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Talking the talk ...

e Program analysis technology can make a
huge impact on how software is engineered

e The trick is to properly balance research on
new techniques with a focus on deployment

e The Center for Software Excellence (CSE) at
Microsoft is doing this (well?) today
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... walking the walk
|

e Program Analysis group in June 2005
- Filed 7000+ bugs
- Automatically added 10,000+ specifications
- Answered hundreds of emails
(one future version of one product)
e We are program analysis researchers
- but we live and breathe deployment & adoption
- and we feel the pain of the customer
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Context

@
e The Nail (Windows)
- Manual processes do not scale to “real” software

e The Hammer (Program Analysis)
- Automated methods for “searching” programs

e The Carpenter (CSE)

- A systematic, heavily automated, approach to
improving the “quality” of software
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What is program analysis?
|

e grep == program analysis
e program analysis == grep

e syntax trees, CFGs, instrumentation, alias analysis,
dataflow analysis, dependency analysis, binary
analysis, automated debugging, fault isolation,
testing, symbolic evaluation, model checking,
specifications, ...
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Roadmap
@

e (part of) The engineering process today

e (some of) The tools that enable the process

e (a few) Program analyses behind the tools

e (too many) Lessons learned along the way

e (too few) Suggestions for future research
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Engineering process

Analysis of Software Artifacts
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Root cause analysis
|

e Understand important failures in a deep way
Every MSRC bulletin

Beta release feedback

Watson crash reports

Self host

Bug databases

e Design and adjust the engineering process to
ensure that these failures are prevented
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Measurement
C ]

e Measure everything about the process
- Code quality
- Code velocity
- Tools effectiveness
- Developer productivity

e Tweak the process accordingly
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Process — Build Architecture
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Process — Quality Gates

e Lightweight tools
- run on developer desktop & team level branches
- issues tracked within the program artifacts

e Enforced by rejection at gate
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Process — Automated Bug Filing

e Heavyweight tools
- run on main branch
- issues tracked through a central bug database

e Enforced by bug cap
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Tools
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QG — Code Coverage via Testing
|

e Reject code that is not adequately tested
- Maintain a minimum bar for code coverage

e Code coverage tool — Magellan
e Based on binary analysis - Vulcan
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Magellan
e BBCover

- low overhead instrumentation & collection
- down to basic block level

e Sleuth

- coverage visualization, reporting & analysis
e Blender

- coverage migration
e Scout

- test prioritization
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QG — Component Integrity
.|

e Reject code that breaks the componentized
architecture of the product
- Control all dependencies across components

e Dependency analysis tool — MaX
e Based on binary analysis - Vulcan
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MaX
]

e Constructs a graph of dependencies
between binaries (DLLS) in the system
- Obvious : call graph
- Subtle : registry, RPC, ...

e Compare policy graph and actual graph
e Some discrepancies are treated as errors
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Vulcan
C ]

e Input — binary code
e Output — program abstractions

e Adapts to level of debug information

e Makes code instrumentation easy
— think ATOM

e Makes code modification easy
- link time, post link time, install time, run time
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QG — Formal Specifications
|

e Reject code with poorly designed and/or
insufficiently specified interfaces

e Lightweight specification language — SAL
— initial focus on memory usage
e All functions must be SAL annotated

e Fully supported in Visual Studio (see MSDN)
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SAL
@

A language of contracts between functions

preconditions
- Statements that hold at entry to the callee
- What does a callee expect from its callers?
postconditions
- Statements that hold at exit from the callee
- What does a callee promise its callers?
Usage example:

RT func( T par)

Buffer sizes, null pointers, memory usage, ...
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SAL Example
|

e wcsncpy

- precondition: destination must have enough
allocated space

wchar_t wesnepy (
wchar_t *dest, wchar_t *src, size_t num );

wchar_t wesnepy (

wchar_t *dest,
wchar_t *src, size_t num);
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SAL Principle
|

e Control the power of the specifications:

