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How would you analyze this?

• * means something we 
can’t analyze (user input, 
random value)

• Line 10: the lock is held if 
and only if got_lock = 1
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How would you analyze this?

• * means something we 
can’t analyze (user input, 
random value)

• Line 5: the lock is held if 
and only if old = new
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Motivation

• Dataflow analysis uses fixed abstraction
• e.g. zero/nonzero, locked/unlocked
• Model checking version of DFA similar

• PREfix shows need to eliminate infeasible paths
• E.g. lock/unlock on correlated branches
• Requires extending abstraction with branch predicates

• Unfortunately, PREfix sacrifices soundness
• Infeasible to cover all paths
• Although PREfix merges paths with similar analysis info, the 

information is too detailed to assure finitely many explored 
paths

• Can we get both soundness and the precision to 
eliminate infeasible paths?
• In general: of course not!  That’s undecideable.
• But in many situations we can solve it with abstraction 

refinement; it’s just that this technique may not always 
terminate
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CEGAR:
Counterexample Guided Abstraction Refinement
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CEGAR:
Counterexample Guided Abstraction Refinement

• Begin with control flow graph abstraction
• Check reachability of error nodes

• Typically take cross product of dataflow abstraction and 
CFG, as in previous lecture

• However, can encode dataflow abstraction in CFG through 
error nodes—assert(false)

• If error node is reachable, check if path is feasible
• Can use weakest preconditions; if you get false, the path is 

impossilbe
• For feasible paths, report an error
• For infeasible paths, figure out why

• e.g. correlation between lock and got_lock
• Add reason for infeasible paths to abstraction and try 

again!
• This time the analysis won’t consider that path
• But it might consider other infeasible paths, so you may have 

to repeat the process multiple times
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Control Flow Automaton

• One node for each 
location (before/after 
a statement)

• Edges
• Blocks of 

statements
• Assume clauses 

model if and loops
• some predicate must 

be true to take the 
edge
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Control Flow Automaton Example
2

3

4

5

6

ret

lock();
old=new;

[T]

[T]

[new != old]

unlock();
new++;

unlock();

[new = old]
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Checking for Reachability

• Generate Abstract Reachability Tree
• Contains all reachable nodes
• Annotates each node with state

• Initially LOCK = 0 or LOCK = 1
• Cross product of CFA and data flow abstraction

• Algorithm: depth-first search
• Generate nodes one by one
• If you come to a node that’s already in the tree, 

stop
• This state has already been explored through a different 

control flow path
• If you come to an error node, stop

• The error is reachable
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Depth First Search Example
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Is the Error Real?

• Use weakest preconditions to find out the 
weakest precondition that leads to the error
• If the weakest precondition is false, there is no 

initial program condition that can lead to the error
• Therefore the error is spurious

• Blast uses a variant of weakest preconditions
• creates a new variable for each assignment before 

using weakest preconditions
• Instead of substituting on assignment, adds new 

constraint
• Helps isolate the reason for the spurious error 

more effectively
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Is the Error Real?

• assume True;

• lock();

• old = new;

• assume True;

• unlock();

• new++;

• assume new==old

• error (lock==0)



7

Analysis of Software Artifacts -
Spring 2006

13

Model Locking as Assignment

• assume True;

• lock = 1;

• old = new;

• assume True;

• lock = 0;

• new = new + 1;

• assume new==old

• error (lock==0)
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Index the Variables

• assume True;

• lock1 = 1

• old1 = new1;

• assume True;

• lock2 = 0

• new2 = new1 + 1

• assume new2==old1

• error (lock2==0)
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Generate Weakest Preconditions

• assume True;

• lock1 = 1

• old1 = new1;

• assume True;

• lock2 = 0

• new2 = new1 + 1

• assume new2==old1

• error (lock2==0)

∧ True

∧ lock1==1

∧ old1==new1

∧ True

∧ lock2==0

∧ new2==new1+1

∧ new2==old1

lock2==0

Contradictory!
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Why is the Error Spurious?
• More precisely, what predicate 

could we track that would 
eliminate the spurious error 
message?

• Consider, for each node, the 
constraints generated before 
that node (c1) and after that 
node (c2)

• Find a condition I such that
• c1 => I

• I is true at the node
• I only contains variables 

mentioned in both c1 and 
c2
• I mentions only variables in 

scope (not old or future 
copies)

• I ∧ c2 = false
• I is enough to show that the 

rest of the path is infeasible
• I is guaranteed to exist

• See Craig Interpolation

• ∧ True
• ∧ lock1==1
• ∧ old1==new1
• ∧ True
• ∧ lock2==0
• ∧ new2==new1+1
• ∧ new2==old1
• lock2==0

Interpolant:
old == new
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Reanalyzing the Program

• Explore a subtree again
• Start where new predicates were 

discovered
• This time, track the new predicates
• If the conjunction of the predicates on a 

node is false, stop exploring—this node is 
unreachable
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Reanalysis Example

UnreachableAlready Covered
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Analyzing the Right Hand Side
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Generate Weakest Preconditions

• assume True;
• got_lock = 0;
• assume True;
• assume got_lock != 0;
• error (lock==0)
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Why is the Error Spurious?
• More precisely, what predicate 

could we track that would 
eliminate the spurious error 
message?

• Consider, for each node, the 
constraints generated before 
that node (c1) and after that 
node (c2)

• Find a condition I such that
• c1 => I

• I is true at the node
• I only contains variables 

mentioned in both c1 and 
c2
• I mentions only variables in 

scope (not old or future 
copies)

• I ∧ c2 = false
• I is enough to show that the 

rest of the path is infeasible
• I is guaranteed to exist

• See Craig Interpolation

• ∧ True
• ∧ got_lock==0
• ∧ True
• ∧ got_lock!=0
• lock==0
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Reanalysis

Key: L = locked=1
Z = got_lock=0
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Blast Techniques, Graphically

• Explores reachable state, not 
all paths
• Stops when state already 

seen on another path

• Lazy Abstraction
• Uses predicates on 

demand
• Only applies predicate to 

relevant part of tree
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Termination

• Not guaranteed
• The system could go on generating predicates forever

• Can guarantee termination
• The set of possible predicates is finite

• Finite height lattices in data flow analysis!
• Those predicates are enough to predict observable behavior 

of program
• E.g. the ordering of lock and unlock statements
• Predicates are restricted in practice

• E.g. likely can’t handle arbitrary quantification as in ESC/Java
• Model checking is hard if properties depend on heap data, for 

example
• Can’t prove arbitrary properties in this case

• In practice
• Terminate abstraction refinement after a time bound
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Key Points of CEGAR

• To prove a property, may need to strengthen it
• Just like strengthening induction hypothesis

• CEGAR figures out strengthening 
automatically
• From analyzing why errors are spurious

• Blast uses lazy abstraction
• Only uses an abstraction in the parts of the 

program where it is needed
• Only builds the part of the abstract state that is 

reached
• Explored state space is much smaller than 

potential state space
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Experimental Results
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Blast in Practice

• Has scaled past 100,000 lines of code
• Realistically starts producing worse results after a 

few 10K lines

• Sound up to certain limitations
• Assumes safe use of C

• No aliases of different types; how realistic?
• No recursion, no function pointers
• Need models for library functions

• Has also been used to find memory safety 
errors, race conditions, generate test cases


