17-654
Analysis of Software Artifacts

Midterm Review

Jonathan Aldrich

Analysis as an Approximation

f S doesn’t terminate normally, y cannot be 0
Problem: undecidable to tell if S terminates!

n general program analysis must compute an
approximation

Safety and Precision

 Conservative/Safe Analysis

 Precise Analysis

Safety and Precision

 Conservative/Safe Analysis

— Computes a larger set of possibilities than will
actually occur in program execution

 Precise Analysis

— Computes as small a set of possibilities for
program execution as it can

Finding the Fixpoint

 Why should we think we will find an n such
that F"*{(RD_) = F"(RD,)?

Finding the Fixpoint

 Why should we think we will find an n such
that F*}(RD,) = F(RD)?
— F Is monotone
— Therefore, every application of F either:

* Does not change ﬁ(and SO0 we have a fixpoint)
e Or increases the size of a setin RD

— The set of definitions is finite so the sets in RD
cannot increase In size forever

— Therefore the algorithm terminates with a
fixpoint at some finite n

Reaching Defs. vs. Avallable EXxp.

e Reaching Defs. May analysis
— Initial dataflow values: empty sets
— Union at control flow merge
— Precision: want least fixed point
— Safety: err on the side of larger sets

* Available Exp. Must analysis
— Initial dataflow values: universal sets
— Intersection at control flow merge
— Precision: want greatest fixed point
— Safety: err on the side of smaller sets

Monotone Framework

Analysis_(?) = 1

= U {Analysis (f)| (f,?{) e F}

Analysis, () = f,(Analysis(?))

where:

o means entry (forward) or exit (backward)

e means exit (forward) or entry (backward)

LI is U (may) or [(must)

Fis flomS.) (forward) or flow~(S.) (backward)

E is { /ini(S.) } (forward) or finafS.) (backward)
v specifies initial or final analysis information, and

f,1s a transfer function
« Typically f(x) = x\ kill Analy,Si,s(Bf’) U gen Analy,Si,s(Bf’)

iffe E
otherwise

Monotone Framework

Analysis_(f) = ¢ if{e E
= U{Analysis,(f)| (£,{) € F} otherwise
Analysis,(f) = f,(Analysis ({))
RD AE LV

~|M|mT| C

Monotone Framework

L if{e E

Analysis_(f) =
= U{Analysis,(f)| (£,{) € F} otherwise

Analysis,(Y) = f,(Analysis,(?))

RD AE LV
L U M U
F flom S.) flomS) | flow(S)
E {ini(S)} {ini(S)}| finakS)
L {(x,) | xe FV(S) } % %

Complete Lattice
* Not all data flow analyses use sets i
— Lattice: a more general concept / \

< T
— A partial order C C

— A combination operator LI \

— Aleast element L = LI (D) 1
— A greatest element T =1 (L)

— Each subset Y of L has a least upper bound U (Y)

« Typically we want the lattice to have finite height
— A finite number of elements on each path from L to T
« See NNH Appendix A.3

e A setL with: .

7

Example: Subset Lattice

T={a,b,c}

N
@tl_fact_bo

\
. . L {a} b} c}
Reaching Definitions \ ‘ _—

 The set L=P({a,b,c}) with: 1=
—L=C
-u=u (may analysis)
- 1=9 (the most precise and starting element)
— T ={a,b,c} (the least precise element)

Example: Superset Lattice

T=¢
N
{a}><<b} c‘:}

 Available Expressions ta.b} {a[c 1b,c}

 The set L=P({a,b,c}) with: L:{a,b{
—-L=2
- u=n (must analysis)

— 1 ={a,b,c} (the most precise and starting element)
- T=0 (the least precise element)

Constant Propagation Lattice

* More efficient than the set of possible values

— Don’t want to store sets
— If more than one value, give up and assume any ()

e The set L={L, T} U NAT with:
—XLC T, 1 C X, X LC X
—XxUL=x, xXuT=T, num=T (forn#m)
o 1 =1

Constant Propagation Transfer Fns
T
« Can't use gen and kill sets // \\

— Data flow values aren’t sets anymorel! ... -1 O 1
Instead, define function by cases on syntax
— Input is incoming data flow value o \\J_//

e fCP([x:=a],0) =0 [x+~ CP(a,o)]
« fCP([skip],0) =0
« fF(blo)=o0

e CP(n,0)=n
« CP(x,0) = 0(x)
e CP(a, op, a,0) = CP(a,, 0) 6p, CP(a,, 0)

