
17-654
Analysis of Software Artifacts

Midterm Review

Jonathan Aldrich

Analysis as an Approximation

• If S doesn’t terminate normally, y cannot be 0
• Problem: undecidable to tell if S terminates!
• In general program analysis must compute an

approximation

Safety and Precision

• Conservative/Safe Analysis
– Computes a larger set of possibilities than will

actually occur in program execution

• Precise Analysis
– Computes as small a set of possibilities for

program execution as it can

Safety and Precision

• Conservative/Safe Analysis
– Computes a larger set of possibilities than will

actually occur in program execution

• Precise Analysis
– Computes as small a set of possibilities for

program execution as it can

Finding the Fixpoint

• Why should we think we will find an n such
that Fn+1(RD∅) = Fn(RD∅)?

Finding the Fixpoint

• Why should we think we will find an n such
that Fn+1(RD∅) = Fn(RD∅)?
– F is monotone
– Therefore, every application of F either:

• Does not change RD (and so we have a fixpoint)
• Or increases the size of a set in RD

– The set of definitions is finite so the sets in RD
cannot increase in size forever

– Therefore the algorithm terminates with a
fixpoint at some finite n

Reaching Defs. vs. Available Exp.

• Reaching Defs.
– Initial dataflow values: empty sets
– Union at control flow merge
– Precision: want least fixed point
– Safety: err on the side of larger sets

• Available Exp.
– Initial dataflow values: universal sets
– Intersection at control flow merge
– Precision: want greatest fixed point
– Safety: err on the side of smaller sets

May analysis

Must analysis

Monotone Framework
Analysis

○
(ℓ) = ι if ℓ ∈ E

= ⊔ { Analysis
●
(ℓ’) | (ℓ’, ℓ) ∈ F } otherwise

Analysis
●
(ℓ) = ƒ

ℓ
(Analysis

○
(ℓ))

where:

– ○ means entry (forward) or exit (backward)
– ● means exit (forward) or entry (backward)
– ⊔ is ∪ (may) or ∩ (must)

– F is flow(S*) (forward) or flowR(S*) (backward)

– E is { init(S*) } (forward) or final(S*) (backward)

– ι specifies initial or final analysis information, and

– ƒ
ℓ
is a transfer function
• Typically ƒ

ℓ
(x) = x \ killAnalysis(Bℓ) ∪ genAnalysis(Bℓ)

Monotone Framework

Analysis
○
(ℓ) = ι if ℓ ∈ E

= ⊔ { Analysis
●
(ℓ’) | (ℓ’, ℓ) ∈ F } otherwise

Analysis
●
(ℓ) = ƒ

ℓ
(Analysis

○
(ℓ))

ι

E

F

⊔

LVAERD

Monotone Framework

Analysis
○
(ℓ) = ι if ℓ ∈ E

= ⊔ { Analysis
●
(ℓ’) | (ℓ’, ℓ) ∈ F } otherwise

Analysis
●
(ℓ) = ƒ

ℓ
(Analysis

○
(ℓ))

∅∅{ (x,?) | x ∈ FV(S*) }ι

final(S*){ init(S*) }{ init(S*) }E

flowR(S*)flow(S*)flow(S*)F

∪∩∪⊔

LVAERD

Complete Lattice

• Not all data flow analyses use sets
– Lattice: a more general concept

• A set L with:
– A partial order ⊑
– A combination operator ⊔
– A least element ⊥ = ⊔ (∅)

– A greatest element ⊤ = ⊔ (L)

– Each subset Y of L has a least upper bound ⊔ (Y)

• Typically we want the lattice to have finite height
– A finite number of elements on each path from ⊥ to ⊤

• See NNH Appendix A.3

⊤

a b e

c d f

⊥

Example: Subset Lattice

• Reaching Definitions
• The set L=P({a,b,c}) with:

– ⊑ = ⊆
– ⊔ = = = = ∪ (may analysis)

– ⊥ = ∅ (the most precise and starting element)
– ⊤ = {a,b,c} (the least precise element)

⊤={a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

⊥=∅

Example: Superset Lattice

• Available Expressions
• The set L=P({a,b,c}) with:

– ⊑ = ⊇
– ⊔ = = = = ∩ (must analysis)

– ⊥ = {a,b,c} (the most precise and starting element)
– ⊤ = ∅ (the least precise element)

⊤=∅

{a} {b} {c}

{a,b} {a,c} {b,c}

⊥={a,b,c}

Constant Propagation Lattice

• More efficient than the set of possible values
– Don’t want to store sets
– If more than one value, give up and assume any (⊤)

• The set L={⊥,⊤} ∪ NAT with:
– x ⊑ ⊤, ⊥ ⊑ x, x ⊑ x
– x ⊔ ⊥ = = = = x, x ⊔ ⊤ = = = = ⊤, n ⊔ m = ⊤ (for n ≠ m)

• ι = = = = ⊤

⊤

… -2 -1 0 1 2 …

⊥

Constant Propagation Transfer Fns

• Can’t use gen and kill sets
– Data flow values aren’t sets anymore!

