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Analysis as an Approximation

• If S doesn’t terminate normally, y cannot be 0
• Problem: undecidable to tell if S terminates!
• In general program analysis must compute an 

approximation



Safety and Precision

• Conservative/Safe Analysis
– Computes a larger set of possibilities than will 

actually occur in program execution

• Precise Analysis
– Computes as small a set of possibilities for 

program execution as it can
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Finding the Fixpoint

• Why should we think we will find an n such 
that Fn+1(RD∅) = Fn(RD∅)?



Finding the Fixpoint

• Why should we think we will find an n such 
that Fn+1(RD∅) = Fn(RD∅)?
– F is monotone
– Therefore, every application of F either:

• Does not change RD (and so we have a fixpoint)
• Or increases the size of a set in RD

– The set of definitions is finite so the sets in RD 
cannot increase in size forever

– Therefore the algorithm terminates with a 
fixpoint at some finite n



Reaching Defs. vs. Available Exp.

• Reaching Defs.
– Initial dataflow values: empty sets
– Union at control flow merge
– Precision: want least fixed point
– Safety: err on the side of larger sets

• Available Exp.
– Initial dataflow values: universal sets
– Intersection at control flow merge
– Precision: want greatest fixed point
– Safety: err on the side of smaller sets

May analysis

Must analysis



Monotone Framework
Analysis

○
(ℓ) = ι if ℓ ∈ E

= ⊔ { Analysis
●
(ℓ’) | (ℓ’, ℓ) ∈ F } otherwise

Analysis
●
(ℓ) = ƒ

ℓ
(Analysis

○
(ℓ))

where:

– ○ means entry (forward) or exit (backward)
– ● means exit (forward) or entry (backward)
– ⊔ is ∪ (may) or ∩ (must)

– F is flow(S*) (forward) or flowR(S*) (backward)

– E is { init(S*) } (forward) or final(S*) (backward)

– ι specifies initial or final analysis information, and

– ƒ
ℓ
is a transfer function
• Typically ƒ

ℓ
(x) = x \ killAnalysis(Bℓ) ∪ genAnalysis(Bℓ)
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Monotone Framework

Analysis
○
(ℓ) = ι if ℓ ∈ E

= ⊔ { Analysis
●
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Analysis
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Complete Lattice

• Not all data flow analyses use sets
– Lattice: a more general concept

• A set L with:
– A partial order ⊑
– A combination operator ⊔
– A least element ⊥ = ⊔ (∅)

– A greatest element ⊤ = ⊔ (L)

– Each subset Y of L has a least upper bound ⊔ (Y)

• Typically we want the lattice to have finite height
– A finite number of elements on each path from ⊥ to ⊤

• See NNH Appendix A.3

⊤

a          b          e

c          d           f

⊥



Example: Subset Lattice

• Reaching Definitions
• The set L=P({a,b,c}) with:

– ⊑ = ⊆
– ⊔ = = = = ∪ (may analysis)

– ⊥ = ∅ (the most precise and starting element)
– ⊤ = {a,b,c} (the least precise element)

⊤={a,b,c}

{a,b}     {a,c}     {b,c}

{a}        {b}        {c}

⊥=∅



Example: Superset Lattice

• Available Expressions
• The set L=P({a,b,c}) with:

– ⊑ = ⊇
– ⊔ = = = = ∩ (must analysis)

– ⊥ = {a,b,c} (the most precise and starting element)
– ⊤ = ∅ (the least precise element)

⊤=∅

{a}        {b}        {c}

{a,b}     {a,c}     {b,c}

⊥={a,b,c}



Constant Propagation Lattice

• More efficient than the set of possible values
– Don’t want to store sets
– If more than one value, give up and assume any (⊤)

• The set L={⊥,⊤} ∪ NAT with:
– x ⊑ ⊤,              ⊥ ⊑ x,            x ⊑ x
– x ⊔ ⊥ = = = = x,     x ⊔ ⊤ = = = = ⊤,     n ⊔ m = ⊤ (for n ≠ m)

• ι = = = = ⊤

⊤

… -2     -1     0      1      2     …

⊥



Constant Propagation Transfer Fns

• Can’t use gen and kill sets
– Data flow values aren’t sets anymore!