T _ P .
=T fz,=Tor z,=T
=21 (2) fz,(zy) =L

Execution Traces

* Sequence of <pp,mem>

=

pairs
— pp IS a program point
» Just before statement pp

— mem is the state of
variables in memory

[y :==x]%;

[z :=1]%

while [y>1]3 do
[z =2z *y]%
[y :=y-1];

[y :=QJ5;

OO WO WDN PO
NN DNDNDNDNDDNDNX

OFRPFPDNDNNDNOK

N NDNDNPEFPE P OOIN

Execution Traces

* Sequence of <pp,mem> 9

P
pairs 1
— pp is a program point 2
» Just before statement pp 3

6

— mem is the state of
variables in memory

e i e

[y :==x]%;

[z :=1]%

while [y>1]3 do
[z =2z *y]%
[y :=y-1];

[y :=QJ5;

OR R REROK

R R RO OolIN

Execution Traces

e Seguence of <pp,mem> pp X y Z
pairs | 1 3 0 0
o thotre saementpp 2 33 0

— mem is the state of 3 3 3 1
variables in memory 4 3 3 1

5 3 3 3

[y = x]4 3 3 2 3
[z .= 1]% 4 3 2 3
while [y>1]3 do 5 3 2 6
[z .=z *y]4 3 3 1 6
y:=y-1J; 6 3 1 6

[y := 0]¢; - 3 0 6

Execution Traces

e Seguence of <pp,mem> pp X y Z
pairs
— pp IS a program point
» Just before statement pp

— mem is the state of
variables in memory

Repeat for all possible initial
values of x,y,z!

[y = Xx]%;

[z :=1]%

while [y>1]3 do
[z =2z *y]%
[y =y-1J5

[y := 0%

Abstraction

Abstraction function a

— maps traces to data flow values at
a certain time t in the trace

uCP(<p1’ml>' . '<pn’mn>’t)
=m;,

GSA(<p1’m1>' : '<pn’mn>’t)
= sign(m,)

Also define program point function
PP
pp(<pym;>...<p,,m,>t)

= Pt

0cp(T,0) = (x=3,y=0,z=0)
0cp(T,10) = (x=3,y=0,z=6)

Og(T,10) = (x=+,y=0,z=+)

t PP X ' y4
0 1 3 0 0
1 2 3 3 0
2 3 3 3 1
3 4 3 3 1
4 5 3 3 3
5 3 3 2 3
6 4 3 2 3
7 5 3 2 6
8 3 3 1 6
9 6 3 1 6
10 - 3 0 6

WHILE Traces, Formally

» A trace for program S; and initial state og; Is
either:

— a finite sequence (S,, oy), ..., (I,),
where (S;, g) 2 (S, g, forie 1, ..., n-1

— an infinite sequence (S,, 0y), ..., (S;, 9), ...
where (S;, g) 2 (S, G, fori =1

 Slight notational simplification

— We will abbreviate (S, oy), ..., (S, g,)
as (first(S), oy), ..., (first(S,), o)

« Uses program counter labels instead of complete programs

| ocal Soundness

(first(S, .
din for o) 'dout; GDF(T’H']-)
A A
To show: i o iO(DF
f(S, d) 2 (S, G €T | :
and d;, = Ope(T.1) (Si. G) 2 > (Sis1r Giaa)

and dout - fDF(ﬁrSt(Si)’ CIin)
then Olp(T,i+1) C d,,

Intuitively, translating from concrete to abstract and
applying the flow function will safely approximate (2)
taking a step in the trace and translating from concrete to
abstract

What does Correctness Mean?

e |ntuition

— At a fixed point, analysis results are a
conservative abstraction of program execution

e Soundness condition

— When data flow analysis reaches a fixed point

F, then for all traces T and all times t in each
trace, a(T,t) T F(pp(T.t))

Global Soundness

 Intuition
— We begin with initial dataflow facts ¢ that

safely approximate (2) all initial stores og;

— By local soundness, each transfer function
when given safe input information yields safe
output information

— By Induction, any fixed point of the analysis is
sound

Soundness Example: Sign Analysis

Custom Lattice

T
» Transfer functions / 0 \+
— ols input data flow value \ /
— fSA(x := a],0) = 0 [x » SA(a,0)] =
— f>A([skip],0) =0
— f°A([blo) =0
— SA(n,0) = sign(n) // returns sign of n
— SA(X,0) = 0(X)
— SA(a; +a,0) =+ /l'is this sound?

