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Introduction to
Data Flow Analysis

Reading: NNH 1.1-1.3, 1.7-1.8

17-654/17-765
Analysis of Software Artifacts

Jonathan Aldrich

Example WHILE Program

[y := x]1;
[z := 1]2;
while [y>1]3 do

[z := z * y]4;
[y := y – 1]5;

[y := 0]6;

Computes the factorial function, with the input in x 
and the output in z

Data Flow Analysis

• View program as 
graph
– Nodes are elementary 

blocks like 
assignments, if 
statements, etc.

– Edges show control 
flow

[y := x]1

[z := 1]2

[y > 1]3 [y := 0]6

[z := z * y]4

[y := y - 1]5

yes

no

Data Flow Equations (1)

• Transfer Functions
– show how a statement affects 

data flow information

RDexit(1) = (RDentry(1) \ {(y,*)}) U (y,1)

RDexit(2) = (RDentry(2) \ {(z,*)}) U (z,2)

RDexit(3) = RDentry(3)

RDexit(4) = (RDentry(4) \ {(z,*)}) U (z,4)

RDexit(5) = (RDentry(5) \ {(y,*)}) U (y,5)

RDexit(6) = (RDentry(6) \ {(y,*)}) U (y,6)

[y := x]1

[z := 1]2

[y > 1]3 [y := 0]6

[z := z * y]4

[y := y - 1]5

yes

no

Data Flow Equations (1)

• Pattern
– Assignments

• kill reaching defs for that var

• generate new reaching def

– All others
• no change

RDexit(1) = (RDentry(1) \ {(y,*)}) U (y,1)

RDexit(2) = (RDentry(2) \ {(z,*)}) U (z,2)

RDexit(3) = RDentry(3)

RDexit(4) = (RDentry(4) \ {(z,*)}) U (z,4)

RDexit(5) = (RDentry(5) \ {(y,*)}) U (y,5)

RDexit(6) = (RDentry(6) \ {(y,*)}) U (y,6)

[y := x]1

[z := 1]2

[y > 1]3 [y := 0]6

[z := z * y]4

[y := y - 1]5

yes

no

Data Flow Equations (2)

• Flow equations
– Show how analysis information 

flows from one statement to 
another

RDentry(1) = { (x,?), (y,?), (z,?) }

RDentry(2) = RDexit(1)

RDentry(3) = RDexit(2) U RDexit(5)

RDentry(4) = RDexit(3)

RDentry(5) = RDexit(4)

RDentry(6) = RDexit(3) 

[y := x]1

[z := 1]2

[y > 1]3 [y := 0]6

[z := z * y]4

[y := y - 1]5

yes

no
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Data Flow Solution

• Solution
– A 12-tuple RD
– Such that RD = F(RD)
– Where F is derived from 

the equations at right
– As small (precise) as 

possible

• Fixed point of f
– A value v such that v = f(v)

RDexit(1) = (RDentry(1) \ {(y,*)}) U (y,1)

RDexit(2) = (RDentry(2) \ {(z,*)}) U (z,2)

RDexit(3) = RDentry(3)

RDexit(4) = (RDentry(4) \ {(z,*)}) U (z,4)

RDexit(5) = (RDentry(5) \ {(y,*)}) U (y,5)

RDexit(6) = (RDentry(6) \ {(y,*)}) U (y,6)

RDentry(1) = { (x,?), (y,?), (z,?) }

RDentry(2) = RDexit(1)

RDentry(3) = RDexit(2) U RDexit(5)

RDentry(4) = RDexit(3)

RDentry(5) = RDexit(4)

RDentry(6) = RDexit(3)

Equations as Functions

F(RD) = (Fentry(1)(RD), RDexit(1)(RD),
…,
Fentry(6)(RD), RDexit(6)(RD))

where, for example,

Fexit(1)(…, RDentry(1), …) = (RDentry(1) \ {(y,*)}) U (y,1)

Fentry(3)(…, RDexit(2), …, RDexit(5), …) = RDexit(2) U RDexit(5)

Computing a Fixed Point of F

• Start with the tuple RD∅ = (∅, ∅, ∅, …, ∅)
• Let F0(x) = x
• Let Fn+1(x) = F(Fn(x))

• Surprise!
– Now find n such that Fn+1(RD∅) = Fn(RD∅)
– By definition Fn(RD∅) is a fixed point of F
– Does this really work?