• Instead, define function by cases on syntax
– Input is incoming data flow value σ

• ƒCP([x := a],σ) = σ [x ↦ CP(a,σ)]
• ƒCP([skip],σ) = σ
• ƒCP([b],σ) = σ

• CP(n,σ) = n
• CP(x,σ) = σ(x)
• CP(a1 opa a2,σ) = CP(a1, σ) opa CP(a2, σ)

• z1 opa z2 = z1 opa z2 if z1, z2 ∈ NAT

= ⊤ if z1 = ⊤ or z2 = ⊤

= z1 (z2) if z2 (z1) = ⊥

⊤

… -1 0 1 …

⊥

Execution Traces

• Sequence of <pp,mem>
pairs
– pp is a program point

• Just before statement pp
– mem is the state of

variables in memory

[y := x]1;
[z := 1]2;
while [y>1]3 do

[z := z * y]4;
[y := y – 1]5;

[y := 0]6;

pp x y z
1 2 0 0
2 2 2 0
3 2 2 1
4 2 2 1
5 2 2 2
3 2 1 2
6 2 1 2
- 2 0 2

Execution Traces

• Sequence of <pp,mem>
pairs
– pp is a program point

• Just before statement pp
– mem is the state of

variables in memory

[y := x]1;
[z := 1]2;
while [y>1]3 do

[z := z * y]4;
[y := y – 1]5;

[y := 0]6;

pp x y z
1 1 0 0
2 1 1 0
3 1 1 1
6 1 1 1
- 1 0 1

Execution Traces

• Sequence of <pp,mem>
pairs
– pp is a program point

• Just before statement pp
– mem is the state of

variables in memory

[y := x]1;
[z := 1]2;
while [y>1]3 do

[z := z * y]4;
[y := y – 1]5;

[y := 0]6;

pp x y z
1 3 0 0
2 3 3 0
3 3 3 1
4 3 3 1
5 3 3 3
3 3 2 3
4 3 2 3
5 3 2 6
3 3 1 6
6 3 1 6
- 3 0 6

Execution Traces

• Sequence of <pp,mem>
pairs
– pp is a program point

• Just before statement pp
– mem is the state of

variables in memory

[y := x]1;
[z := 1]2;
while [y>1]3 do

[z := z * y]4;
[y := y – 1]5;

[y := 0]6;

pp x y z

Repeat for all possible initial
values of x,y,z!

Abstraction
• Abstraction function α

– maps traces to data flow values at
a certain time t in the trace

• αCP(<p1,m1>…<pn,mn>,t)
= mt

• αSA(<p1,m1>…<pn,mn>,t)
= sign(mt)

• Also define program point function
pp

• pp(<p1,m1>…<pn,mn>,t)
= pt

t pp x y z
0 1 3 0 0
1 2 3 3 0
2 3 3 3 1
3 4 3 3 1
4 5 3 3 3
5 3 3 2 3
6 4 3 2 3
7 5 3 2 6
8 3 3 1 6
9 6 3 1 6
10 - 3 0 6

αCP(T,0) = (x=3,y=0,z=0)
αCP(T,10) = (x=3,y=0,z=6)

αSA(T,10) = (x=+,y=0,z=+)

WHILE Traces, Formally

• A trace for program S1 and initial state σ1 is
either:
– a finite sequence (S1, σ1), …, ([], σn),

where (Si, σi) � (Si+1, σi+1) for i ∈ 1, …, n-1

– an infinite sequence (S1, σ1), …, (Si, σi), …
where (Si, σi) � (Si+1, σi+1) for i ≥ 1

• Slight notational simplification
– We will abbreviate (S1, σ1), …, (Sn, σn)

as (first(S1), σ1), …, (first(Sn), σn)
• Uses program counter labels instead of complete programs

Local Soundness

To show:
if (Si, σi) � (Si+1, σi+1) ∈ T

and din = αDF(T,i)
and dout = ƒDF(first(Si), din)

then αDF(T,i+1) ⊑ dout

Intuitively, translating from concrete to abstract and
applying the flow function will safely approximate (⊒)
taking a step in the trace and translating from concrete to
abstract

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

What does Correctness Mean?

