Proofs using \textsc{While} Semantics

(minor corrections from class to incorporate strengthened induction hypothesis)

\textbf{Theorem:} \([\{y \mapsto 1, x \mapsto n\}, \text{while } x > 1 \text{ do } y := y \times x; x := x-1] \mapsto^* [\{y \mapsto n!, x \mapsto 1\}, \text{skip}]\)

\textbf{Proof:} By induction on \(n\). Strengthened induction hypothesis:
\([\{y \mapsto m, x \mapsto n\}, \text{while } x > 1 \text{ do } y := y \times x; x := x-1] \mapsto^* [\{y \mapsto m \times n!, x \mapsto 1\}, \text{skip}]\)

\textbf{Base case (n=1):}
\([\{y \mapsto m, x \mapsto 1\}, \text{while } x > 1 \text{ do } y := y \times x; x := x-1] \ni \ni (\{y \mapsto m \times 1!, x \mapsto 1\}, \text{skip})\)

\textbf{Inductive case (assume induction hypothesis for n-1):}
\([\{y \mapsto m, x \mapsto n\}, \text{while } x > 1 \text{ do } y := y \times x; x := x-1] \ni \ni (\{y \mapsto m \times n, x \mapsto n-1\}, \text{while } x > 1 \text{ do } y := y \times x; x := x-1)\)
\ni \ni (\{y \mapsto m \times n, x \mapsto n-1\}, \text{while } x > 1 \text{ do } y := y \times x; x := x-1)\)
\ni \ni (\{y \mapsto m \times n \times (n-1)!\}, x \mapsto 1\}, \text{skip}) // \textit{using induction hypothesis}\)
\ni \ni (\{y \mapsto m \times n!, x \mapsto 1\}, \text{skip}) // \textit{arithmetic simplification}\)
How would you argue that this program is correct?

float sum(float *array, int length) {
 float sum = 0.0;
 int i = 0;
 while (i < length) {
 sum = sum + array[i];
 i = i + 1;
 }
 return sum;
}

Function Specifications

• Predicate: a boolean function over program state
 • $x=3$
 • $y > x$
 • $(x \neq 0) \Rightarrow (y+z = w)$
 • $s = \sum_{i=1..n} a[i]$
 • $\forall i \in 1..n . a[i] > a[i-1]$
 • $true$
Function Specifications

• Contract between client and implementation
 • Precondition:
 • A predicate describing the condition the function relies on for correct operation
 • Postcondition:
 • A predicate describing the condition the function establishes after correctly running
 • Correctness with respect to the specification
 • If the client of a function fulfills the function’s precondition, the function will execute to completion and when it terminates, the postcondition will be true
 • What does the implementation have to fulfill if the client violates the precondition?
 • A: Nothing. It can do anything at all.

/*@ requires len >= 0 && array.length = len @
@ ensures \result == <(sum int j; 0 <= j && j < len; array[j])>
@*/
float sum(int array[], int len) {
 float sum = 0.0;
 int i = 0;
 while (i < length) {
 sum = sum + array[i];
 i = i + 1;
 }
 return sum;
}
Hoare Triples

- Formal reasoning about program correctness using pre- and postconditions
- Syntax: \{ P \} S \{ Q \}
 - P and Q are predicates
 - S is a program
- If we start in a state where P is true and execute S, S will terminate in a state where Q is true

Hoare Triple Examples

- \{ true \} x := 5 \{ x=5 \}
- \{ x = y \} x := x + 3 \{ x = y + 3 \}
- \{ x > 0 \} x := x * 2 \{ x > -2 \}
- \{ x=a \} if (x < 0) then x := -x \{ x=|a| \}
- \{ false \} x := 3 \{ x = 8 \}
Strongest Postconditions

- Here are a number of valid Hoare Triples:
 - \{x = 5\} x := x * 2 \{true\}
 - \{x = 5\} x := x * 2 \{x > 0\}
 - \{x = 5\} x := x * 2 \{x = 10 || x = 5\}
 - \{x = 5\} x := x * 2 \{x = 10\}
 - All are true, but this one is the most useful
 - \(x = 10\) is the strongest postcondition
 - If \{P\} S \{Q\} and for all \(Q'\) such that \{P\} S \{Q'\}, \(Q \Rightarrow Q'\), then Q is the strongest postcondition of S with respect to P
 - check: \(x = 10 \Rightarrow \text{true}\)
 - check: \(x = 10 \Rightarrow x > 0\)
 - check: \(x = 10 \Rightarrow x = 10 || x = 5\)
 - check: \(x = 10 \Rightarrow x = 10\)