— SA(a;0p,a,0) =T for op, # +

| ocal Soundness

(first(S, .
din for o) 'dout; GDF(T’H']-)
A A
To show: i o iO(DF
f(S, d) 2 (S, G €T | :
and d;, = Ope(T.1) (Si. G) 2 > (Sis1r Giaa)

and dout - fDF(ﬁrSt(Si)’ CIin)
then Olp(T,i+1) C d,,

Intuitively, translating from concrete to abstract and
applying the flow function will safely approximate (2)
taking a step in the trace and translating from concrete to
abstract

d Foe(first(S)) vd

Local Soundness Falls

In

out = GDF(T’H']-)

A
I

{ Ol
|

> > (Si+1’ 0}+1)

Local Soundness Falls

pr(fIrst(S,; : :

d;. for(first(S)) vdy 2 Ol (T i+1) Pr.o_gra7m1
\ N [z :=y-7]

' ' [X ;= y+7]?

1 1
! Opr :O(DF

(Si:) 2 > (Sit1s 5i+1)

Local Soundness Falls

pr(fIrst(S,; : :
din For) ’dout; GDF(T’H']-) I[';rng;c::l7r1]r\1
H H [X ;= y+7]?

i Opr :O(DF

(Si:) 2 > (Sit1s 5i+1)

Trace T:
t pp X
O1 O
1 2 O
2 - -1

w w wK
A DN OIN

Local Soundness Falls

pr(fIrst(S,; : :

din For) ’dout; GDF(T’H']-) Er-ozg)r/_a;?l

H B [X = y+7]°
i Opr EGDF

| | * 0, = (Xx=0, y=3, z=-4)
Sy) ===, Ga)

Trace T:
t pp X
O1 O
1 2 O
2 - -1

w w w K
N &~ O IN

Local Soundness Falls

oe(first(S, : :
din For 0D >doye 2 Opp(T,1+1) I':;r-ozg)r/_a;?l
T T = y+2
: aDF :aDF :done]
| | e g, = (x=0, y=3, z=-4)
> 1
(Si’ OI-) ’(Si+1’ O}+1) e 0, =(x=-1,y=3, z=-4)
Trace T:
t pp X Vv 7Z
01 0 3 O
1 2 0 3 4
2 - -1 3 4

Local Soundness Falls

pr(fIrst(S,; : :
din For) ’dout; GDF(T’H']-) [P;r-ozg;_a;?l
H B [X ;= y+7]?

i Oor EGDF

o, = (x=0, y=3, z=-4)
g, = (Xx=-1, y=3, z=-4)
e d, =0dpe(T,1)=(x=0, y=+, z=-)

(Si,l O) 2 > (Sis1s Oli-+1)

Trace T:

t pp X Vy Z
O1 0 3 O
1 2 0 3 4
2 - -1 3 -4

Local Soundness Falls

pr(fIrst(S,; : :
din For) ’dout; Opp(T,I1+1) [P;r-ozg;_a;?l
H H [X ;= y+7]?

i Opr EO(DF

| | e g, = (x=0, y=3, z=-4)
(Si, g) > > (Sis1r O41) & Ui: (x=-1, y=3, z=-4)

e d, = 0p(T,1)=(x=0, y=+, z=-)

Trace T: o 0pp(T,2) = (x=-, y=+, z=-)
t pp X y z
O1 0 3 O
1 2 0 3 4
2 - -1 3 4

Local Soundness Falls

oe(first(S : ;

din L) ’dout; GDF(T’H']-) [P;rf):g;_a;?l
H H [X ;= y+7]?
EGDF EGDF

g, = (X:O’ y=3, Z:-4)

g, = (X:-l, y:3’ Z:-4)

d.. = ape(T,1)=(x=0, y=+, z=-)
° GDF(T’Z) — (X:_’ y:+’ Z:-)

. dout = fSA([X = y+z]2’ din)

= di [x > SA(y+z, dy)]
::dm[XF++]
:(X:+,y:+,2:0

(Si,l) > > (Sis1 Oli-+1)

Trace T:
t pp X
O1 O
1 2 O
2 - -1

W w w K
A p OIN

Local Soundness Falls

o (first(S, : ;

4 1D o 3 (i) Progam
H i [X = y+Zz]?
i Opr :aDF

o, = (x=0, y=3, z=-4)
g, = (Xx=-1, y=3, z=-4)
di, = ape(T,1)=(x=0, y=+, z=-)