• Intuition
– At a fixed point, analysis results are a

conservative abstraction of program execution

• Soundness condition
– When data flow analysis reaches a fixed point

F, then for all traces T and all times t in each
trace, α(T,t) ⊑ F(pp(T,t))

Global Soundness

• Intuition
– We begin with initial dataflow facts ι that

safely approximate (⊒) all initial stores σ1

– By local soundness, each transfer function
when given safe input information yields safe
output information

– By induction, any fixed point of the analysis is
sound

Soundness Example: Sign Analysis

• Transfer functions
– σ is input data flow value

– ƒSA([x := a],σ) = σ [x ↦ SA(a,σ)]
– ƒSA([skip],σ) = σ
– ƒSA([b],σ) = σ

– SA(n,σ) = sign(n) // returns sign of n
– SA(x,σ) = σ(x)
– SA(a1 + a2,σ) = + // is this sound?
– SA(a1 opa a2,σ) = ⊤ for opa ≠ +

Custom Lattice

⊤

- 0 +

⊥

Local Soundness

To show:
if (Si, σi) � (Si+1, σi+1) ∈ T

and din = αDF(T,i)
and dout = ƒDF(first(Si), din)

then αDF(T,i+1) ⊑ dout

Intuitively, translating from concrete to abstract and
applying the flow function will safely approximate (⊒)
taking a step in the trace and translating from concrete to
abstract

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Local Soundness Fails

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Local Soundness Fails

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Program:
[z := y-7]1

[x := y+z]2

Local Soundness Fails

Trace T:
t pp x y z
0 1 0 3 0
1 2 0 3 -4
2 - -1 3 -4

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Program:
[z := y-7]1

[x := y+z]2

Local Soundness Fails

Trace T:
t pp x y z
0 1 0 3 0
1 2 0 3 -4
2 - -1 3 -4

• σ1 = (x=0, y=3, z=-4)
• σ2 = (x=-1, y=3, z=-4)
• din = αDF(T,1)=(x=0, y=+, z=-)
• αDF(T,2) = (x=-, y=+, z=-)
• dout = ƒSA([x := y+z]2, din)

= din [x ↦ SA(y+z, din)]
= din [x ↦ +]
= (x=+, y=+, z=-)

• (x=+, y=+, z=-) ⋣ (x=-, y=+, z=-)

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Program:
[z := y-7]1

[x := y+z]2

Local Soundness Fails

Trace T:
t pp x y z
0 1 0 3 0
1 2 0 3 -4
2 - -1 3 -4

• σ1 = (x=0, y=3, z=-4)
• σ2 = (x=-1, y=3, z=-4)
• din = αDF(T,1)=(x=0, y=+, z=-)
• αDF(T,2) = (x=-, y=+, z=-)
• dout = ƒSA([x := y+z]2, din)

= din [x ↦ SA(y+z, din)]
= din [x ↦ +]
= (x=+, y=+, z=-)

• (x=+, y=+, z=-) ⋣ (x=-, y=+, z=-)

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Program:
[z := y-7]1

[x := y+z]2

[done]

Local Soundness Fails

Trace T:
t pp x y z
0 1 0 3 0
1 2 0 3 -4
2 - -1 3 -4

• σ1 = (x=0, y=3, z=-4)
• σ2 = (x=-1, y=3, z=-4)
• din = αDF(T,1)=(x=0, y=+, z=-)
• αDF(T,2) = (x=-, y=+, z=-)
• dout = ƒSA([x := y+z]2, din)

= din [x ↦ SA(y+z, din)]
= din [x ↦ +]
= (x=+, y=+, z=-)

• (x=+, y=+, z=-) ⋣ (x=-, y=+, z=-)

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Program:
[z := y-7]1

[x := y+z]2

Local Soundness Fails

Trace T:
t pp x y z
0 1 0 3 0
1 2 0 3 -4
2 - -1 3 -4

• σ1 = (x=0, y=3, z=-4)
• σ2 = (x=-1, y=3, z=-4)
• din = αDF(T,1)=(x=0, y=+, z=-)
• αDF(T,2) = (x=-, y=+, z=-)
• dout = ƒSA([x := y+z]2, din)

= din [x ↦ SA(y+z, din)]
= din [x ↦ +]
= (x=+, y=+, z=-)

• (x=+, y=+, z=-) ⋣ (x=-, y=+, z=-)

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Program:
[z := y-7]1

[x := y+z]2

Local Soundness Fails

Trace T:
t pp x y z
0 1 0 3 0
1 2 0 3 -4
2 - -1 3 -4

• σ1 = (x=0, y=3, z=-4)
• σ2 = (x=-1, y=3, z=-4)
• din = αDF(T,1)=(x=0, y=+, z=-)
• αDF(T,2) = (x=-, y=+, z=-)
• dout = ƒSA([x := y+z]2, din)

= din [x ↦ SA(y+z, din)]
= din [x ↦ +]
= (x=+, y=+, z=-)

• (x=+, y=+, z=-) ⋣ (x=-, y=+, z=-)

