
1

Analysis of Software Artifacts -
Spring 2006

1

Counterexample Guided
Abstraction Refinement in Blast

Reading: Checking Memory Safety with
Blast

17-654/17-754
Analysis of Software Artifacts
Jonathan Aldrich

Analysis of Software Artifacts -
Spring 2006

2

How would you analyze this?

• * means something we
can’t analyze (user input,
random value)

• Line 10: the lock is held if
and only if got_lock = 1

2

Analysis of Software Artifacts -
Spring 2006

3

How would you analyze this?

• * means something we
can’t analyze (user input,
random value)

• Line 5: the lock is held if
and only if old = new

Analysis of Software Artifacts -
Spring 2006

4

Motivation

• Dataflow analysis uses fixed abstraction
• e.g. zero/nonzero, locked/unlocked
• Model checking version of DFA similar

• PREfix shows need to eliminate infeasible paths
• E.g. lock/unlock on correlated branches
• Requires extending abstraction with branch predicates

• Unfortunately, PREfix sacrifices soundness
• Infeasible to cover all paths
• Although PREfix merges paths with similar analysis info, the

information is too detailed to assure finitely many explored
paths

• Can we get both soundness and the precision to
eliminate infeasible paths?
• In general: of course not! That’s undecideable.
• But in many situations we can solve it with abstraction

refinement; it’s just that this technique may not always
terminate

3

Analysis of Software Artifacts -
Spring 2006

5

CEGAR:
Counterexample Guided Abstraction Refinement

Program Abstract
Program

Model
Checker

Path
Feasibility
Checker

Generate
New

Predicates

Property
Holds

No
Error

Error
Found

Feasible Report
Bug

Infeasible

New
Predicates

Abstract
Using
Predicates

Analysis of Software Artifacts -
Spring 2006

6

CEGAR:
Counterexample Guided Abstraction Refinement

• Begin with control flow graph abstraction
• Check reachability of error nodes

• Typically take cross product of dataflow abstraction and
CFG, as in previous lecture

• However, can encode dataflow abstraction in CFG through
error nodes—assert(false)

• If error node is reachable, check if path is feasible
• Can use weakest preconditions; if you get false, the path is

impossilbe
• For feasible paths, report an error
• For infeasible paths, figure out why

• e.g. correlation between lock and got_lock
• Add reason for infeasible paths to abstraction and try

again!
• This time the analysis won’t consider that path
• But it might consider other infeasible paths, so you may have

to repeat the process multiple times

4

Analysis of Software Artifacts -
Spring 2006

7

Control Flow Automaton

• One node for each
location (before/after
a statement)

• Edges
• Blocks of

statements
• Assume clauses

model if and loops
• some predicate must

be true to take the
edge

Analysis of Software Artifacts -
Spring 2006

8

Control Flow Automaton Example
2

3

4

5

6

ret

lock();
old=new;

[T]

[T]

[new != old]

unlock();
new++;

unlock();

[new = old]

5

Analysis of Software Artifacts -
Spring 2006

9

Checking for Reachability

• Generate Abstract Reachability Tree
• Contains all reachable nodes
• Annotates each node with state

• Initially LOCK = 0 or LOCK = 1
• Cross product of CFA and data flow abstraction

• Algorithm: depth-first search
• Generate nodes one by one
• If you come to a node that’s already in the tree,

stop
• This state has already been explored through a different

control flow path
• If you come to an error node, stop

• The error is reachable

Analysis of Software Artifacts -
Spring 2006

10

Depth First Search Example

6

Analysis of Software Artifacts -
Spring 2006

11

Is the Error Real?

• Use weakest preconditions to find out the
weakest precondition that leads to the error
• If the weakest precondition is false, there is no

initial program condition that can lead to the error
• Therefore the error is spurious

• Blast uses a variant of weakest preconditions
• creates a new variable for each assignment before

using weakest preconditions
• Instead of substituting on assignment, adds new

constraint
• Helps isolate the reason for the spurious error

more effectively

Analysis of Software Artifacts -
Spring 2006

12

Is the Error Real?