- Impractical solution: Rewrite code in a different
language that is amenable to automated analysis

- Practical solution: Formalize invariants that are
implicit in the code in intuitive notations
e These invariants often already appear in comments
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Defect Detection Process — 1

(;

Manual
Annotations

Annotated
Code

J« Potential
Annotation N Defects
Fixes, (=== Code Review
Bug Fixes
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QG — Integer Overflow
.|

e Reject code with potential security holes due
to unchecked integer arithmetic

e Range specifications + range checker — 10
e Local (intra-procedural) analysis

e Runs on developer desktop as part of regular
compilation process
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1O
@

e Enforces correct arithmetic for allocations

sizel = ...
size2 = ...
data = MyAlloc(sizel+size2);
for (i=0; i< sizel; i++)
datafi] = ...
e Construct an expression tree for every

interesting expression in the code
e Ensure that every node in the tree is checked
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QG — Buffer Overruns
L |

e Reject code with potential security holes due
to out of bounds buffer accesses

e Buffer size specifications + buffer overrun
checker — espX

e Local (intra-procedural) analysis

e Runs on developer desktop as part of regular
compilation process
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Bootstrap the process
.|

e Combine global and local analysis:

- Weak global analysis to infer (potentially
inaccurate) interface annotations - SALinfer

- Strong local analysis to identify incorrect code
and/or annotations - espX
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Defect Detection Process - 2

Annotated
Code

Code Base

o Potential
: Defects
Annotation .
Bug Fixes
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SALinfer

void  work()

int elements[200];
wrap(elements, 200);

void wrap( pre elementCount(li
int len)

int  *buf2 = buf;
int len2 = len;
zero(buf2, len2);

void zero( pre elementCount(le
int len)

int i;
for(i = 0; i <= len; i++)
buf[i] = 0;
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espX
e

void ~ work()

int  elements[200];
wrap(elements, 200);

] Building and solving constraints
void wrap( pre elementCount(len) int  *buf,

{ int S 1. Builds constraints

int *buf2 = buf: 2. \Verifies contract

int len2=len; 3. Builds constraints

zero(buf2, len2); \ len = length(buf); i <len
} "~ 4. Finds overrun

Nt *buf i <length(buf) ? NO!

void zero( pre elementCount(len)
int len)

3 int i, %

for(i = 0; i <= len; i++)
buffi] = 0;
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QG — Code Correctness
.|

e Reject code with potential crashes due to improper
usage of memory

e Pointer usage specifications + memory usage
checker — PREfast

Managed code — PREsharp
Local (intra-procedural) analysis

Runs on developer desktop as part of regular
compilation process
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ABF — Code Correctness
.

e Tease out hard to find inter-component bugs
that lead to crashes

- null dereference, un-initialized memory, leaks, ...
— difficult to find accurately on the desktop

e Inter-procedural symbolic evaluation - PREfix
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PREfix
@

e Bottom-up process on the call graph

e Symbolic evaluation of a fixed number of
distinct paths through each function
- use symbolic state to remove infeasible paths
- report defects
— build function models for use by callers

e Solved all the difficult engineering problems
for the inter-procedural tools to follow
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ABF — Security
|

e For every new security issue, map it to a
coding defect and root out all other instances

- Each coding defect is a different pattern, but most
can be viewed as finite state properties

e Heavyweight, thorough, property-based inter-
procedural analysis - ESP
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Property-based analysis
|

void main ()

{
f(@ump) e
i (p) o < > C'/' -
x=0; 0
else pint (5 Per
x=1,;

if (dump)
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ESP
@

e Symbolically evaluate the program
- track FSA state and execution state
e At control flow branch points:
- Execution state implies branch direction?
e Yes: process appropriate branch
e No: split state and process both branches
e At control flow merge points:
- States agree on property FSA state?
e Yes: merge states
e No: process states separately
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Example