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Program:
[z := y-7]1

[x := y+z]2

Local Soundness Fails

Trace T:
t pp x y z
0 1 0 3 0
1 2 0 3 -4
2 - -1 3 -4

• σ1 = (x=0, y=3, z=-4)
• σ2 = (x=-1, y=3, z=-4)
• din = αDF(T,1)=(x=0, y=+, z=-)
• αDF(T,2) = (x=-, y=+, z=-)
• dout = ƒSA([x := y+z]2, din)

= din [x ↦ SA(y+z, din)]
= din [x ↦ +]
= (x=+, y=+, z=-)

• (x=+, y=+, z=-) ⋣ (x=-, y=+, z=-)

(Si, σi) (Si+1, σi+1)

din dout ⊒ αDF(T,i+1)
ƒDF(first(Si))

�

αDF αDF

Program:
[z := y-7]1

[x := y+z]2

Local Soundness
for Constant Propagation

To show:
if (Si, σi) � (Si+1, σi+1) ∈ T

and din = αCP(T,i)
and dout = ƒCP(first(Si), din)
then αCP(T,i+1) ⊑ dout

• Case: Si = [x := a]ℓ
– σi+1 = σi [x ↦ A(a, σi)]

– din = αCP(T,i) = σi

– dout = ƒCP([x := a]ℓ, σi)
= σi [x ↦ CP(a, σi)]

– αCP(T,i+1) = σi+1
= σi [x ↦ A(a, σi)]

– Lemma: A(a, σi) = CP(a, σi)

– Thus σi [x ↦ A(a, σi)]
⊑ σi [x ↦ CP(a, σi)]

Abstraction
for Reaching Definitions

• αRD(<p1,m1>…<pn,mn>,t) =
{ (x, pk) | x ∈ FV(S*)

and k < t
and stmt(pk) = [x := a]
and ∀j, k<j<t stmt(pj) ≠ [x := a’]}

Local Soundness
for Reaching Definitions

To show:
if (Si, σi) � (Si+1, σi+1) ∈ T

and din = αRD(T,i)
and dout = ƒRD(first(Si), din)
then αRD(T,i+1) ⊑ dout

• Case: Si = [x := a]ℓ

– din = αRD(T,i)
– dout = ƒRD([x := a]ℓ, din)

= (αRD(T,i) \ {(x,*)}) ∪ {(x,ℓ)}

– Lemma: αRD(T,i+1)
= (αRD(T,i) \ {(x,*)}) ∪ {(x,ℓ)}

– So αRD(T,i+1) = dout

– Thus αRD(T,i+1) ⊑ dout

Abstraction
for Live Variables

• αLV(<p1,m1>…<pn,mn>,t) =
{ x | x ∈ FV(stmt(pk)) where k > t

and ∀j, t<j<k stmt(pj) ≠ [x := a’]}

Local Soundness
for Live Variables

To show:
if (Si, σi) � (Si+1, σi+1) ∈ T

and din = αLV(T,i+1)
and dout = ƒLV(first(Si+1), din)
then αLV(T,i) ⊑ dout

Note: i and i+1 are
swapped due to reverse
analysis

• Case: Si+1 = [x := a]ℓ

– din = αRD(T,i+1)
– dout = ƒRD([x := a]ℓ, din)

= (αRD(T,i+1) \ {x}) ∪ FV(a)

– Lemma: αRD(T,i)
= (αRD(T,i+1) \ {x}) ∪ FV(a)

– So αRD(T,i) = dout

– Thus αRD(T,i) ⊑ dout

A

Conservative Abstraction

1

2 3

4 6

a b

c f

M

[2,3]

[4,5] [6,7]

[1]

5 7

ed

a b

c d fe

Conservative Abstraction

• Every trace of M is a trace of A

–A over-approximates what M can do
(Preserves safety properties!): A � φ⇒ M � φ

• Some traces of A may not be traces of M

–May yield spurious counterexamples - 〈 a, e 〉

• Eliminated via abstraction refinement

–Splitting some clusters in smaller ones
–Refinement can be automated

A

Original Abstraction

1

2 3

4 6

a b

c f

M

[2,3]

[4,5] [6,7]

[1]

5 7

ed

a b

c d fe

A

Refined Abstraction

1

2 3

4 6

a b

c f

M

[4,5] [6,7]

[1]

5 7

ed

a b

c d

[2] [3]

e f

Predicate Abstraction
Concrete States:

Predicates:

Abstract transitions?

Predicate Abstraction
Abstract Transitions:

Property:

�������� ��������

��������

Property holds. Ok.

Predicate Abstraction
Abstract Transitions:

Property:

�������� ��������

��������
This trace is

spurious!

Predicate Abstraction
Abstract Transitions:

New Predicates:Property:

��������

