Software Excellence via
Program Analysis
at Microsoft

Used by permission for 17-654/17-754:
Analysis of Software Artifacts
Jonathan Aldrich, Instructor

Manuvir Das

Center for Software Excellence
Microsoft Corporation

Talking the talk ...

e Program analysis technology can make a
huge impact on how software is engineered

e The trick is to properly balance research on
new techniques with a focus on deployment

e The Center for Software Excellence (CSE) at
Microsoft is doing this (well?) today

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

... walking the walk
|

e Program Analysis group in June 2005
- Filed 7000+ bugs
- Automatically added 10,000+ specifications
- Answered hundreds of emails
(one future version of one product)
e We are program analysis researchers
- but we live and breathe deployment & adoption
- and we feel the pain of the customer

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Context

@
e The Nail (Windows)
- Manual processes do not scale to “real” software

e The Hammer (Program Analysis)
- Automated methods for “searching” programs

e The Carpenter (CSE)

- A systematic, heavily automated, approach to
improving the “quality” of software

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

What is program analysis?
|

e grep == program analysis
e program analysis == grep

e syntax trees, CFGs, instrumentation, alias analysis,
dataflow analysis, dependency analysis, binary
analysis, automated debugging, fault isolation,
testing, symbolic evaluation, model checking,
specifications, ...

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Roadmap
@

e (part of) The engineering process today

e (some of) The tools that enable the process

e (a few) Program analyses behind the tools

e (too many) Lessons learned along the way

e (too few) Suggestions for future research

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Engineering process

Analysis of Software Artifacts

Manuvir Das, Microsoft Corporation

Methodology

Root Cause
Analysis

—

Engineering
Process

Measurement

Analysis
Technology

Analysis of Software Artifacts

Resource
Constraints

Manuvir Das, Microsoft Corporation

Root cause analysis
|

e Understand important failures in a deep way
Every MSRC bulletin

Beta release feedback

Watson crash reports

Self host

Bug databases

e Design and adjust the engineering process to
ensure that these failures are prevented

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Measurement
C]

e Measure everything about the process
- Code quality
- Code velocity
- Tools effectiveness
- Developer productivity

e Tweak the process accordingly

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Process — Build Architecture

Main
Branch
Team Team

Team
Branch /... Branch /... Branch

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Process — Quality Gates

e Lightweight tools
- run on developer desktop & team level branches
- issues tracked within the program artifacts

e Enforced by rejection at gate

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Process — Automated Bug Filing

e Heavyweight tools
- run on main branch
- issues tracked through a central bug database

e Enforced by bug cap

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Tools

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

QG — Code Coverage via Testing
|

e Reject code that is not adequately tested
- Maintain a minimum bar for code coverage

e Code coverage tool — Magellan
e Based on binary analysis - Vulcan

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation
Magellan
e BBCover

- low overhead instrumentation & collection
- down to basic block level

e Sleuth

- coverage visualization, reporting & analysis
e Blender

- coverage migration
e Scout

- test prioritization

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

QG — Component Integrity
.|

e Reject code that breaks the componentized
architecture of the product
- Control all dependencies across components

e Dependency analysis tool — MaX
e Based on binary analysis - Vulcan

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

MaX
]

e Constructs a graph of dependencies
between binaries (DLLS) in the system
- Obvious : call graph
- Subtle : registry, RPC, ...

e Compare policy graph and actual graph
e Some discrepancies are treated as errors

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Vulcan
C]

e Input — binary code
e Output — program abstractions

e Adapts to level of debug information

e Makes code instrumentation easy
— think ATOM

e Makes code modification easy
- link time, post link time, install time, run time

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

QG — Formal Specifications
|

e Reject code with poorly designed and/or
insufficiently specified interfaces

e Lightweight specification language — SAL
— initial focus on memory usage
e All functions must be SAL annotated

e Fully supported in Visual Studio (see MSDN)

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

10

SAL
@

A language of contracts between functions

preconditions
- Statements that hold at entry to the callee
- What does a callee expect from its callers?
postconditions
- Statements that hold at exit from the callee
- What does a callee promise its callers?
Usage example:

RT func(T par)

Buffer sizes, null pointers, memory usage, ...