• Instead, define function by cases on syntax
– Input is incoming data flow value σ

• ƒCP([x := a],σ) = σ [x ↦ CP(a,σ)]
• ƒCP([skip],σ) = σ
• ƒCP([b],σ) = σ

• CP(n,σ) = n
• CP(x,σ) = σ(x)
• CP(a1 opa a2,σ) = CP(a1, σ) opa CP(a2, σ)

• z1 opa z2 = z1 opa z2 if z1, z2 ∈ NAT

= ⊤ if z1 = ⊤ or z2 = ⊤

= z1 (z2) if z2 (z1) = ⊥

⊤

… -1     0      1      …

⊥



Execution Traces

• Sequence of <pp,mem> 
pairs
– pp is a program point

• Just before statement pp
– mem is the state of 

variables in memory

[y := x]1;
[z := 1]2;
while [y>1]3 do

[z := z * y]4;
[y := y – 1]5;

[y := 0]6;

pp x y z
1 2 0 0
2 2 2 0
3 2 2 1
4 2 2 1
5 2 2 2
3 2 1 2
6 2 1 2
- 2 0 2
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Execution Traces

• Sequence of <pp,mem> 
pairs
– pp is a program point

• Just before statement pp
– mem is the state of 

variables in memory

[y := x]1;
[z := 1]2;
while [y>1]3 do

[z := z * y]4;
[y := y – 1]5;

[y := 0]6;

pp x y z

Repeat for all possible initial 
values of x,y,z!



Abstraction
• Abstraction function α

– maps traces to data flow values at 
a certain time t in the trace

• αCP(<p1,m1>…<pn,mn>,t)
= mt

• αSA(<p1,m1>…<pn,mn>,t)
= sign(mt)

• Also define program point function 
pp

• pp(<p1,m1>…<pn,mn>,t)
= pt

t pp x y z
0 1 3 0 0
1 2 3 3 0
2 3 3 3 1
3 4 3 3 1
4 5 3 3 3
5 3 3 2 3
6 4 3 2 3
7 5 3 2 6
8 3 3 1 6
9 6 3 1 6
10 - 3 0 6

αCP(T,0) = (x=3,y=0,z=0)
αCP(T,10) = (x=3,y=0,z=6)

αSA(T,10) = (x=+,y=0,z=+)



WHILE Traces, Formally

• A trace for program S1 and initial state σ1 is 
either:
– a finite sequence (S1, σ1), …, ([], σn),

where (Si, σi) � (Si+1, σi+1) for i ∈ 1, …, n-1

– an infinite sequence (S1, σ1), …, (Si, σi), …
where (Si, σi) � (Si+1, σi+1) for i ≥ 1

• Slight notational simplification
– We will abbreviate (S1, σ1), …, (Sn, σn)

as (first(S1), σ1), …, (first(Sn), σn)
• Uses program counter labels instead of complete programs



Local Soundness

To show:
if (Si, σi) � (Si+1, σi+1) ∈ T

and din = αDF(T,i)
and dout = ƒDF(first(Si), din)

then αDF(T,i+1) ⊑ dout

Intuitively, translating from concrete to abstract and 
applying the flow function will safely approximate (⊒) 
taking a step in the trace and translating from concrete to 
abstract

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF



What does Correctness Mean?

• Intuition
– At a fixed point, analysis results are a 

conservative abstraction of program execution

• Soundness condition
– When data flow analysis reaches a fixed point 

F, then for all traces T and all times t in each 
trace, α(T,t) ⊑ F(pp(T,t))



Global Soundness

• Intuition
– We begin with initial dataflow facts ι that 

safely approximate (⊒) all initial stores σ1

– By local soundness, each transfer function 
when given safe input information yields safe 
output information

– By induction, any fixed point of the analysis is 
sound



Soundness Example: Sign Analysis

• Transfer functions
– σ is input data flow value

– ƒSA([x := a],σ) = σ [x ↦ SA(a,σ)]
– ƒSA([skip],σ) = σ
– ƒSA([b],σ) = σ

– SA(n,σ) = sign(n) // returns sign of n
– SA(x,σ) = σ(x)
– SA(a1 + a2,σ) = + // is this sound?
– SA(a1 opa a2,σ) = ⊤ for opa ≠ +

Custom Lattice

⊤

- 0        +

⊥



Local Soundness

To show:
if (Si, σi) � (Si+1, σi+1) ∈ T

and din = αDF(T,i)
and dout = ƒDF(first(Si), din)

then αDF(T,i+1) ⊑ dout

Intuitively, translating from concrete to abstract and 
applying the flow function will safely approximate (⊒) 
taking a step in the trace and translating from concrete to 
abstract

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF



Local Soundness Fails

(Si, σi) (Si+1, σi+1)
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Local Soundness Fails