Weakest Preconditions

- Here are a number of valid Hoare Triples:
 - \{x = 5 \&\& y = 10\} z := x / y \{z < 1\}
 - \{x < y \&\& y > 0\} z := x / y \{z < 1\}
 - \{y \neq 0 \&\& x / y < 1\} z := x / y \{z < 1\}
 - All are true, but this one is the most useful because it allows us to invoke the program in the most general condition
 - \(y \neq 0 \&\& x / y < 1\) is the weakest precondition
 - If \{P\} S \{Q\} and for all \(P'\) such that \{P'\} S \{Q\}, \(P' \Rightarrow P\), then P is the weakest precondition \(wp(S, Q)\) of S with respect to Q
Hoare Triples and Weakest Preconditions

• \{P\} S \{Q\} holds if and only if \(P \Rightarrow wp(S,Q)\)
 • In other words, a Hoare Triple is still valid if the precondition is stronger than necessary, but not if it is too weak
• Question: Could we state a similar theorem for a strongest postcondition function?
 • e.g. \{P\} S \{Q\} holds if and only if \(sp(S,P) \Rightarrow Q\)
 • A: Yes, but it’s harder to compute

Hoare Logic Rules

• Assignment
 • \{ P \} x := 3 \{ x+y > 0 \}
 • What is the weakest precondition P?
 • What is most general value of y such that 3 + y > 0?
 • y > -3
Hoare Logic Rules

- Assignment
 - \{ P \} x := 3 \{ x+y > 0 \}
 - What is the weakest precondition P?

- Assignment rule
 - \(wp(x := E, P) = [E/x] P \)
 - Resulting triple: \(\{ [E/x] P \} x := E \{ P \} \)
 - \([3 / x] (x + y > 0) \)
 - \(= (3) + y > 0 \)
 - \(= y > -3 \)

Hoare Logic Rules

- Assignment
 - \{ P \} x := 3*y + z \{ x * y - z > 0 \}
 - What is the weakest precondition P?

- Assignment rule
 - \(wp(x := E, P) = [E/x] P \)
 - \([3*y+z / x] (x * y - z > 0) \)
 - \(= (3*y+z) * y - z > 0 \)
 - \(= 3*y^2 + z*y - z > 0 \)
Correctness of Assignment

- Use language semantics to show soundness of rule
 - General soundness condition for \{P\} S \{Q\}
 \[(\eta \vdash P \downarrow \text{true} \land (\eta, S) \rightarrow^* (\eta', \text{skip})) \Rightarrow \eta' \vdash Q \downarrow \text{true}\]

- Specialization to assignment
 - Hoare rule: \{ [a/x] P \} x := a \{ P \}
 - Soundness condition:
 \[(\eta \vdash [a/x] P \downarrow \text{true} \land (\eta, \ x:=a) \rightarrow (\eta', \skip)) \Rightarrow \eta' \vdash P \downarrow \text{true}\]

Correctness Proof

- To show:
 \[(\eta \vdash [a/x] P \downarrow \text{true} \land (\eta, \ x:=a) \rightarrow (\eta', \skip)) \Rightarrow \eta' \vdash P \downarrow \text{true}\]

- Prove more general property:
 - Use assignment evaluation rule:
 \[\eta \vdash a \downarrow v \quad \Rightarrow \quad (\eta, \ x:=a) \rightarrow (\eta[x\mapsto v], \text{skip})\]

- Substitute \(v'\) for \text{true}:
 \[(\eta \vdash [a/x] P \downarrow v' \land \eta \vdash a \downarrow v) \Rightarrow \eta[x\mapsto v] \vdash P \downarrow v'\]
Correctness Proof