• assume True;

• lock();

• old = new;

• assume True;

• unlock();

• new++;

• assume new==old

• error (lock==0)

7

Analysis of Software Artifacts -
Spring 2006

13

Model Locking as Assignment

• assume True;

• lock = 1;

• old = new;

• assume True;

• lock = 0;

• new = new + 1;

• assume new==old

• error (lock==0)

Analysis of Software Artifacts -
Spring 2006

14

Index the Variables

• assume True;

• lock1 = 1

• old1 = new1;

• assume True;

• lock2 = 0

• new2 = new1 + 1

• assume new2==old1

• error (lock2==0)

8

Analysis of Software Artifacts -
Spring 2006

15

Generate Weakest Preconditions

• assume True;

• lock1 = 1

• old1 = new1;

• assume True;

• lock2 = 0

• new2 = new1 + 1

• assume new2==old1

• error (lock2==0)

∧ True

∧ lock1==1

∧ old1==new1

∧ True

∧ lock2==0

∧ new2==new1+1

∧ new2==old1

lock2==0

Contradictory!

Analysis of Software Artifacts -
Spring 2006

16

Why is the Error Spurious?
• More precisely, what predicate

could we track that would
eliminate the spurious error
message?

• Consider, for each node, the
constraints generated before
that node (c1) and after that
node (c2)

• Find a condition I such that
• c1 => I

• I is true at the node
• I only contains variables

mentioned in both c1 and
c2
• I mentions only variables in

scope (not old or future
copies)

• I ∧ c2 = false
• I is enough to show that the

rest of the path is infeasible
• I is guaranteed to exist

• See Craig Interpolation

• ∧ True
• ∧ lock1==1
• ∧ old1==new1
• ∧ True
• ∧ lock2==0
• ∧ new2==new1+1
• ∧ new2==old1
• lock2==0

Interpolant:
old == new

9

Analysis of Software Artifacts -
Spring 2006

17

Reanalyzing the Program

• Explore a subtree again
• Start where new predicates were

discovered
• This time, track the new predicates
• If the conjunction of the predicates on a

node is false, stop exploring—this node is
unreachable

Analysis of Software Artifacts -
Spring 2006

18

Reanalysis Example

UnreachableAlready Covered

10

Analysis of Software Artifacts -
Spring 2006

19

Analyzing the Right Hand Side

Analysis of Software Artifacts -
Spring 2006

20

Generate Weakest Preconditions

• assume True;
• got_lock = 0;
• assume True;
• assume got_lock != 0;
• error (lock==0)

11

Analysis of Software Artifacts -
Spring 2006

21

Why is the Error Spurious?
• More precisely, what predicate

could we track that would
eliminate the spurious error
message?

• Consider, for each node, the
constraints generated before
that node (c1) and after that
node (c2)

• Find a condition I such that
• c1 => I

• I is true at the node
• I only contains variables

mentioned in both c1 and
c2
• I mentions only variables in

scope (not old or future
copies)

• I ∧ c2 = false
• I is enough to show that the

rest of the path is infeasible
• I is guaranteed to exist

• See Craig Interpolation

• ∧ True
• ∧ got_lock==0
• ∧ True
• ∧ got_lock!=0
• lock==0

Analysis of Software Artifacts -
Spring 2006

22

Reanalysis

Key: L = locked=1
Z = got_lock=0

12

Analysis of Software Artifacts -
Spring 2006

23

Blast Techniques, Graphically

• Explores reachable state, not
all paths
• Stops when state already

seen on another path

• Lazy Abstraction
• Uses predicates on

demand
• Only applies predicate to

relevant part of tree

Analysis of Software Artifacts -
Spring 2006

24

Termination

• Not guaranteed
• The system could go on generating predicates forever

• Can guarantee termination
• The set of possible predicates is finite

• Finite height lattices in data flow analysis!
• Those predicates are enough to predict observable behavior

of program
• E.g. the ordering of lock and unlock statements
• Predicates are restricted in practice

• E.g. likely can’t handle arbitrary quantification as in ESC/Java
• Model checking is hard if properties depend on heap data, for

example
• Can’t prove arbitrary properties in this case

• In practice
• Terminate abstraction refinement after a time bound

13

Analysis of Software Artifacts -
Spring 2006

25

Key Points of CEGAR

• To prove a property, may need to strengthen it
• Just like strengthening induction hypothesis

• CEGAR figures out strengthening
automatically
• From analyzing why errors are spurious

• Blast uses lazy abstraction
• Only uses an abstraction in the parts of the

program where it is needed
• Only builds the part of the abstract state that is

reached
• Explored state space is much smaller than

potential state space

Analysis of Software Artifacts -
Spring 2006

26

Experimental Results

14

Analysis of Software Artifacts -
Spring 2006

27

Blast in Practice

• Has scaled past 100,000 lines of code
• Realistically starts producing worse results after a

few 10K lines

• Sound up to certain limitations
• Assumes safe use of C

• No aliases of different types; how realistic?
• No recursion, no function pointers
• Need models for library functions

• Has also been used to find memory safety
errors, race conditions, generate test cases

