
Assignment 6 (Written/Programming):
Dataflow Analysis

17-654/17-754: Analysis of Software Artifacts
Jonathan Aldrich (jonathan.aldrich@cs.cmu.edu)

Due: Tuesday, February 26, 2007 (5:30 pm)

100 points total

Turn in a file named <username>-17654-A6.{zip}, where username is
your Andrew id. The zip file should contain the file answers.xxx (the an-
swers to text questions in txt, pdf, or Word (doc) format), each of the .java
files you wrote, and output.xxx (either analysis output in .txt format or a
screenshot in some common graphics format). At the top of answers.txt,
state your name, Andrew id, and how long you spent on the assignment.

Assignment Objectives:

• Precisely define two analyses using lattices, abstraction functions,
and flow functions.

• Derive the control flow graph of a program.

• Simulate analysis execution on a program using the worklist algo-
rithm.

• Implement a dataflow analysis in a code framework built based on
the concepts of flow functions and lattices.

1



1 Lock Analysis (35 points)

After graduating from CMU, you have been hired by CrystalSoft, a (fic-
tional) company devoted to bringing the benefits of the Crystal Java analy-
sis tools to C programmers. Your first task is to get a simple lock analysis
up and running.

You quickly observe that C presents a harder problem than Java, be-
cause there’s no built-in synchronization statement. Thus it’s easy to make
simple errors that can’t happen in Java, like locking a lock when you enter
a function and forgetting to unlock it when you return from that function.
Your first task, therefore, is to design an analysis that can detect simple
errors like deadlock, which will occur if the programmer tries to lock the
same lock twice. For this assignment, you need only consider one thread
running at a time–believe it or not, double-locking errors due to a single
thread that forgets to unlock a lock have been found in the Linux kernel,
causing the system to hang.

You study the problem first in the context of the WHILE language. You
model locks with two new kinds of statements:

• lock(x) locks the variable x

• unlock(x) unlocks the variable x

For the purposes of data flow analysis over the control flow graph, you
can assume these statements turn into similar three address code state-
ments, lock(x) and unlock(x). You decide you will base your analysis on
a tuple lattice, with one element of the tuple for each lock variable in the
program.

Question 1.1 (10 points).

Design a lattice for a single variable. Your lattice should be able
to represent both locked and unlocked states. Define the lat-
tice by giving (a) the set of lattice elements and (b) the ordering
relation between them, (c) the top element and (d) the bottom
element.

Question 1.2 (4 points).

What is the initial analysis information before the first statement
of each function? Justify your choice (more than one answer
may be correct, so long as it is justified).

2



Question 1.3 (5 points).

Define the flow functions for your analysis, using the notation
given in class. Naturally, you will need to include flow func-
tions for the new lock(x) and unlock(x) statements.

Question 1.4 (8 points).

Assume you had an implementation of your lock analysis (from
above). Explain how you would identify deadlock errors based
on the results of this analysis. A deadlock occurs when a pro-
gram locks a variable that is already locked. Specifically, de-
scribe (a) the While AST element that is associated with the er-
ror, (b) what condition on the analysis information at that lo-
cation indicates a definite deadlock error, and (c) whether your
condition is based on the analysis information immediately be-
fore or after the AST element. Finally, (d) explain what you
would change about the condition to find a possible deadlock
error (e.g. in cases where the analysis is too imprecise to tell if
there is definitely an error).

There is a corresponding double-unlocking error that could be
found, but finding it is not required for this assignment.

3



Question 1.5 (8 points).

Simulate your analysis on the following program, using the
worklist algorithm. Use the notation from the lecture 12, slide
46 (“Example of Worklist”), so you have 4 columns: the first
describing to which statement you are applying the flow func-
tion (with 0 at the beginning to show the dataflow values at the
entry of the CFG), the second column showing the statements
on the worklist, and the last two columns showing lock lattice
values for each variable (x and y—the variable b is not relevant
since it is not a lock).

