\[
\text{worklist.add(k);}
\]

Ok to just add entry node if flow functions cannot return \(\perp_A \) (examples will assume this)
Worklist Dataflow Analysis Algorithm

```
worklist = new Set();
for all node indexes i do
    input[i] = ⊥_A;
input[entry] = ι_A;
worklist.add(all nodes);

while (!worklist.isEmpty()) do
    i = worklist.pop();
    after = f_A(input[i], node(i));
    for all k ∈ succ(i) do
        newinput = input[k] ⊔ after
        if (!(newinput ⊑ input[k]))
            input[k] = newinput;
            worklist.add(k);
```

Ok to just add entry node if flow functions cannot return ⊥_A (examples will assume this)

Pop removes the most recently added element from the set (performance optimization)
Example of Worklist

\[
\begin{align*}
[a := 0]_1 \\
[b := 0]_2 \\
\text{while } [a < 2]_3 \text{ do} \\
\quad [b := a]_4; \\
\quad [a := a + 1]_5; \\
[a := 0]_6
\end{align*}
\]

Control Flow Graph

\[
1 \rightarrow 2 \rightarrow 3 \rightarrow 6 \\
\quad 4 \rightarrow 5
\]
Example of Worklist

\[
egin{align*}
[a := 0]_1 \\
[b := 0]_2 \\
\text{while } [a < 2]_3 \text{ do} \\
\quad [b := a]_4; \\
\quad [a := a + 1]_5; \\
[a := 0]_6
\end{align*}
\]

<table>
<thead>
<tr>
<th>Position</th>
<th>Worklist</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4,6</td>
</tr>
<tr>
<td>4</td>
<td>5,6</td>
</tr>
<tr>
<td>5</td>
<td>3,6</td>
</tr>
<tr>
<td>3</td>
<td>4,6</td>
</tr>
<tr>
<td>4</td>
<td>5,6</td>
</tr>
<tr>
<td>5</td>
<td>3,6</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MZ</td>
<td>MZ</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>MZ</td>
</tr>
<tr>
<td>3</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>4</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>5</td>
<td>MZ</td>
<td>Z</td>
</tr>
<tr>
<td>6</td>
<td>MZ</td>
<td>MZ</td>
</tr>
</tbody>
</table>

Control Flow Graph

1 → 2 → 3 → 6

4 ← 5
Quick Quiz

Show how the worklist algorithm given in class operates on the program given, by filling in the table below.

1: x := 0
2: y := 1
3: if (z == 0)
 4: x := x + y
5: else y := y – 1
6: w := y

<table>
<thead>
<tr>
<th>Position</th>
<th>Worklist</th>
<th>x</th>
<th>y</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Worklist Algorithm Performance

```java
worklist = new Set();
for all node indexes i do
    input[i] = ⊥A;
input[entry] = ιA;
worklist.add(all nodes);

while (!worklist.isEmpty()) do
    i = worklist.pop();
    after = fA(input[i], node(i));
    for all k ∈ succ(i) do
        newinput = input[k] ⊔ after
        if (!(newinput ⊑ input[k]))
            input[k] = newinput;
            worklist.add(k);
```

- How many times might a node get added to the worklist?
 - The node’s input must increase each time
 - The number of increases is bound by the height h of the lattice

- How many times do statements execute?
 - $h*n$ in total: we may run it h times for each node n
 - but we must propagate along all successor edges; these statements execute $h*e$ times
 - Assume statement cost is c
 - Then performance is $O(h*e*c)$
 - Often h, e, and c are bounded by n. So we get $O(n^3)$
 - Good enough to run on a function, but not on the whole program
Outline

• Dataflow Analysis Frameworks
 • Lattices
 • Abstraction functions
 • Control flow graphs
 • Flow functions
 • Worklist algorithm

• Example Dataflow Analyses
 • Constant Propagation
 • Reaching Definitions
 • Live Variable Analysis

• Dataflow Analysis Correctness
 • Termination
 • Soundness
Constant Propagation

• Goal: determine which variables hold a constant value:

\[
\begin{aligned}
x &:= 3; \\
y &:= x+7; \\
\text{if } b & \quad \text{then } z := x+2 \\
& \quad \text{else } z := y-5; \\
w &:= z-2
\end{aligned}
\]