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Program:
[z := y-7]1

[x := y+z]2



Local Soundness Fails

Trace T:
t    pp   x    y    z
0   1     0    3    0
1   2     0    3   -4
2   - -1    3   -4

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Program:
[z := y-7]1

[x := y+z]2
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• σ1 = (x=0, y=3, z=-4)
• σ2 = (x=-1, y=3, z=-4)
• din = αDF(T,1)=(x=0, y=+, z=-)
• αDF(T,2) = (x=-, y=+, z=-)
• dout = ƒSA([x := y+z]2, din)

= din [x ↦ SA(y+z, din)]
= din [x ↦ +]
= (x=+, y=+, z=-)

• (x=+, y=+, z=-) ⋣ (x=-, y=+, z=-)
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din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Program:
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�

αDF αDF

Program:
[z := y-7]1

[x := y+z]2

[done]
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Local Soundness
for Constant Propagation

To show:
if (Si, σi) � (Si+1, σi+1) ∈ T

and din = αCP(T,i)
and dout = ƒCP(first(Si), din)
then αCP(T,i+1) ⊑ dout

• Case: Si = [x := a]ℓ
– σi+1 = σi [x ↦ A(a, σi)]

– din = αCP(T,i) = σi

– dout = ƒCP([x := a]ℓ, σi)
= σi [x ↦ CP(a, σi)]

– αCP(T,i+1) = σi+1
= σi [x ↦ A(a, σi)] 

– Lemma: A(a, σi) = CP(a, σi)

– Thus σi [x ↦ A(a, σi)]
⊑ σi [x ↦ CP(a, σi)]



Abstraction
for Reaching Definitions

• αRD(<p1,m1>…<pn,mn>,t) =
{ (x, pk) | x ∈ FV(S*)

and k < t
and stmt(pk) = [x := a]
and ∀j, k<j<t stmt(pj) ≠ [x := a’]}



Local Soundness
for Reaching Definitions

To show:
if (Si, σi) � (Si+1, σi+1) ∈ T

and din = αRD(T,i)
and dout = ƒRD(first(Si), din)
then αRD(T,i+1) ⊑ dout

• Case: Si = [x := a]ℓ

– din = αRD(T,i)
– dout = ƒRD([x := a]ℓ, din)

= (αRD(T,i) \ {(x,*)}) ∪ {(x,ℓ)}

– Lemma: αRD(T,i+1)
= (αRD(T,i) \ {(x,*)}) ∪ {(x,ℓ)}

– So αRD(T,i+1) = dout

– Thus αRD(T,i+1) ⊑ dout



Abstraction
for Live Variables

• αLV(<p1,m1>…<pn,mn>,t) =
{ x | x ∈ FV(stmt(pk)) where k > t

and ∀j, t<j<k stmt(pj) ≠ [x := a’]}



Local Soundness
for Live Variables

To show:
if (Si, σi) � (Si+1, σi+1) ∈ T

and din = αLV(T,i+1)
and dout = ƒLV(first(Si+1), din)
then αLV(T,i) ⊑ dout

Note: i and i+1 are 
swapped due to reverse 
analysis

• Case: Si+1 = [x := a]ℓ

– din = αRD(T,i+1)
– dout = ƒRD([x := a]ℓ, din)

= (αRD(T,i+1) \ {x}) ∪ FV(a)

– Lemma: αRD(T,i)
= (αRD(T,i+1) \ {x}) ∪ FV(a)

– So αRD(T,i) = dout

– Thus αRD(T,i) ⊑ dout



A

Conservative Abstraction

1

2 3

4 6

a b

c f

M
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[4,5] [6,7]

[1]

5 7

ed

a b

c d fe



Conservative Abstraction

• Every trace of M is a trace of A

–A over-approximates what M can do
(Preserves safety properties!):   A � φ⇒ M � φ

• Some traces of A may not be traces of M

–May yield spurious counterexamples - 〈 a, e 〉

• Eliminated via abstraction refinement

–Splitting some clusters in smaller ones
–Refinement can be automated



A

Original Abstraction

1

2 3

4 6

a b

c f

M
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A

Refined Abstraction

1

2 3

4 6

a b

c f

M

[4,5] [6,7]
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5 7
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a b

c d

[2] [3]

e f



Predicate Abstraction
Concrete States:

Predicates:

Abstract transitions?



Predicate Abstraction
Abstract Transitions:

Property:
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Property holds. Ok.



Predicate Abstraction
Abstract Transitions:

Property:
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This trace is 

spurious!



Predicate Abstraction
Abstract Transitions:

New Predicates:Property:
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