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

SAL Example
|

e wcsncpy

- precondition: destination must have enough
allocated space

wchar_t wesnepy (
wchar_t *dest, wchar_t *src, size_t num);

wchar_t wesnepy (

wchar_t *dest,
wchar_t *src, size_t num);

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

11

SAL Principle
|

e Control the power of the specifications:

- Impractical solution: Rewrite code in a different
language that is amenable to automated analysis

- Practical solution: Formalize invariants that are
implicit in the code in intuitive notations
e These invariants often already appear in comments

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Defect Detection Process — 1

(;

Manual
Annotations

Annotated
Code

J« Potential
Annotation N Defects
Fixes, (=== Code Review
Bug Fixes
Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

12

QG — Integer Overflow
.|

e Reject code with potential security holes due
to unchecked integer arithmetic

e Range specifications + range checker — 10
e Local (intra-procedural) analysis

e Runs on developer desktop as part of regular
compilation process

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

1O
@

e Enforces correct arithmetic for allocations

sizel = ...
size2 = ...
data = MyAlloc(sizel+size2);
for (i=0; i< sizel; i++)
datafi] = ...
e Construct an expression tree for every

interesting expression in the code
e Ensure that every node in the tree is checked

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

13

QG — Buffer Overruns
L |

e Reject code with potential security holes due
to out of bounds buffer accesses

e Buffer size specifications + buffer overrun
checker — espX

e Local (intra-procedural) analysis

e Runs on developer desktop as part of regular
compilation process

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Bootstrap the process
.|

e Combine global and local analysis:

- Weak global analysis to infer (potentially
inaccurate) interface annotations - SALinfer

- Strong local analysis to identify incorrect code
and/or annotations - espX

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

14

Defect Detection Process - 2

Annotated
Code

Code Base

o Potential
: Defects
Annotation .
Bug Fixes
Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

SALinfer

void work()

int elements[200];
wrap(elements, 200);

void wrap(pre elementCount(li
int len)

int *buf2 = buf;
int len2 = len;
zero(buf2, len2);

void zero(pre elementCount(le
int len)

int i;
for(i = 0; i <= len; i++)
buf[i] = 0;

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

15

espX
e

void ~ work()

int elements[200];
wrap(elements, 200);

] Building and solving constraints
void wrap(pre elementCount(len) int *buf,

{ int S 1. Builds constraints

int *buf2 = buf: 2. \Verifies contract

int len2=len; 3. Builds constraints

zero(buf2, len2); \ len = length(buf); i <len
} "~ 4. Finds overrun

Nt *buf i <length(buf) ? NO!

void zero(pre elementCount(len)
int len)

3 int i, %

for(i = 0; i <= len; i++)
buffi] = 0;

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

QG — Code Correctness
.|

e Reject code with potential crashes due to improper
usage of memory

e Pointer usage specifications + memory usage
checker — PREfast

Managed code — PREsharp
Local (intra-procedural) analysis

Runs on developer desktop as part of regular
compilation process

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

16

ABF — Code Correctness
.

e Tease out hard to find inter-component bugs
that lead to crashes

- null dereference, un-initialized memory, leaks, ...
— difficult to find accurately on the desktop

e Inter-procedural symbolic evaluation - PREfix

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

PREfix
@

e Bottom-up process on the call graph

e Symbolic evaluation of a fixed number of
distinct paths through each function
- use symbolic state to remove infeasible paths
- report defects
— build function models for use by callers

e Solved all the difficult engineering problems
for the inter-procedural tools to follow

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

17

ABF — Security
|

e For every new security issue, map it to a
coding defect and root out all other instances

- Each coding defect is a different pattern, but most
can be viewed as finite state properties

e Heavyweight, thorough, property-based inter-
procedural analysis - ESP

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Property-based analysis
|

void main ()

{
f(@ump) e
i (p) o < > C'/' -
x=0; 0
else pint (5 Per
x=1,;

if (dump)