- \((\eta \vdash [a/x] P \downarrow v' \land \eta \vdash a \downarrow v) \Rightarrow \eta[x \mapsto v] \vdash P \downarrow v'\)
- Proof by induction on structure of \(P\)
 - case \(n\): then \(v' = n\), and using big-step semantics we get
 \((\eta \vdash [a/x] n \downarrow n \land \eta \vdash a \downarrow v) \Rightarrow \eta[x \mapsto v] \vdash n \downarrow n\)
 - case \(x\): then \(v' = v\), and using big-step semantics we get
 \((\eta \vdash [a/x] x \downarrow v \land \eta \vdash a \downarrow v) \Rightarrow \eta[x \mapsto v] \vdash x \downarrow v\)
 - case \(y \neq x\): then \(v' = \eta(y)\), and using big-step semantics we get
 \((\eta \vdash [a/x] y \downarrow \eta(y) \land \eta \vdash a \downarrow v) \Rightarrow \eta[x \mapsto v] \vdash y \downarrow \eta(y)\)
 - case \(a' \text{ op } a''\):
 - We use the induction hypotheses to get
 \((\eta \vdash [a/x] a' \downarrow v' \land \eta \vdash a \downarrow v) \Rightarrow \eta[x \mapsto v] \vdash a' \downarrow v'\)
 - And similar for \(a''\), so that using big-step semantics we get
 \((\eta \vdash [a/x] (a' \text{ op } a'') \downarrow (v' \text{ op } v'') \land \eta \vdash a \downarrow v) \Rightarrow \eta[x \mapsto v] \vdash (a' \text{ op } a'') \downarrow (v' \text{ op } v'')\)
 - other cases are similar

Hoare Logic Rules

- Sequence
 - \(\{ P \} x := x + 1; y := x + y \{ y > 5 \}\)
 - What is the weakest precondition \(P\)?
- Sequence rule
 - \(wp(S; T, Q) = wp(S, wp(T, Q))\)
 - \(wp(x:=x+1; y:=x+y, y>5)\)
 - \(= wp(x:=x+1, wp(y:=x+y, y>5))\)
 - \(= wp(x:=x+1, x+y>5)\)
 - \(= x+1+y>5\)
 - \(= x+y>4\)
Hoare Logic Rules

- **Conditional**
 - \{ P \} if \(x > 0 \) then \(y := z \) else \(y := -z \) \{ y > 5 \}
 - What is the weakest precondition \(P \)?

- **Conditional rule**
 - \(wp(\text{if } B \text{ then } S \text{ else } T, Q) \)
 - \(B \Rightarrow wp(S, Q) \) \&\& \(\neg B \Rightarrow wp(T, Q) \)
 - \(wp(\text{if } x > 0 \text{ then } y := z \text{ else } y := -z, y > 5) \)
 - \(= x > 0 \Rightarrow wp(y := z, y > 5) \) \&\& \(x \leq 0 \Rightarrow wp(y := -z, y > 5) \)
 - \(= x > 0 \Rightarrow z > 5 \) \&\& \(x \leq 0 \Rightarrow -z > 5 \)
 - \(= x > 0 \Rightarrow z > 5 \) \&\& \(x \leq 0 \Rightarrow z < -5 \)

Hoare Logic Rules

- **Loops**
 - \(\{ P \} \) while \((i < x) \) \(f = f^i; i := i + 1 \) \{ f = x! \}
 - What is the weakest precondition \(P \)?
Proving loops correct

• First consider *partial correctness*
 • The loop may not terminate, but if it does, the postcondition will hold
• \{P\} while B do S \{Q\}
 • Find an invariant Inv such that:
 • P \Rightarrow Inv
 • The invariant is initially true
 • \{ Inv && B \} S \{Inv\}
 • Each execution of the loop preserves the invariant
 • (Inv && \neg \neg B) \Rightarrow Q
 • The invariant and the loop exit condition imply the postcondition
 • *Why do we need each condition?*

Loop Example

• Prove array sum correct
 \{ N \geq 0 \}
 j := 0;
 s := 0;

 while (j < N) do
 j := j + 1;
 s := s + a[j];
 end
 \{ s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) \}
Loop Example