• What is w?
 • Useful for optimization, error checking
 • Zero analysis is a special case
Constant Propagation Definition

- Constant lattice \((L_C, \sqsubseteq_C, \sqcup_C, \bot, \top)\)
 - \(L_C = \text{Integer} \mid \{ \bot, \top \}\)
 - \(\forall n \in \text{Integer}: \bot \sqsubseteq_C n \&\& n \sqsubseteq_C \top\)

- Constant propagation lattice
 - Tuple lattice formed from above lattice
 - See notes on zero analysis for details

- Abstraction function:
 - \(\alpha_C(n) = n\)
 - \(\alpha_{CP}(\eta) = \{ x \mapsto \alpha_C(\eta(x)) | x \in \text{Var} \}\)

- Initial data:
 - \(\iota_{CP} = \{ x \mapsto \top | x \in \text{Var} \}\)
Constant Propagation Definition

- \(f_{CP}(\sigma, [x := y]) = [x \mapsto \sigma(y)] \sigma \)
- \(f_{CP}(\sigma, [x := n]) = [x \mapsto n] \sigma \)
- \(f_{CP}(\sigma, [x := y \ op \ z]) = [x \mapsto (\sigma(y) \ op_\top \ \sigma(z))] \sigma \)
 - \(n \ op_\top m = n \ op \ m \)
 - \(n \ op_\top \top = \top \)
 - \(\top \ op_\top m = \top \)

- **Note:** we could define for \(\bot \) too, but we won’t actually ever see \(\bot \) during analysis

- \(f_{CP}(\sigma, /* \text{any other */}) = \sigma \)
Constant Propagation Example

\[[x := 3]_1; \]
\[[y := x + 7]_2; \]
\[\text{if } [b]_3 \text{ then } [z := x + 2]_4 \]
\[\text{else } [z := y - 5]_5; \]
\[[w := z - 2]_6 \]
Constant Propagation Example

\[x := 3 \]
\[y := x + 7 \]
\[\text{if } [b] \text{ then } [z := x + 2] \]
\[\text{else } [z := y - 5] \]
\[w := z - 2 \]

<table>
<thead>
<tr>
<th>Position</th>
<th>Worklist</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4, 5</td>
<td>3</td>
<td>10</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>4</td>
<td>6, 5</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>(T)</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>(T)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>3</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>
Constant Propagation Example

\[\begin{align*}
[x := 3]_1; \\
[y := x+7]_2; \\
\text{if } [b]_3 \\
\quad \text{then } [z := x+1]_4 \\
\quad \text{else } [z := y-5]_5; \\
[w := z-2]_6
\end{align*} \]

<table>
<thead>
<tr>
<th>Position</th>
<th>Worklist</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>T</td>
<td>T</td>
<td>10</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>4,5</td>
<td>3</td>
<td>10</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Constant Propagation Example

\[
\begin{align*}
[x := 3]_1; \\
[y := x+7]_2; \\
\text{if } [b]_3 \\
\quad \text{then } [z := x+1]_4 \\
\quad \text{else } [z := y-5]_5; \\
[w := z-2]_6
\end{align*}
\]

<table>
<thead>
<tr>
<th>Position</th>
<th>Worklist</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>10</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>4,5</td>
<td>3</td>
<td>10</td>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>6,5</td>
<td></td>
<td></td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>3</td>
<td>10</td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>
Loss of Precision

If \([x = 0]_1\)

then \([y := 1]_2;\)

else \([y := x]_3;\)

\([z := 10/y]_4\)

<table>
<thead>
<tr>
<th>Position</th>
<th>Worklist</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>MZ</td>
<td>MZ</td>
<td>MZ</td>
</tr>
<tr>
<td>1</td>
<td>2,3</td>
<td>MZ</td>
<td>MZ</td>
<td>MZ</td>
</tr>
<tr>
<td>2</td>
<td>4,3</td>
<td>MZ</td>
<td>NZ</td>
<td>MZ</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>MZ</td>
<td>MZ</td>
<td>MZ</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>MZ</td>
<td>NZ</td>
<td>NZ</td>
</tr>
</tbody>
</table>
Branch Sensitivity for Zero Analysis