[ Closed ]

el
(oven] |F
N
[ |dump=T] . @ . [ Closed |dump=F]
/ \
[ x=0 ] [ x=1 ]
T~
[ |durmp=TEplemxpe]T] dump [ [Glosed|ddHippIH=F x=1]

[ Closed [dGtoped]]
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Lessons
C ]
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Forcing functions for change
<

e Gen 1: Manual Review

- Too many paths

Gen 2: Massive Testing

- Inefficient detection of common patterns
Gen 3: Global Program Analysis

- Stale results

Gen 4: Local Program Analysis

- Lack of context

Gen 5: Specifications
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Don’t bother doing this without -
|

e No-brainer must-haves
- Defect viewer, docs, champions, partners

e A mechanism for developers to teach the tool
- Suppression, assertion, assumption

e A willingness to support the tool
e A positive attitude
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Myth 1 — Soundness matters
|

Sound == find only real bugs

e The real measure is Fix Rate
e Centralized: >50%
e Desktop: >75%

e Specification inference
- Is it much worse than manual insertion?
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Myth 2 — Completeness matters

@
Complete == find all the bugs

e There will never be a complete analysis
- Partial specifications
- Missing code
e Developers want consistent analysis
- Tools should be stable w.r.t. minor code changes
- Systematic, thorough, tunable program analysis
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Myth 3 — Developers only fix real bugs
@

e Key attributes of a “fixable” bug
- Easy to fix
- Easy to verify
- Unlikely to introduce a regression

e Simple tools can be very effective
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Myth 4 — Developers hate specifications
@

e Control the power of the specifications
e This will work

- Formalize invariants that are implicit in the code
e This will not work

- Re-write code in a different language that is
amenable to automated analysis

e Think like a developer
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Myth 5 — Whiteboards are useful
|

e \Whiteboards have held back defect detection

e The most useful analyses and tools mimic
the thinking of the developer

- e.g. do developers consider every possible
interleaving when writing threaded code? No!
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Myth 6 — Theory is useless
|

e Fundamental ideas have been crucial
- Hoare logic
- Abstract interpretation
- Context-sensitive analysis with summaries
- Alias analysis
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Don’t break the shipping code ©
.|

e _ invariant() is an annotation macro
- generates code in the tools build, noop in the real build

e Before:
b =a+ 16; Use(b);
e After (correct code):
__dnvariant(a); b = a + 16; Use(b);
e After (incorrect code):
b = __invariant(a) + 16; Use(b);
e Incorrect usage silently breaks the code!
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Research directions
C ]
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Concurrency tools
|

e Developers working on large projects follow
sequential locking disciplines
- Sequential analysis to mimic the developer
- Language constructs to help the developer

e Indirect defects reported on a single thread
are much easier to fix
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Static & dynamic analysis
|

e Static followed by dynamic
- Instrument problem areas using static analysis
- Gather dynamic traces to diagnose defects

e Dynamic followed by static

- Use dynamic analysis to create a signature for good
execution traces

- Use static analysis to find execution traces that do not
match the signature

e Common intermediate information
- Code coverage, ...
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Users as automated testers
@

e Huge opportunity to improve code quality
- Find out what's failing, where, how often
- Diagnose the failures
- Early warning data

e Avoid falling into the trap of the long awaited
“code review editor”
- Need to find limited, concrete scenarios
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Evolutionary tools
|

e Specification-based tools evolve a language

- Introduce a programming discipline
- Increase the portability of legacy code

e We have tackled memory usage
- Rinse and repeat
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Summary
.|

e Program analysis technology can make a
huge impact on how software is developed

e The trick is to properly balance research on
new techniques with a focus on deployment

e The Center for Software Excellence (CSE) at
Microsoft is doing this (well?) today
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Microsoft

http://www.microsoft.com/cse
http://research.microsoft.com/manuvir

© 2005 Microsoft Corporation. All rights reserved.
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