- Prove array sum correct

\begin{align*}
\{ & N \geq 0 \} \\
& j := 0; \\
& s := 0; \\
& \{ 0 \leq j \leq N \&\& s = (\Sigma i \mid 0\leq i<j \cdot a[i]) \} \\
\text{while} \ (j < N) \ \text{do} \\
& \{0 \leq j \leq N \&\& s = (\Sigma i \mid 0\leq i<j \cdot a[i]) \&\& j < N\} \\
& \quad j := j + 1; \\
& \quad s := s + a[j]; \\
& \{0 \leq j \leq N \&\& s = (\Sigma i \mid 0\leq i<j \cdot a[i]) \} \\
\text{end} \\
& \{ s = (\Sigma i \mid 0\leq i<N \cdot a[i]) \}
\end{align*}

Proof Obligations

- Invariant is initially true

\begin{align*}
\{ & N \geq 0 \} \\
& j := 0; \\
& s := 0; \\
& \{ 0 \leq j \leq N \&\& s = (\Sigma i \mid 0\leq i<j \cdot a[i]) \} \\
\end{align*}

- Invariant is maintained

\begin{align*}
& \{0 \leq j \leq N \&\& s = (\Sigma i \mid 0\leq i<j \cdot a[i]) \&\& j < N\} \\
& \quad j := j + 1; \\
& \quad s := s + a[j]; \\
& \{0 \leq j \leq N \&\& s = (\Sigma i \mid 0\leq i<j \cdot a[i]) \} \\
\end{align*}

- Invariant and exit condition implies postcondition

\begin{align*}
0 \leq j \leq N \&\& s = (\Sigma i \mid 0\leq i<j \cdot a[i]) \&\& j \geq N \\
\Rightarrow s = (\Sigma i \mid 0\leq i<N \cdot a[i])
\end{align*}
Proof Obligations

- Invariant is initially true
 \[
 \{ N \geq 0 \} \land \{ 0 \leq 0 \leq N \land 0 = (\sum_{i} | 0 \leq i < 0 \cdot a[i]) \} \land \{ j := 0 \};
 \{ 0 \leq j \leq N \land 0 = (\sum_{i} | 0 \leq i < j \cdot a[i]) \} \land \{ s := 0 \};
 \{ 0 \leq j \leq N \land s = (\sum_{i} | 0 \leq i < j \cdot a[i]) \} \]

- Need to show that:
 \[
 (N \geq 0) \implies (0 \leq 0 \leq N \land 0 = (\sum_{i} | 0 \leq i < 0 \cdot a[i]))
 = (N \geq 0) \implies (0 \leq 0 \leq N \land 0 = 0) \quad \text{// 0 \leq 0 is true, empty sum is 0}
 = (N \geq 0) \implies (0 \leq N) \quad \text{// 0=0 is true, P \land true is P}
 = \text{true}
 \]

Proof Obligations

- Invariant is maintained
 \[
 \{ 0 \leq j \leq N \land s = (\sum_{i} | 0 \leq i < j \cdot a[i]) \land j < N \}
 \{ 0 \leq j + 1 \leq N \land s+a[j+1] = (\sum_{i} | 0 \leq i < j + 1 \cdot a[i]) \} \land \{ j := j + 1; \}
 \{ 0 \leq j \leq N \land s+a[j] = (\sum_{i} | 0 \leq i < j \cdot a[i]) \} \land \{ s := s + a[j]; \}
 \{ 0 \leq j \leq N \land s = (\sum_{i} | 0 \leq i < j \cdot a[i]) \} \]