- Existing flow functions
 - \(f_{ZA}(\sigma, [x := y]) = [x \mapsto \sigma(y)]\sigma \)
 - \(f_{ZA}(\sigma, [x := n]) = \text{if } n==0 \text{ then } [x \mapsto Z]\sigma \)
 \quad \text{else } [x \mapsto NZ]\sigma
 - \(f_{ZA}(\sigma, [x := y \text{ op } z]) = [x \mapsto MZ]\sigma \)
 - \(f_{ZA}(\sigma, /* \text{ any other */}) = \sigma \)
Branch Sensitivity for Zero Analysis

• **Existing flow functions**
 - \(f_{ZA}^T(\sigma, [x := y]) = [x \mapsto \sigma(y)] \sigma \)
 - \(f_{ZA}^F(\sigma, [x := y]) = [x \mapsto \neg\sigma(y)] \sigma \)

• **Propagate different info on branches**
 - \(f_{ZA}^T(\sigma, [x = 0]) = [x \mapsto Z] \sigma \)
 - \(f_{ZA}^F(\sigma, [x = 0]) = [x \mapsto NZ] \sigma \)
 - Slightly more general:
 - Assume \(\neg Z = NZ; \neg NZ = Z; \neg MZ = MZ \)

- \(f_{ZA}^T(\sigma, [x := n]) = \begin{cases} [x \mapsto Z] \sigma & \text{if } n == 0 \\ [x \mapsto NZ] \sigma & \text{else} \end{cases} \)

- \(f_{ZA}(\sigma, [x := y \text{ op } z]) = [x \mapsto MZ] \sigma \)
- \(f_{ZA}(\sigma, /* \text{ any other */}) = \sigma \)
Precision Regained

Worklist simplified to the statement level

\[\text{if } [x = 0]_1 \]
\[\text{then } [y := 1]_2; \]
\[\text{else } [y := x]_3; \]
\[[z := 10/y]_4 \]

<table>
<thead>
<tr>
<th>Position</th>
<th>Worklist</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>MZ</td>
<td>MZ</td>
<td>MZ</td>
</tr>
<tr>
<td>1(^T)</td>
<td>2,3</td>
<td>Z</td>
<td>MZ</td>
<td>MZ</td>
</tr>
<tr>
<td>1(^F)</td>
<td>2,3</td>
<td>NZ</td>
<td>MZ</td>
<td>MZ</td>
</tr>
<tr>
<td>2 (use 1(^T))</td>
<td>4,3</td>
<td>Z</td>
<td>NZ</td>
<td>MZ</td>
</tr>
<tr>
<td>3 (use 1(^F))</td>
<td>4</td>
<td>NZ</td>
<td>NZ</td>
<td>MZ</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>MZ</td>
<td>NZ</td>
<td>NZ</td>
</tr>
</tbody>
</table>
Outline

• Dataflow Analysis Frameworks
 • Lattices
 • Abstraction functions
 • Control flow graphs
 • Flow functions
 • Worklist algorithm

• Example Dataflow Analyses
 • Constant Propagation
 • Reaching Definitions
 • Live Variable Analysis

• Dataflow Analysis Correctness
 • Termination
 • Soundness
Reaching Definitions Analysis

• Goal: determine which is the most recent assignment to a variable that precedes its use:

\[y := x \]
\[z := 1 \]
while \[y > 1 \]
do
\[z := z \times y \]
\[y := y - 1 \]
\[y := 0 \]

• Example: definitions 1 and 5 reach the use of y at 4

• Applications
 • Simpler version of constant propagation, zero analysis, etc.
 • Just look at the reaching definitions for constants
 • If definitions reaching use include “undefined” sentinel, then we may be using an undefined variable
Reaching Definitions