[lock(x)]1;
if [b > 0]2

then [lock(y)]3
else [skip]4;

[lock(x)]5;
if [b > 0]6

then [unlock(y)]7
else [skip]8;

[unlock(x)]9;

2 Valid Pointer Analysis Specification (25 points)

Now it is time to precisely define a valid pointer analysis for WHILE. A
valid pointer is a pointer which it is safe to dereference (i.e. it is not null
and does not point to garbage). Assume that WHILE has been extended
with the following syntactic construct:

a ::= ...
| &x

The &x expression takes the address of some variable x, resulting in a
valid pointer. For the present, we will assume WHILE has a C-like pointer
model, where regular integer variables can hold pointer values. We rep-
resent null with the constant 0. We also assume that integer constants–
including zero–are not valid pointers. For the purposes of data flow anal-
ysis over the control flow graph, you can assume that this new expression
type turns into a three address code statement of the form y = &x.

4



Question 2.1 (10 points).

Design a lattice for a single variable. Your lattice should be able
to represent both definitely valid and definitely not valid states,
as well as possibly valid. Define the lattice by giving (a) the set
of lattice elements and (b) the ordering relation between them,
(c) the top element and (d) the bottom element.

Question 2.2 (5 points).

What is the initial analysis information before the first statement
of each function? Justify your choice (more than one answer
may be correct, so long as it is justified).

Question 2.3 (10 points).

Define the flow functions for your analysis, using the notation
given in class. Naturally, you will need to include flow func-
tions for the new expression form &x, as well as for integer con-
stants such as 0 (which are invalid pointers).

5



3 Valid Pointer Analysis Implementation (40 points)

Next, you will implement your valid pointer analysis for the Java program-
ming language using Crystal’s dataflow analysis capability. (You will need
to download an updated Crystal release from Blackboard.)

In Java, integer variables are separate from pointer variables (“refer-
ences”), so your implementation need not keep track of whether integer
variables and expressions are valid or not (you may if you wish; if so, these
are all invalid). However, pointer variables are either valid or null (with
null taking the place of 0 in WHILE). Thus, your analysis should track the
null-ness of local variables, but should assume that values in fields, arrays,
and method parameters could be either null or non-null.

You should implement your analysis by defining a new subclass of Lat-
ticeElement which describes a valid pointer lattice for a single variable,
and using this with the TupleLatticeElement class to build a tuple lattice
for valid pointer analysis. You should subclass AbstractTransferFunction
to define your pointer analysis flow function as well as the initial and bot-
tom analysis info. Finally, you should write a subclass of AbstractCrystal-
MethodAnalysis that runs Crystal’s FlowAnalysis class with your transfer
function and reports invalid pointer dereferences. Your analysis should
produce exactly one warning in the Eclipse errors window for each of the
errors marked with comments in the test file TestNull.java and no addi-
tional warnings. Hint: Valid pointer analysis works a lot like the zero anal-
ysis presented in class, so you may find it helpful to look at the zero analysis
sample implementation that comes with Crystal.

AbstractTransferFunction allows you define your flow function over
a form of 3-Address-Code (3AC) that represents the (far more compli-
cated) Java AST in terms of a small set of atomic operations on vari-
ables. 3AC looks a lot like assembly instructions and is implemented in
edu.cmu.cs.crystal.tac. You will have to familiarize yourself with
the various 3AC instructions that appear as arguments to the transfer
methods in AbstractTransferFunction. Notice that there are several types
of variables (some of which can never be null) that are represented as
subclasses of Variable.

To make the assignment more feasible to grade, all the classes you write
must be put in the package edu.cmu.cs.crystal.asst6. The client analysis
class (the one that inherits from AbstractCrystalMethodAnalysis and needs
to be registered in CrystalPlugin) must be named NullPointerAnalysis.java.

6



Question 3.1 (10 points).

Run your analysis on TestNull.java. Turn in a screenshot of the
problems window, or the text produced by your analysis if you
wrote to the errors window. When capturing the screenshot,
resize the window if necessary to show all the errors. Do not
change TestNull.java.

Question 3.2 (30 points).

Turn in your analysis code. Your code should follow the
basic design described above. Remember to use package
edu.cmu.cs.crystal.asst6 and client class name NullPointer-
Analysis.java.

Important note: Your code must be robust. For example, it
should not throw unexpected exceptions when analyzing valid
Java code (these exceptions will show up on the Crystal con-
sole). We will be running your code on a large codebase to check
its robustness, and we recommend you do so as well. One sim-
ple approach is to run your analysis on the Crystal codebase.

7