- Need to show that:
 \[
 (0 \leq j \leq N \land s = (\sum_{i} | 0 \leq i < j \cdot a[i]) \land j < N)
 \implies (0 \leq j + 1 \leq N \land s+a[j+1] = (\sum_{i} | 0 \leq i < j + 1 \cdot a[i]) \land \{ j := j + 1; \}
 \{ 0 \leq j \leq N \land s+a[j] = (\sum_{i} | 0 \leq i < j \cdot a[i]) \} \land \{ s := s + a[j]; \}
 \{ 0 \leq j \leq N \land s = (\sum_{i} | 0 \leq i < j \cdot a[i]) \}
 = (0 \leq j < N \land s = (\sum_{i} | 0 \leq i < j \cdot a[i]) \land j < N)
 \implies (0 \leq j + 1 \leq N \land s+a[j+1] = (\sum_{i} | 0 \leq i < j + 1 \cdot a[i]) \land \{ j := j + 1; \}
 \{ 0 \leq j \leq N \land s+a[j] = (\sum_{i} | 0 \leq i < j \cdot a[i]) \} \land \{ s := s + a[j]; \}
 \{ 0 \leq j \leq N \land s = (\sum_{i} | 0 \leq i < j \cdot a[i]) \}
 = (-1 \leq j < N \land s+a[j+1] = (\sum_{i} | 0 \leq i < j \cdot a[i]) + a[j] \land \{ j := j + 1; \}
 \{ 0 \leq j \leq N \land s+a[j] = (\sum_{i} | 0 \leq i < j \cdot a[i]) \} \land \{ s := s + a[j]; \}
 \{ 0 \leq j \leq N \land s = (\sum_{i} | 0 \leq i < j \cdot a[i]) \}
 = (-1 \leq j < N \land s+a[j+1] = (\sum_{i} | 0 \leq i < j \cdot a[i]) + a[j] \land \{ j := j + 1; \}
 \{ 0 \leq j \leq N \land s+a[j] = (\sum_{i} | 0 \leq i < j \cdot a[i]) \} \land \{ s := s + a[j]; \}
 \{ 0 \leq j \leq N \land s = (\sum_{i} | 0 \leq i < j \cdot a[i]) \}
 = \text{we have a problem – we need a[j+1] and a[j] to cancel out}
 \]

Where’s the error?

- Prove array sum correct

\[
\begin{align*}
\{ N \geq 0 \} & \\
j & := 0; \\
s & := 0; \\
while \ (j < N) \ do & \\
j & := j + 1; \\
s & := s + a[j]; \\
end & \\
\{ s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) \}
\end{align*}
\]

Corrected Code

- Prove array sum correct

\[
\begin{align*}
\{ N \geq 0 \} & \\
j & := 0; \\
s & := 0; \\
while \ (j < N) \ do & \\
s & := s + a[j]; \\
j & := j + 1; \\
end & \\
\{ s = (\Sigma i \mid 0 \leq i < N \cdot a[i]) \}
\end{align*}
\]
Proof Obligations

- Invariant is maintained
 \[0 \leq j \leq N \land s = (\sum_i | 0 \leq i < j \land a[i]) \land j < N\]
 \[0 \leq j + 1 \leq N \land s + a[j] = (\sum_i | 0 \leq i < j + 1 \land a[i])\] // by assignment rule
 \[s := s + a[i];\]
 \[0 \leq j + 1 \leq N \land s = (\sum_i | 0 \leq i < j + 1 \land a[i])\] // by assignment rule
 \[j := j + 1;\]
 \[0 \leq j \leq N \land s = (\sum_i | 0 \leq i < j \land a[i])\]

- Need to show that:
 \[0 \leq j \leq N \land s = (\sum_i | 0 \leq i < j \land a[i]) \land j < N\]
 \[\Rightarrow (0 \leq j + 1 \leq N \land s + a[j] = (\sum_i | 0 \leq i < j + 1 \land a[i]))\]
 \[= (0 \leq j < N \land s = (\sum_i | 0 \leq i < j \land a[i]))\]
 \[\Rightarrow (-1 \leq j < N \land s + a[j] = (\sum_i | 0 \leq i < j \land a[i]))\] // simplify bounds of j
 \[= (0 \leq j < N \land s = (\sum_i | 0 \leq i < j \land a[i]))\]
 \[\Rightarrow (-1 \leq j < N \land s + a[j] = (\sum_i | 0 \leq i < j \land a[i]) + a[j])\] // separate last part of sum
 \[= (0 \leq j < N \land s = (\sum_i | 0 \leq i < j \land a[i]))\]
 \[\Rightarrow (-1 \leq j < N \land s = (\sum_i | 0 \leq i < j \land a[i]))\] // subtract a[j] from both sides
 \[= \text{true}\] // 0 \leq j \Rightarrow -1 \leq j

Proof Obligations

- Invariant and exit condition implies postcondition
 \[0 \leq j \leq N \land s = (\sum_i | 0 \leq i < j \land a[i]) \land j \geq N\]
 \[\Rightarrow s = (\sum_i | 0 \leq i < N \land a[i])\]
 \[= 0 \leq j \land j = N \land s = (\sum_i | 0 \leq i < j \land a[i])\]
 \[\Rightarrow s = (\sum_i | 0 \leq i < N \land a[i])\] // because \(j \leq N \land j \geq N\) = \(j = N\)
 \[= 0 \leq N \land s = (\sum_i | 0 \leq i < N \land a[i]) \Rightarrow s = (\sum_i | 0 \leq i < N \land a[i])\] // by substituting \(N\) for \(j\), since \(j = N\)
 \[= \text{true}\] // because \(P \land Q \Rightarrow Q\)
Invariant Intuition

