Course Topic Review
1. Introduction to Analysis Questions

What makes quality in software engineering more difficult to achieve than quality in other engineering disciplines? 

Define analysis

Define verification and validation

Name 6 different analysis techniques and describe relative strengths and weaknesses

Name 3 characteristics of quality attributes that are hard to test for

Name several criteria for evaluating different analysis techniques

Define fault, error, and failure

Describe at a high level the overall QA strategy used at Microsoft

2. Testing Questions

Define testing

Name at least 4 different goals of testing

Define unit, integration, and system testing

Unit testing imposes costs; argue why it still pays off.

Define and compare white box and black box testing

Write equivalence, boundary, and invalid value test cases

Describe and compare several different kinds of test coverage metrics

Describe and compare several ways for determining when testing is complete

How should testing be considered in requirements and design?

Name at least 3 good practices for putting testing into a process

Describe elements of a test plan

Describe at least 3 elements of a good defect report

Why is testing by nature incomplete?

2. Inspection Questions

What are the benefits of inspection, beyond just finding defects?

What attributes are better-handled by inspection than by testing?

Explain the differences between formal technical reviews, walkthroughs, passarounds, and desk checks.

Describe the key roles in a formal technical review

Describe the formal technical review process

Explain why a checklist is useful and what makes a good checklist

3. Semantics Questions

Be able to model program execution by formal application of big-step expression and statement evaluation rules (we will provide a list of rules if needed)

Be able to prove simple inductive theorems about programs using the semantics

4. Hoare Logic Questions

Use mathematical pre- and post-conditions to specify simple functions

Define correctness with respect to a specification, and understand the semantics of contracts based on pre- and post-condition specifications

Give weakest precondition rules for assignment, sequence, and if

Describe the three conditions on valid loop invariants (for partial correctness)
Prove programs correct using Hoare triples and the weakest precondition methodology (including partial correctness for loops)
Define variant function and explain why the definition helps you reason about termination

Come up with a variant function for loops with an index, and be able to show why it is correct

5. ESC/Java Questions

Use ESC/Java to check simple data structure code and looping code

Understand and be able to use the concept of a data invariant

6. Static Analysis

Define static analysis, false positive, false negative, soundness, and completeness

Describe best practices for integrating static analysis tools into practice


Illustrate these with examples from Microsoft/eBay case studies

Simulate a static analysis on a body of code using the worklist algorithm

Define a static analysis formally using a lattice and flow functions

Describe advantages and disadvantages of static analysis compared to each of testing and inspection, and give example problems that illustrate each

Understand and be able to answer questions about zero analysis, constant propagation, lock analysis, null pointer analysis, typestate analysis, live variable analysis, and reaching definitions analysis.
Be able to code simple dataflow analyses using a dataflow analysis framework like Crystal

Understand the nature of AST walker analyses and how they are different from dataflow analyses (AST walkers look for local error patterns in code, while flow analyses track how information flows across different parts of the program)

Argue why an analysis should terminate using monotonicity and lattice height

Use local soundness to demonstrate why an analysis is, or is not, globally sound

Be able to simulate the symbolic execution approach used in PREfix’s analysis

Describe several approaches to interprocedural analysis and compare their advantages and drawbacks

7. Security
Understand how buffer overrun attacks work

Understand the principle sources of security problems: not broken cryptography, but bugs in code and social engineering.

Be able to make arguments about security in terms of cost/benefit (increasing the cost to the attacker and decreasing the damage the attacker can do).

Define and give examples of authentication, authorization, confidentiality, integrity, non-repudiation, and denial of service.

Be able to describe and use basic security principles, including the principle of least privilege, defense in depth, failing securely, using secure defaults, and the pitfalls of security through obscurity.

Understand and give examples of security practices including security goal definition, security management plans, and security process improvement.

Know the 6 parts of the STRIDE methodology and be able to use it to find threats in each category when given a concrete system description.
Understand the basic principles of security testing

8. Performance
Be able to perform a Big-O style asymptotic performance analysis given a function.

Describe Amdahl’s law and how it applies to performance optimization.

Understand and reproduce the basic principles of profiling.

9. Design Patterns
Understand what a design pattern is and why it is useful.
Know the design patterns discussed in class: Strategy, Observer, Decorator, Factory, Singleton, Command, Adapter, Facade, Template Method, Iterator, Composite, State, Proxy, and Model-View-Controller.

For each pattern, be able to identify it in source code, come up with the name given a description, be able to draw the basic structure of the pattern, and make arguments about the pattern’s design consequences.
10. Concurrency
Define race condition, deadlock.

Be able to identify race conditions or deadlocks in code.

Understand multiple approaches for assuring the absence of race conditions and at least two approaches for dealing with deadlocks.

11. Protocol Checking
Be able to describe object protocols using state machines.

Describe how aliasing makes it difficult to track object protocols through static analysis or inspection, and how capabilities/permissions support checking in the presence of aliasing.

Explain how to connect the client-visible protocol of an object to the protocol of the objects it uses, with the concept of state invariants.