Computing the Fixed Point

0       1       2       3       4             10
RDentry(1) ∅ x?y?z?                               x?y?z?
RDexit(1) ∅ y1 x?y1z?                       x?y1z?
RDentry(2) ∅ ∅ y1  x?y1z?             x?y1z?
RDexit(2) ∅ z2     z2 y1z2               x?y1z2
RDentry(3) ∅ ∅ y5z2 y5z2z4     x?y1y5z2z4
RDexit(3) ∅ ∅ ∅ y5z2       x?y1y5z2z4
RDentry(4) ∅ ∅ ∅ ∅ x?y1y5z2z4
RDexit(4) ∅ z4     z4 z4 x?y1y5z4
RDentry(5) ∅ ∅ z4      z4 x?y1y5z4
RDexit(5) ∅ y5     y5 y5z4               x?y5z4
RDentry(6) ∅ ∅ ∅ ∅ x?y1y5z2z4
RDexit(6) ∅ y6     y6 y6 x?y6z2z4

RDexit(1) = (RDentry(1) \ {(y,*)}) U (y,1)
RDexit(2) = (RDentry(2) \ {(z,*)}) U (z,2)
RDexit(3) = RDentry(3)
RDexit(4) = (RDentry(4) \ {(z,*)}) U (z,4)
RDexit(5) = (RDentry(5) \ {(y,*)}) U (y,5)
RDexit(6) = (RDentry(6) \ {(y,*)}) U (y,6)

RDentry(1) = { (x,?), (y,?), (z,?) }
RDentry(2) = RDexit(1)
RDentry(3) = RDexit(2) U RDexit(5)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(4)
RDentry(6) = RDexit(3)

Finding the Fixed Point

• Why should we think we will find an n such 
that Fn+1(RD∅) = Fn(RD∅)?

Monotone Functions

• f is monotone if v ⊆ v’ implies f(v) ⊆ f(v’)
• Assertion: F is monotone

– Intuition: preserves input/output relationship
– Check a couple of cases
– (1) RDexit(1) = (RDentry(1) \ {(y,*)}) U (y,1)

• Assume RDentry(1) ⊆ RD’entry(1)
• Then (RDentry(1) \ {(y,*)}) ⊆ (RD’entry(1) \ {(y,*)})
• So RDexit(1) ⊆ RD’exit(1)

• Would this also be true if we used ⊂?
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Monotone Functions

• f is monotone if v ⊆ v’ implies f(v) ⊆ f(v’)
• Assertion: F is monotone

– Intuition: preserves input/output relationship
– Check a couple of cases
– (1) RDexit(1) = (RDentry(1) \ {(y,*)}) U (y,1)
– (2) RDentry(3) = RDexit(2) U RDexit(5)

• Assume RDexit(2) ⊆ RD’exit(2)
• Assume RDexit(5) ⊆ RD’exit(5)
• Then RDexit(2) U RD’exit(5) ⊆ RD’exit(2) U RD’exit(5)
• So RDentry(3) ⊆ RD’entry(3)

Finding the Fixed Point

• Why should we think we will find an n such that 
Fn+1(RD∅) = Fn(RD∅)?
– F is monotone
– Claim: ∀n Fn(RD∅) ⊆ Fn+1(RD∅)

• Base case: RD∅ ⊆ F(RD∅)
– Since no tuple has smaller sets than RD∅

• Inductive case:
– Assume Fn-1(RD∅) ⊆ Fn(RD∅)
– F is monotone, so F(Fn-1(RD∅)) ⊆ F(Fn(RD∅))
– Equivalently, Fn(RD∅) ⊆ Fn+1(RD∅)

– Therefore, every application of F either:
• Does not change RD (and so we have a fixed point)
• Or increases the size of a set in RD

– The set of definitions is finite so the sets in RD cannot increase 
in size forever

– Therefore the algorithm terminates with a fixed point at some 
finite n

Precision

• Is Fn(RD∅) the least fixed point?
– i.e., the fixed point with the smallest sets?

• Yes.  Proof:
– Consider some other fixed point RDfix

– RD∅ ⊆ RDfix

– Since F is monotone, F(RD∅) ⊆ F(RDfix)
– By induction Fn(RD∅) ⊆ Fn(RDfix)
– But RDfix is a fixed point so RDfix = F(RDfix) = Fn(RDfix)

– Therefore Fn(RD∅) ⊆ RDfix

– Therefore Fn(RD∅) is the least fixed point of F

Efficient Algorithms

• Computing Fn(RD∅) is slow
– 10 iterations
– Each iteration recomputes each member of RD∅

– Few members of RD∅ change each iteration

• Optimization: Chaotic Iteration
– Recompute one member of RD∅ at a time
– Guess a member that is likely to change

– Can compute fixed point in 17 iterations, one 
recomputation per iteration (vs. 12 before)

Chaotic Iteration

RD1..n = ∅
while RDj ≠ Fj(RD1..n) for some j

do RDj := Fj(RD1..n)

• How to choose j?
– Later!