Set Lattice \((P^{\text{DEFS}}, \sqsubseteq_{\text{RD}}, \sqcup_{\text{RD}}, \emptyset, \text{DEFS})\)
- \text{DEFS} is the set of definitions in the program
- Each element of the lattice is a subset of \text{defs}
 - \(P^{\text{DEFS}}\) is the powerset of \text{DEFS}, i.e. the set of all subsets of \text{DEFS}
- Approximation
 - A definition \(d\) may reach program point \(P\) if \(d\) is in the lattice at \(P\)
 - We call this a \textit{may analysis}
- \(x \sqsubseteq_{\text{RD}} y\) iff \(x \subseteq y\)
- \(x \sqcup_{\text{RD}} y = x \cup y\)
 - This is a direct consequence of the definition of \(\sqsubseteq_{\text{RD}}\)
- Most precise element \(\perp = \emptyset\) (no reaching definitions)
- Least precise element \(\top = \text{DEFS}\) (all definitions reach)
Reaching Definitions

- Initially assume dummy assignments
 - Represents passed values for parameters
 - Represents uninitialized for non-parameters
 - \(\nu_{RD} = \{ x_0 \mid x \in \text{Var} \} \)

- Flow functions
 - \(f_{RD}(\sigma, [x := \ldots]_k) \)
 \[
 = \sigma - \{ x_m \mid x_m \in \text{DEFS}(x) \} \cup \{ x_k \}
 \]
 - Kills (removes from set) all other definitions of \(x \)
 - Generates (adds to set) the current definition \(x_k \)
 - Kill/Gen pattern true in many analyses with set lattices
 - \(f_{RD}(\sigma, /* \text{any other} */ \) = \(\sigma \)
Reaching Definitions Example

\[y := x \] \(_1\);
\[z := 1 \] \(_2\);
\text{while } [y>1] \(_3\) do
\[z := z \times y \] \(_4\);
\[y := y - 1 \] \(_5\);
\[y := 0 \] \(_6\);
Reaching Definitions Example

\[y := x \]_1;
\[z := 1 \]_2;
while \[y > 1 \]_3 do
 \[z := z \times y \]_4;
 \[y := y - 1 \]_5;
\[y := 0 \]_6;

<table>
<thead>
<tr>
<th>Position</th>
<th>Worklist</th>
<th>Lattice Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>{x_0, y_0, z_0}</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>{x_0, y_1, z_0}</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>{x_0, y_1, z_2}</td>
</tr>
<tr>
<td>3</td>
<td>4,6</td>
<td>{x_0, y_1, z_2}</td>
</tr>
<tr>
<td>4</td>
<td>5,6</td>
<td>{x_0, y_1, z_4}</td>
</tr>
<tr>
<td>5</td>
<td>3,6</td>
<td>{x_0, y_5, z_4}</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>{x_0, y_6, z_2, z_4}</td>
</tr>
</tbody>
</table>
Outline

• Dataflow Analysis Frameworks
 • Lattices
 • Abstraction functions
 • Control flow graphs
 • Flow functions
 • Worklist algorithm

• Example Dataflow Analyses
 • Constant Propagation
 • Reaching Definitions
 • Live Variable Analysis

• Dataflow Analysis Correctness
 • Termination
 • Soundness
Live Variables Analysis

- Goal: determine which variables may be used again before they are redefined (i.e. are live) at the current program point:

\[
\begin{align*}
[y := x]_1; \\
[z := 1]_2; \\
\text{while } [y > 1]_3 \\ &\quad [z := z \times y]_4; \\
&\quad [y := y - 1]_5; \\
[y := 0]_6;
\end{align*}
\]

- Example: after statement 1, y is live, but x and z are not
- Optimization applications
 - If a variable is not live after it is defined, can remove the definition statement (e.g. 6 in the example)
Live Variables Definition