- For code without loops, we are simulating execution directly
 - We prove one Hoare Triple for each statement, and each statement is executed once
- For code with loops, we are doing one proof of correctness for multiple loop iterations
 - Don’t know how many iterations there will be
 - Need our proof to cover all of them
 - The invariant expresses a general condition that is true for every execution, but is still strong enough to give us the postcondition we need
 - This tension between generality and precision can make coming up with loop invariants hard

Total Correctness for Loops

- \{P\} while B do S \{Q\}
- Partial correctness:
 - Find an invariant Inv such that:
 - P \implies Inv
 - The invariant is initially true
 - (Inv \&\& B) S (Inv)
 - Each execution of the loop preserves the invariant
 - (Inv \&\& \neg B) \implies Q
 - The invariant and the loop exit condition imply the postcondition
- Total correctness
 - Loop will terminate
 - How to show this?
Total Correctness for Loops

- \{P\} while B do S \{Q\}
- **Partial correctness:**
 - Find an invariant Inv such that:
 - \(P \Rightarrow Inv \)
 - The invariant is initially true
 - \(\{Inv \&\& B\} \Rightarrow Inv\)
 - Each execution of the loop preserves the invariant
 - \((Inv \&\& \neg B) \Rightarrow Q\)
 - The invariant and the loop exit condition imply the postcondition
- **Termination bound**
 - Find a variant function \(v \) such that:
 - \((Inv \&\& B) \Rightarrow v > 0\)
 - The variant function evaluates to a finite integer value greater than zero at the beginning of the loop
 - \(\{Inv \&\& B \&\& v = v\} \Rightarrow v < V\)
 - The value of the variant function decreases each time the loop body executes (here \(V \) is a constant)

Total Correctness Example

while \((j < N)\) do
 \{0 \leq j \leq N \&\& s = (\sum i \mid 0 \leq i < j \cdot a[i]) \&\& j < N\}

 \(s := s + a[j]; \)
 \(j := j + 1; \)
 \{0 \leq j \leq N \&\& s = (\sum i \mid 0 \leq i < j \cdot a[i]) \}
end

- Variant function for this loop?
 - \(N-j \)
Guessing Variant Functions

- Loops with an index
 - $N \pm i$
 - Applies if you always add or always subtract a constant, and if you exit the loop when the index reaches some constant
 - Use $N-i$ if you are incrementing i, $N+i$ if you are decrementing i
 - Set N such that $N \pm i \leq 0$ at loop exit

- Other loops
 - Find an expression that is an upper bound on the number of iterations left in the loop

Additional Proof Obligations

- Variant function for this loop: $N-j$
- To show: variant function initially positive
 \[
 0 \leq j \leq N \land \land s = (\Sigma i \mid 0 \leq i < j \land a[i]) \land j < N
 \Rightarrow N-j > 0
 \]
- To show: variant function is decreasing
 \[
 \{0 \leq j \leq N \land \land s = (\Sigma i \mid 0 \leq i < j \land a[i]) \land j < N \land \land N-j = V\}
 s := s + a[j];
 j := j + 1;
 \{N-j < V\}
Additional Proof Obligations

- To show: variant function initially positive
 \[(0 \leq j \leq N \land s = (\Sigma_{i=0}^{i<j} a[i]) \land j < N) \Rightarrow N-j > 0\]
 \[= (0 \leq j \leq N \land s = (\Sigma_{i=0}^{i<j} a[i]) \land j < N) \Rightarrow N > j \quad \text{// added } j \text{ to both sides}\]
 \[= \text{true} \quad \text{// } (N > j) = (j < N), \quad P \land Q \Rightarrow P\]