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

18

ESP
@

e Symbolically evaluate the program
- track FSA state and execution state
e At control flow branch points:
- Execution state implies branch direction?
e Yes: process appropriate branch
e No: split state and process both branches
e At control flow merge points:
- States agree on property FSA state?
e Yes: merge states
e No: process states separately

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Example

[Closed]

el
(oven] |F
N
[|dump=T] . @ . [Closed |dump=F]
/ \
[x=0] [x=1]
T~
[|durmp=TEplemxpe]T] dump [[Glosed|ddHippIH=F x=1]

[Closed [dGtoped]]

19

Lessons
C]

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Forcing functions for change
<

e Gen 1: Manual Review

- Too many paths

Gen 2: Massive Testing

- Inefficient detection of common patterns
Gen 3: Global Program Analysis

- Stale results

Gen 4: Local Program Analysis

- Lack of context

Gen 5: Specifications

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

20

Don’t bother doing this without -
|

e No-brainer must-haves
- Defect viewer, docs, champions, partners

e A mechanism for developers to teach the tool
- Suppression, assertion, assumption

e A willingness to support the tool
e A positive attitude

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Myth 1 — Soundness matters
|

Sound == find only real bugs

e The real measure is Fix Rate
e Centralized: >50%
e Desktop: >75%

e Specification inference
- Is it much worse than manual insertion?

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

21

Myth 2 — Completeness matters

@
Complete == find all the bugs

e There will never be a complete analysis
- Partial specifications
- Missing code
e Developers want consistent analysis
- Tools should be stable w.r.t. minor code changes
- Systematic, thorough, tunable program analysis

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Myth 3 — Developers only fix real bugs
@

e Key attributes of a “fixable” bug
- Easy to fix
- Easy to verify
- Unlikely to introduce a regression

e Simple tools can be very effective

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

22

Myth 4 — Developers hate specifications
@

e Control the power of the specifications
e This will work

- Formalize invariants that are implicit in the code
e This will not work

- Re-write code in a different language that is
amenable to automated analysis

e Think like a developer

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Myth 5 — Whiteboards are useful
|

e \Whiteboards have held back defect detection

e The most useful analyses and tools mimic
the thinking of the developer

- e.g. do developers consider every possible
interleaving when writing threaded code? No!

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

23

Myth 6 — Theory is useless
|

e Fundamental ideas have been crucial
- Hoare logic
- Abstract interpretation
- Context-sensitive analysis with summaries
- Alias analysis

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Don’t break the shipping code ©
.|

e _ invariant() is an annotation macro
- generates code in the tools build, noop in the real build

e Before:
b =a+ 16; Use(b);
e After (correct code):
__dnvariant(a); b = a + 16; Use(b);
e After (incorrect code):
b = __invariant(a) + 16; Use(b);
e Incorrect usage silently breaks the code!

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

24

Research directions
C]

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Concurrency tools
|

e Developers working on large projects follow
sequential locking disciplines
- Sequential analysis to mimic the developer
- Language constructs to help the developer

e Indirect defects reported on a single thread
are much easier to fix

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

25

Static & dynamic analysis
|

e Static followed by dynamic
- Instrument problem areas using static analysis
- Gather dynamic traces to diagnose defects

e Dynamic followed by static

- Use dynamic analysis to create a signature for good
execution traces

- Use static analysis to find execution traces that do not
match the signature

e Common intermediate information
- Code coverage, ...

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Users as automated testers
@

e Huge opportunity to improve code quality
- Find out what's failing, where, how often
- Diagnose the failures
- Early warning data

e Avoid falling into the trap of the long awaited
“code review editor”
- Need to find limited, concrete scenarios

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

26

Evolutionary tools
|

e Specification-based tools evolve a language

- Introduce a programming discipline
- Increase the portability of legacy code

e We have tackled memory usage
- Rinse and repeat

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

Summary
.|

e Program analysis technology can make a
huge impact on how software is developed

e The trick is to properly balance research on
new techniques with a focus on deployment

e The Center for Software Excellence (CSE) at
Microsoft is doing this (well?) today

Analysis of Software Artifacts Manuvir Das, Microsoft Corporation

27

Microsoft

http://www.microsoft.com/cse
http://research.microsoft.com/manuvir

© 2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

28