- Set Lattice \((P^{\text{Vars}}, \sqsubseteq_{\text{LV}}, \sqcup_{\text{LV}}, \emptyset, \text{Vars})\)
 - \text{Vars} is the set of variables in the program
 - Each element of the lattice is a subset of \text{Vars}
 - \(P^{\text{Vars}}\) is the powerset of \text{Vars}, i.e. the set of all subsets of \text{Vars}
 - \(x \sqsubseteq_{\text{LV}} y\) iff \(x \subseteq y\)
 - \(x \sqcup_{\text{LV}} y = x \cup y\)
 - Most precise element \(\bot = \emptyset\) (no live variables)
 - Least precise element \(\top = \text{DEFS}\) (all variables live)

\[\text{Vars} = \{x, y, z\}\]

- \{x, y\} \{x, z\} \{y, z\}
- \{x\} \{y\} \{z\}
- \emptyset
Live Variables Definition

- Live Variables is a *backwards* analysis
 - To figure out if a variable is live, you have to look at the future execution of the program
- Will x be used before it is redefined?
 - When x is defined, assume it is not live
 - When x is used, assume it is live
 - Propagate lattice elements as usual, except backwards
- Initially assume return value is live
 - $\iota_{LV} = \{ x \}$ where x is the variable returned from the function
Flow Function Practice

• Write flow functions for Live Variable analysis:

 \[f_{\text{LV}}(\sigma, [x := e]_k) = \]

 \[f_{\text{LV}}(\sigma, /* any other */) = \]
Flow Function Practice

• Write flow functions for Live Variable analysis:

 \[f_{LV}(\sigma, [x := e]_k) = (\sigma - \{ x \}) \cup \text{vars}(e) \]
 - Kills (removes from set) the variable \(x \)
 - Generates (adds to set) the variables in \(e \)
 - Note: must kill first then generate (what if \(e = x \)?)

 \[f_{LV}(\sigma, [e]_k) = \sigma \cup \text{vars}(e) \]

 \[f_{LV}(\sigma, /* \text{any other } */ \}) = \sigma \]
Worklist Practice

Show how the worklist algorithm given in class operates on the program given, by filling in the table below.

\[
\begin{align*}
& [y := x]_1; \\
& [z := 1]_2; \\
& \text{while } [y>1]_3 \text{ do} \\
& \quad [z := z \times y]_4; \\
& \quad [y := y - 1]_5; \\
& [y := 0]_6; \\
& \text{return } z;
\end{align*}
\]

<table>
<thead>
<tr>
<th>Position</th>
<th>Worklist</th>
<th>Lattice Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Live Variables Example

\[y := x\]_1;
\[z := 1\]_2;
while \([y>1]\)_3 do
\[z := z \times y\]_4;
\[y := y - 1\]_5;
\[y := 0\]_6;
return z;

<table>
<thead>
<tr>
<th>Position</th>
<th>Worklist</th>
<th>Lattice Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>6</td>
<td>{z}</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>{z}</td>
</tr>
<tr>
<td>3</td>
<td>5,2</td>
<td>{y,z}</td>
</tr>
<tr>
<td>5</td>
<td>4,2</td>
<td>{y,z}</td>
</tr>
<tr>
<td>4</td>
<td>3,2</td>
<td>{y,z}</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>{y}</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>{x}</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

• Dataflow Analysis Frameworks
 • Lattices
 • Abstraction functions
 • Control flow graphs
 • Flow functions
 • Worklist algorithm

• Example Dataflow Analyses
 • Constant Propagation
 • Reaching Definitions
 • Live Variable Analysis

• Dataflow Analysis Correctness
 • Termination
 • Soundness
What does Correctness Mean?

- Intuition
 - Analysis will eventually terminate at a fixed point
 - At a fixed point, analysis results are a sound abstraction of program execution
 - program execution must be formally defined
 - abstraction function relates program execution to data flow lattice elements
 - sound means truth \(\sqsubseteq \) analysis results
 - also called conservative or safe
Termination

• Intuition
 • Dataflow information for a statement gets less precise every time we visit the statement
 • Information can only get less precise as many times as the lattice is high
 • When information stops changing, we stop

• Key property: Monotonic flow functions
 • f is monotone iff $\sigma \sqsubseteq \sigma'$ implies $f(\sigma) \sqsubseteq f(\sigma')$
Nonterminating Analysis

(bad) idea: Track set of values for each variable

\[
\begin{align*}
[x := 0]_1 & \\
\text{while } [x < y]_2 \text{ do} & \\
[x := x + 1;]_3 & \\
[x := 0]_4;
\end{align*}
\]

\textit{Moral: make your lattices finite height!}
Dataflow Analysis Termination

- Theorem: If the flow function of a dataflow analysis is monotone, and the height of the lattice is finite, then the analysis will terminate
Dataflow Analysis Termination

- Theorem: If the flow function of a dataflow analysis is monotone, and the height of the lattice is finite, then the analysis will terminate.