Additional Proof Obligations

- To show: variant function is decreasing
 \[\{0 \leq j \leq N \land s = (\Sigma_{i=0}^{i<j} a[i]) \land j < N \land N-j = V\}\]
 \[\{N-(j+1) < V\} \quad \text{// by assignment}\]
 \[s := s + a[j];\]
 \[\{N-(j+1) < V\} \quad \text{// by assignment}\]
 \[j := j + 1;\]
 \[\{N-j < V\}\]
- Need to show:
 \[(0 \leq j \leq N \land s = (\Sigma_{i=0}^{i<j} a[i]) \land j < N \land N-j \neq V) \Rightarrow (N-(j+1) < V)\]
 Assume \(0 \leq j \leq N \land s = (\Sigma_{i=0}^{i<j} a[i]) \land j < N \land N-j = V\)
 By weakening we have \(N-j = V\)
 Therefore \(N-j-1 < V\)
 But this is equivalent to \(N-(j+1) < V\), so we are done.
Factorial

\{ N \geq 1 \}

k := 1
f := 1

while (k < N) do
 f := f \times k
 k := k + 1
end

\{ f = N! \}

• Loop invariant?

• Variant function?

Analysis of Software Artifacts -
Spring 2006

39

Factorial

\{ N \geq 1 \}

k := 1
f := 1

while (k < N) do
 k := k + 1
 f := f \times k
end

\{ f = N! \}

• Loop invariant?
 • f = k! && 0 \leq k \leq N
• Variant function?
 • N-k

Analysis of Software Artifacts -
Spring 2006

40

Need to increment k

before multiplying
Factorial

\[
\begin{align*}
\{ N \geq 1 \} \\
\{ 1 = 1! \land \& \ 0 \leq 1 \leq N \} \\
k \leftarrow 1 \\
\{ 1 = k! \land \& \ 0 \leq k \leq N \} \\
f \leftarrow 1 \\
\{ f = k! \land \& \ 0 \leq k \leq N \} \\
\text{while} (k < N) \text{ do} \\
\{ f = k! \land \& \ 0 \leq k \leq N \land \& \ k < N \land \& \ N-k = V \} \\
\{ f^*(k+1) = (k+1)! \land \& \ 0 \leq k+1 \leq N \land \& \ N-(k+1) < V \} \\
k \leftarrow k + 1 \\
\{ f^*k = k! \land \& \ 0 \leq k \leq N \land \& \ N-k < V \} \\
f \leftarrow f^*k \\
\{ f = k! \land \& \ 0 \leq k \leq N \land \& \ N-k < V \} \\
\text{end} \\
\{ f = k! \land \& \ 0 \leq k \leq N \land \& \ k \geq N \} \\
\{ f = N! \} \\
\end{align*}
\]

Factorial Obligations (1)

\[
\begin{align*}
(N \geq 1) \Rightarrow (1 = 1! \land \& \ 0 \leq 1 \leq N) \\
= (N \geq 1) \Rightarrow (1 \leq N) \quad \text{// because } 1 = 1! \text{ and } 0 \leq 1 \\
= \text{true} \quad \text{// because } (N \geq 1) = (1 \leq N)
\end{align*}
\]
Factorial Obligations (2)

(f = k! & 0 ≤ k ≤ N & k < N & N-k = V)
⇒ (f*(k+1) = (k+1)! & 0 ≤ k+1 ≤ N & N-(k+1) < V)
= (f = k! & 0 ≤ k < N & N-k = V)
⇒ (f*(k+1) = k!*N & 0 ≤ k+1 ≤ N & N-k-1 < V)
// by simplification and (k+1)! = k!*N

Assume (f = k! & 0 ≤ k < N & N-k = V)

Check each RHS clause:

- (f*(k+1) = k!*N)
 = (f = k!) // division by (k+1) (nonzero by assumption)
 = true // by assumption
- 0 ≤ k+1
 = true // by assumption that 0 ≤ k
- k+1 ≤ N
 = true // by assumption that k < N
- N-k-1 < V
 = N-k+1 < N-k // by assumption that N-k = V
 = N-1 < V // by addition of k
 = true // by properties of <

Factorial Obligations (3)

(f = k! & 0 ≤ k ≤ N & k ≥ N) ⇒ (f = N!)

Assume f = k! & 0 ≤ k ≤ N & k ≥ N

Then k=N by k ≤ N & k ≥ N

So f = N! by substituting k=N