Chaotic Iteration

RD1..n = ∅
while RDj ≠ Fj(RD1..n) for some j

do RDj := Fj(RD1..n)

• Properties
– If chaotic iteration terminates, RD1..n is a fixed point of F

• Proof: termination implies RD = F(RD)
– That fixed point is a least fixed point

• Proof: RD ⊆ Fn(RD∅) is an invariant of the algorithm
– Chaotic iteration terminates for monotone F and finite 

sets RD1..n
• Proof: F is monotone and so RD is increasing
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Chaotic Iteration Example
Iter Position Value
0 -- ∅
1 entry(1) x?y?z?
2 exit(1) x?y1z?
3 entry(2) x?y1z?
4 exit(2) x?y1z2
5 entry(3) x?y1z2
6 exit(3) x?y1z2
7 entry(4) x?y1z2
8 exit(4) x?y1z4
9 entry(5) x?y1z4
10 exit(5) x?y5z4
11 entry(3) x?y1y5z2z4
12 exit(3) x?y1y5z2z4
13 entry(4) x?y1y5z2z4
14 exit(4) x?y1y5z4
15 entry(5) x?y1y5z4
16 entry(6) x?y1y5z2z4
17 exit(6) x?y6z2z4

RDexit(1) = (RDentry(1) \ {(y,*)}) U (y,1)
RDexit(2) = (RDentry(2) \ {(z,*)}) U (z,2)
RDexit(3) = RDentry(3)
RDexit(4) = (RDentry(4) \ {(z,*)}) U (z,4)
RDexit(5) = (RDentry(5) \ {(y,*)}) U (y,5)
RDexit(6) = (RDentry(6) \ {(y,*)}) U (y,6)

RDentry(1) = { (x,?), (y,?), (z,?) }
RDentry(2) = RDexit(1)
RDentry(3) = RDexit(2) U RDexit(5)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(4)
RDentry(6) = RDexit(3)

Comparison to Naïve Algorithm

0       1       2       3       4             10
RDentry(1) ∅ x?y?z?                               x?y?z?
RDexit(1) ∅ y1 x?y1z?                       x?y1z?
RDentry(2) ∅ ∅ y1  x?y1z?             x?y1z?
RDexit(2) ∅ z2     z2 y1z2               x?y1z2
RDentry(3) ∅ ∅ y5z2 y5z2z4     x?y1y5z2z4
RDexit(3) ∅ ∅ ∅ y5z2       x?y1y5z2z4
RDentry(4) ∅ ∅ ∅ ∅ x?y1y5z2z4
RDexit(4) ∅ z4     z4 z4 x?y1y5z4
RDentry(5) ∅ ∅ z4      z4 x?y1y5z4
RDexit(5) ∅ y5     y5 y5z4               x?y5z4
RDentry(6) ∅ ∅ ∅ ∅ x?y1y5z2z4
RDexit(6) ∅ y6     y6 y6 x?y6z2z4

RDexit(1) = (RDentry(1) \ {(y,*)}) U (y,1)
RDexit(2) = (RDentry(2) \ {(z,*)}) U (z,2)
RDexit(3) = RDentry(3)
RDexit(4) = (RDentry(4) \ {(z,*)}) U (z,4)
RDexit(5) = (RDentry(5) \ {(y,*)}) U (y,5)
RDexit(6) = (RDentry(6) \ {(y,*)}) U (y,6)

RDentry(1) = { (x,?), (y,?), (z,?) }
RDentry(2) = RDexit(1)
RDentry(3) = RDexit(2) U RDexit(5)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(4)
RDentry(6) = RDexit(3)

Constant Folding

• A program optimization
– Replaces computation with constants
– Can use reaching definitions

• Notation
– RD ⊦ S ⊳ S’

• “Given reaching definitions RD, statement S can be transformed 
into S’ ”

–

• Transformation T is legal if condition(s) C hold

– FV(exp)
• The variables mentioned in exp

– exp[y↦n]
• Replace all occurrences of y in exp with n

C

T

Constant Folding Rules

Taken from Nielson, Nielson, and Hankin, page 27

Example

[x:=10]1; [y:=x+10]2; [z:=y+10]3

• RDenter(2) = { (x,1), (y,?), (z,?) }
• RD ⊦ [y:=x+10]2 ⊳ [y:=10+10]2 by [ass1]

• Thus:
– RD ⊦ [x:=10]1; [y:=x+10]2; [z:=y+10]3 ⊳

[x:=10]1; [y:=10+10]2; [z:=y+10]3 by [seq] rules

Example

RD ⊦ [x:=10]1; [y:=x+10]2; [z:=y+10]3

⊳ [x:=10]1; [y:=10+10]2; [z:=y+10]3 by [ass1]
⊳ [x:=10]1; [y:=20]2; [z:=y+10]3 by [ass2]
⊳ [x:=10]1; [y:=20]2; [z:=20+10]3 by [ass1]
⊳ [x:=10]1; [y:=20]2; [z:=30]3 by [ass2]