- Lemma: Each time a node is added to the worklist, a dataflow value has increased (and no dataflow value has decreased).
 - Proof outline: by induction
 - Base case: The dataflow value for every statement is \bot. This is the lowest point in the lattice. Thus the first time the value changes, it will increase.
 - Inductive case: Assume the last application of the dataflow function mapped σ to $f(\sigma)$. By assumption $\sigma \sqsubseteq \sigma'$. By monotonicity $f(\sigma) \sqsubseteq f(\sigma')$. Thus the output value increased.
 - Will not affect others because only the flow value for the current statement is set.
Dataflow Analysis Termination

- Theorem: If the flow function of a dataflow analysis is monotone, and the height of the lattice is finite, then the analysis will terminate
 - Proof outline: by induction
 - Base case: The dataflow value for every statement is ⊥. This is the lowest point in the lattice. Thus the first time the value changes, it will increase.
 - Inductive case: Assume the last application of the dataflow function mapped σ to $f(\sigma)$. By assumption $\sigma \sqsubseteq \sigma'$. By monotonicity $f(\sigma) \sqsubseteq f(\sigma')$. Thus the output value increased.
 - Will not affect others because only the flow value for the current statement is set.

- Proof outline for theorem:
 - Each time a node is added to the worklist, the dataflow value was raised in the lattice for one statement.
 - If there are n statements in the program and the height of the lattice is h, this can happen at most $n \times h$ times.
 - An inspection of the worklist algorithm shows that a finite number of steps occurs between applications of flow functions, and that when the values stop changing the algorithm terminates.
Outline

• Dataflow Analysis Frameworks
• Lattices
• Abstraction functions
• Control flow graphs
• Flow functions
• Worklist algorithm

Example Dataflow Analyses
• Constant Propagation
• Reaching Definitions
• Live Variable Analysis

Dataflow Analysis Correctness
• Termination
• Soundness
Dataflow Analysis Soundness

• Intuition
 • The result of dataflow analysis is a conservative approximation of all possible run time states

• Definition
 • A dataflow analysis is sound if, for all programs P, for all inputs I, for all times T in P’s execution on input I,
 • If P is at statement S at time T, with memory η, and the analysis returned abstract state σ for S,
 • then $\alpha(\eta) \subseteq \sigma$
Local Soundness

\[\alpha_{DF}(\eta_i) \subseteq \sigma_i \xrightarrow{f_{DF}(\sigma_i, S)} \sigma_o \supseteq \alpha_{DF}(\eta_o) \]

- Local correctness condition for dataflow analysis
 - If applying a transfer function to statement \(S \) and input information \(\sigma_i \) yields output information \(\sigma_o \),
 - Then for all program states \(\eta_i \) such that \(\alpha(\eta_i) \subseteq \sigma_i \) and executing \(S \) in state \(\eta_i \) yields state \(\eta_o \),
 - We must have \(\alpha(\eta_o) \subseteq \sigma_o \)

Intuitively, translating from concrete to abstract and applying the flow function will safely approximate (\(\supseteq \)) taking a step in the trace and translating from concrete to abstract
Finding Errors with Local Soundness

- Consider the incorrect flow function:
 \[f_{ZA}(\sigma, [x := y \text{ op } z]) = \]
 \[
 \begin{cases}
 \sigma[y]=Z \mid \sigma[z]=Z & \text{then } [x \mapsto Z] \sigma \\
 \text{else } [x \mapsto MZ] \sigma
 \end{cases}
 \]

- Challenge: find an example where local soundness fails
Finding Errors with Local Soundness

- Consider the incorrect flow function:
 \[f_{ZA}(\sigma, [x := y \ op z]) = \]
 \[
 \begin{align*}
 &\text{if } \sigma[y] = Z \text{ or } \sigma[z] = Z \\
 &\text{then } [x \mapsto Z] \sigma \\
 &\text{else } [x \mapsto MZ] \sigma
 \end{align*}
 \]

- Local Soundness failure:
 - Let \(\sigma_i = [] \), \(S = \text{"x := 3+0"} \)
 - Consider \(\eta_i = [] \). As required, \(\alpha_{DF}(\eta_i) = [] \sqsubseteq \sigma_i \)
 - Now \(\sigma_o = f_{DF}(\sigma_i, S) = [x \mapsto Z] \)
 - And \(\eta_o = S(\eta_i) = [x \mapsto 3] \)
 - So \(\alpha_{DF}(\eta_o) = \alpha_{DF}([x \mapsto 3]) = [x \mapsto NZ] \)
 - BUT \(\alpha_{DF}(\eta_o) \not\sqsubseteq \sigma_o \) because \(Z \not\sqsubseteq NZ \), so local soundness is violated
Proving Correctness

- Consider a Zero Analysis flow function
 \[f_{ZA}(\sigma, [x := y]) = [x \mapsto \sigma(y)] \sigma \]

- Monotonicity
 - Assume \(\sigma' \sqsubseteq \sigma \).
 - \(f_{ZA}(\sigma, [x := y]) \) changes only the value for \(x \)
 - Therefore for all variables \(z \neq x \) we have
 \[f_{ZA}(\sigma', [x := y])(z) \sqsubseteq f_{ZA}(\sigma, [x := y])(z) \]
 - Since \(f_{ZA}(\sigma, [x := y])(x) = \sigma(y) \) and \(\sigma'(y) \sqsubseteq \sigma(y) \) we have \(f_{ZA}(\sigma', [x := y])(x) \sqsubseteq f_{ZA}(\sigma, [x := y])(x) \)
 - Thus \(f_{ZA}(\sigma', [x := y]) \sqsubseteq f_{ZA}(\sigma, [x := y]) \)
Proving Correctness

• Consider a Zero Analysis flow function
 \[f_{ZA}(\sigma, [x := y]) = [x \mapsto \sigma(y)] \sigma \]

• Local Soundness
 • Assume \(\alpha(\eta_i) \subseteq \sigma_i \).
 • By Java’s semantics \(\eta_o = [x \mapsto \eta_i(y)] \eta_i \)
 • By the flow function, \(\sigma_o = [x \mapsto \sigma_i(y)] \sigma_i \)
 • Since both maps changed only in their \(x \) value, for all variables \(z \neq x \) we have \(\alpha_{DF}(\eta_o)(z) \subseteq \sigma_o(z) \)
 • Since \(\alpha(\eta_i)(y) \subseteq \sigma_i(y) \), \(\alpha(\eta_o)(x) = \alpha(\eta_i)(y) \), and \(\sigma_o(y) = \sigma_i(y) \), we also know that \(\alpha(\eta_o)(x) \subseteq \sigma_o(x) \)
 • Thus \(\alpha(\eta_o) \subseteq \sigma_o \)
Global Soundness

- **Intuition**
 - We begin with initial dataflow facts ι that safely approximate (\supset) all initial stores η_0
 - By local soundness, each transfer function when given safe input information yields safe output information
 - By induction, any fixed point of the analysis is sound
Why care about Soundness?

• Analysis Producers
 • Writing analyses is hard
 • People make mistakes all the time
 • Need to know how to \textit{think} about correctness
 • When the analysis gets tricky, it’s useful to prove it correct formally

• Analysis Consumers
 • Sound analysis provides guarantees
 • Optimizations won’t break the program
 • Finds all defects of a certain sort
 • Decision making
 • Knowledge of soundness techniques lets you ask the right questions about a tool you are considering
 • Soundness affects where you invest QA resources
 • Focus testing efforts on areas where you don’t have a sound analysis!