(Si,l) > > (Sis1 0I}+1)

Trace T: o 0pe(T,2) = (x=-, y=+, z=-)
t pp X y z o doy = fPA(X = y+z]% dy)
=d,, [x = SA(y+z, d;,)]
01 0 3 0 =[x o 4]
1 2 0O 3 4 = (X:+, y=+, Z:-)
2 - -1 3 -4 o (X=t, y=+, z=-) B (X=-, y=+, z=-)

Local Soundness
for Constant Propagation

To show: e Case: S, =[x:=aff
if (S, 0) > (S, 0,)eT — G = Glx= A g)]
and d;, = acp(T,I) —d, =0acp(T) =g
and do; = fep(first(S), dip) — doy = fep(lx :=al, 0)

then aqp(T,i+1) C d = g [x ~» CP(a, g)]
— Ocp(T,1*+1) = Gy
= g [x~ Ala, g)]
— Lemma: \A(a, g) = CP(a, 0)
— Thus g [x+~ A(a, 0)]
C g [x~ CP(a, 0]

out

Abstraction
for Reaching Definitions

* Ogrp(<Py;My>...<p,,m>t) =
{ (X p) [X e FV(S,)
and k <t
and stmt(p,) =[x := @]
and Vj, k<j<t stmt(p,) # [x := a']}

Local Soundness
for Reaching Definitions

To show: - Case: §;=[x:=af
') . : — d, = agp(T,)
i (S“ OI-) i (SI+1.’ 0|.+1) ! — doy = fro(lX :=aJ’, dy)
and d,, = O(RD(T3|) = (0gp(T,) \{(x,9)}) U{(x,9}
and dy; = fro(fIrst(S), din) _ Lemma: ogy(T,i+1)
then agp(T,i+1) C d, = (0gp(T,) \{(x,9)}) U{(x,9}

— S0 Ogp(T,i+1) = dg
— Thus agp(T,i+1) C d,

Abstraction
for Live Variables

* O y(<Py,My>...<pp,Mp>,t) =
{ x| xe FUstmt(p,)) where k >t
and Vj, t<j<k stmt(p,) # [x := a']}

Local Soundness
for Live Variables

To show: e Case:S,,=[x:=af
' O . : — diy = 0gp(T,i+1)
If (Sl’ Ol-) 9 (S|+]:’ 0|-+1) < T . dout — fRD([X = a]{” din)
and d;, = O(,_V(Tzl+l) = (0gp(T,i+1) \ {x}) U FV(a)
and dg, = fL(first(Si,1), din) = Lemma: (T
then o, (T,)) C d,, = (0xp(T,i+1) \ {x}) U FV(a)

— So agp(T,1) =d,

' i — Thus agp(T,1) Ed,,
Note: i and i+1 are ro(TH1) E doy

swapped due to reverse
analysis

Conservative Abstraction

Conservative Abstraction

e Every trace of M is a trace of A

—A over-approximates what M can do
(Preserves safety properties!): AE Q= MF ¢

« Some traces of A may not be traces of M
—May yield spurious counterexamples - (a, e)
* Eliminated via abstraction refinement

—Splitting some clusters in smaller ones
—Refinement can be automated

Original Abstraction

Refined Abstraction

Predicate Abstraction

Concrete States:

y=0 A\ y=1 y=0
P1,P2 P1, P2 7P1,P2
x=1 \Kz\l‘ =1

y=0 R v=1 =
—pP1, P2

Predicates:

p1(s) = (s.z > s.y)

p2(s) = (sy =0) Abstract transitions?

Predicate Abstraction

Abstract Transitionsy ‘/ f)
\6\ x=2 X=2
R v—1 y=2
pl pz P1, P2 ﬁpl,pf)
F - =1 W —1
,\y 1 T y=2 /

—P1, P2

Property:

p1 V —po — (s.x > s.y) V (s.y #0)

Property holds. Ok.

Predicate Abstraction

Abstract Transmons

ol o
pl 102 pP1, P2 ﬁpmq;)
F é '\y 1 -

\ y=2

—p1.p2 X

This trace Is
spurious!

Property:

p1 <— (s.z > s.y)

Predicate Abstraction

Abstract Transitions: () ()

X=2
+ y=0 ,\y 1
P1,P2
=
,\ y=1 ,\ y=2
Property: New Predicates:
p1 <= (s.x > s.y) p1(s) = (s.x > s.y)

p2(s) = (s.x = 2)

