Introduction to
Data Flow Analysis

Reading: NNH 1.1-1.3,1.7-1.8

17-654/17-765
Analysis of Software Artifacts
Jonathan Aldrich

Example WHILE Program

[y =x4

[z:=1%

while [y>1]3 do
[z:=z*y]4
y:=y-1J

[y :=0]5

Computes the factorial function, with the input in x
and the output in z

Data Flow Analysis

« View program as

graph

— Nodes are elementary
blocks like
assignments, if
statements, etc.

— Edges show control
flow

Data Flow Equations (1)

« Transfer Functions
— show how a statement affects
data flow information

RDeyi(1) = (RDepry(1) Wy,) U (v,1)
RDeyi(2) = (RDepry(2) \{(2,) U (2,2)
RDeyi((3) = RDeny(3)

RDeyi(4) = (RDepry(4) \{(2,)) U (2,4)
RDeyi((5) = (RDepry(5) W{(y,)) U (y.5)
RDeyi(6) = (RDepry(6) \{(y,)D) U (v.6)

Data Flow Equations (1)

« Pattern
— Assignments
« kill reaching defs for that var
« generate new reaching def
— All others
* no change

RDeyi(1) = (RDepry(1) Wy,) U (v,1)
RDeyi(2) = (RDepry(2) \{(,) U (2,2)
RDeyi((3) = RDenyry(3)

RDeyi(4) = (RDepry(4) \{(2,)) U (2,4)
RDeyi(5) = (RDepry(5) \{(y,))) U (v.5)
RDeyi(6) = (RDepry(6) \{(y,)D) U (y.6)

Data Flow Equations (2)

« Flow equations
— Show how analysis information
flows from one statement to
another

RDenry(1) = { (x,?), (,?), (2,2) }
RDenry(2) = RDeyi(1)
RDenury(3) = RDeyif(2) U RDgyi(5)
RDenry(4) = RDeyi(3)
RDenry(5) = RDeyi(4)
RDenry(6) = RDeyi(3)

Data Flow Solution

« Solution RDq(1) = (RDqy () {(y9) U (v.2)
_ A12.uple RD RD¢(2) = (RD,yy(2) M {(Z) U (2:2)
— Such that RD = F(RD) Egmg f (RR[;)ENW(?j) @ U)

_ ; - exitl?) = entry! y .
e e RDuu(®) = (RO)\ (9D U 0:5)

— As small (precise) as RDeyi(6) = (RDepry(6) \{(y,))) U (v.6)

possible
e Fi i RDn(1) = { (x2), (¥.?), (2,7) }
Fixed point of f RD“Z(Z) =RD.(1)
RDe(3) = RDgyi(2) U RDeyie(5)
RDg,(4) = RDeyi(3)
RDg;(5) = RDeyi(4)
RDe;,(6) = RDey(3)

— A value v such that v = f(v)

Equations as Functions
F(RD) = (Fenry(1)(RD), RD(1)(RD),
Fn(6)(RD), RD,(6)(RD))
where, for example,

Fext(1)(--» RDenry(1),) = (RDerry(1) V{(y, D) U (v,1)

Fentry(3)(-+» RDexit(2), -, RDe(5),) = RDeyie(2) U RDeyi(5)

Computing a Fixed Point of F

Start with the tuple RD, = (O, O, O, ..., O)
Let FO(x) = x
Let F"(x) = F(F"(x))

* Surprise!
— Now find n such that F*1(RD) = F"(RDp)
— By definition F"(RD_) is a fixed point of F
— Does this really work?

Computing the Fixed Point

0 1 2 3 4 10 RDuq(1) = (RDuy()\ {5)) U (1,1
RDex(2) = (RDery(2)\ {2 U (2.2

RDeq(1) 0 X?y?2? x?y?z? RDEX;(3)=RDE,‘:;(3)
RDoq(1) O ylX?ylz?————— X?y1Z? Rp_.(4) = (RDyyyy(4) \{(z}) U (24
ROey@ O Oyl x?ylz? X?Y12? RDyy(5) = (RDeusy(5) \{(y)) U (1.5
RD.w(2) O z2 z2 ylz2 x?y1z2 RDexi(6) = (RDenr(6) \{(y,)}) U (¥,6

RDe(3) 0 O y5z2y5z2z4 x?yly5z274

RD,3 O O O y5z22 x?yly5z2z4 RPemy(D)={(?). 7). @7}

RDwy(Z; = RDg(1)
RDey(4) 0 O O O x?yly5z2z4 RDenr(3) = RDgy(2) U RDys(5)
RD.4) O z4 Z4 z4 x?yly5z4 RDgpry(4) = RDgyie(3)
RDeyy(5) 0 O z4 74 X?y1y5z4 RDeniny(5) = RDgyi(4)
RD.(5) O y5 y5 y5z4 x?y5z4 RPenny(®) = RDei(3)
RDgy(6) 0 O O O x?yly5z2z4
RD.46) O y6 y6 y6 x?y622z4

Finding the Fixed Point

» Why should we think we will find an n such
that F"*(RDp) = F"(RD)?

Monotone Functions

+ fis monotone if v O v’ implies f(v) O f(v')
* Assertion: F is monotone
— Intuition: preserves input/output relationship
— Check a couple of cases
— (1) RDyii(1) = (RDgnry(1) M{(y,*)) U (1)
* Assume RDem,y(l) O RD’em,y(l)

* Then (RDeny(1) V{(y,)}) O (RD’enery (1) \{(y,¥)D)
* S0 RDgy(1) 0 RD'(1)

* Would this also be true if we used 00?

Monotone Functions

« fis monotone if v O v’ implies f(v) O f(v')
« Assertion: F is monotone
— Intuition: preserves input/output relationship
— Check a couple of cases
— (1) RDgyi(1) = (RDgpry(1) \M{(y,*)) U (1)
) RDentry(s) = RDexit(z) U RDexit(S)
* Assume RD,,;(2) O RD’.«(2)
* Assume RDg,;(5) O RD’,«(5)

* Then RDe,(2) U RD'e,(5) 0 RD'ei(2) U RD'e(5)
¢ S0 RDgpyry(3) 0 RDgpiry(3)

Finding the Fixed Point

. Wh}/ should we think we will find an n such that
Fr{(RD) = F'(RD,)?
— F is monotone
— Claim: Vn F"(RD;) O F™*4(RD-)
» Base case: RD;, O F(RD)
— Since no tuple has smaller sets than RDy
« Inductive case:
— Assume F™(RD;) O F'(RD,) o
- F is monotone, so F(F™*(RDy)) 0 F(F"(RDy))
- Equivalently, F"(RD) O F™*(RD;)
— Therefore, every application of F either:
« Does not change RD (and so we have a fixed point)
« Orincreases the size of a setin RD
— The set of definitions is finite so the sets in RD cannot increase
in size forever

— Therefore the algorithm terminates with a fixed point at some
finite n

Precision

 Is F'(RD) the least fixed point?
— i.e., the fixed point with the smallest sets?
e Yes. Proof:
— Consider some other fixed point RDy,
— RD; O RDg,
— Since F is monotone, F(RDy) O F(RDy,)
— By induction F"(RD) O F"(RDg,)
— But RDy,is a fixed point so RDy, = F(RDg) = F'(RDy,)
— Therefore F"(RDy) 0 RDy,
— Therefore F"(RDp) is the least fixed point of F

Efficient Algorithms

Computing F'(RDy) is slow

— 10 iterations

— Each iteration recomputes each member of RD;
— Few members of RD change each iteration

¢ Optimization: Chactic lteration

— Recompute one member of RD; at a time

— Guess a member that is likely to change

— Can compute fixed point in 17 iterations, one
recomputation per iteration (vs. 12 before)

Chaotic Iteration

RDl..n =0
while RD; # F(RD,_,,) for some |
do RD; := F(RD, ,)

» How to choose j?
— Later!

Chaotic Iteration

RD, ,=0
while RD; # F(RD, ,,) for some |
do RD; :=F(RD, ,)

* Properties
— If chaotic iteration terminates, RD;_, is a fixed point of F
« Proof: termination implies RD = F(RD)
— That fixed point is a least fixed point
« Proof: RD O F"(RD,) is an invariant of the algorithm

— Chaotic iteration terminates for monotone F and finite
sets RD; ,

« Proof: F is monotone and so RD is increasing

Chaotic Iteration Example

Iter Position Value

Comparison to Naive Algorithm

0 1 2 3 4 10 RDeyi(1) = (RDgryry(1) \{(¥:)D) U (.1
RDe,1(2) = (RDeryry(2) \{(z*)}) U (2.2
RDeq(1) 0 X?y?2? x?y?z? RDEX;(S)=RDE,‘:;(3)
RDe(D) O ylxeylz? X2Y12? RO, (4) = (RDquy(®)\ (2) U (2
Ry 0 O yl x?yl1z? X?Y1Z? RDgy(5) = (RDenry(5) \{(%,*)}) U (v.5
RD.w(2) O z2 z2 ylz2 x?y1z2 RDexi(6) = (RDenr(6) \{(y,)}) U (¥,6
RDe(3) 0 O y5z2y5z2z4 x?yly5z274
RDenin(1) ={ (x,?), (v,?), (.?) }
RDq(3) O] O y5z2 x?yly5z2z4 RDent,y(2)=RDm(1)
RO 0 0 0 0 xy1y52224 o, (3) = RDqy(2) URD(5)
RD.4) O z4 Z4 z4 x?yly5z4 RDgpry(4) = RDeyie(3)
RDeyy(5) 0 O z4 74 X?y1y5z4 RDeniny(5) = RDgyi(4)
RD(5) O y5 y5 y5z4 x?y5z4 RPenf(6) = RDeu(3)
RDeq(6) 0 O O O x?yly5z2z4
RD,,(6) 0 y6 y6 y6 xX?y6z2z4

0 - u]
1 entry(1) x?y?z? RDey(1) = (RDgry(1) \ {(y,) U (v,1)
2 edit)) xy1z? Rbox() = (Roro)\ (29 U 02)
3 eny(2) x?y1z? RD(3) = RDenyy(3)
4 exit(2) x?ylz2 RDg,(4) = (RDgrny(4) \ {(z4)}) U (2,4)
5 entry(3) x?ylz2 RDe,t(5) = (RDeryry(5) \{(y,*)}) U (¥.5)
6 exit(3) x?ylz2 RDeyi((6) = (RDerury(6) \{(y,)}) U (v,6)
7 entry(4) x?ylz2
8 exit(4) x?ylz4 RDenin(1) ={ (x,?), (v,?), (z.?) }
9 entry(5) x?ylzd RDeniny(2) = RDexi(1)
10 exit(5) X?y524 ggenuz{(i; z gge (g; U RD,(5)
11 entry(3) x?yly5z2z4 RDomn)= RDon(4)
12 exit(3) x?yly5z2z4 RDepty(6) = RDgyi(3)
13 entry(4) x?yly5z2z4
14 exit(4) x?yly5z4
15 entry(5) x?yly5z4
16 entry(6) x?yly5z2z4
17 exit(6) X?y6z2z4
Constant Folding
« A program optimization
— Replaces computation with constants
— Can use reaching definitions
* Notation
- RD+Sp> ¥
. “GiveSn reaching definitions RD, statement S can be transformed
intoS’”
T
« Transformation T is legal if condition(s) C hold
— FV(exp)
« The variables mentioned in exp
— exply~n]

« Replace all occurrences of y in exp with n

Constant Folding Rules
[ass] RDF [z :=a) b [z :=aly > n]}t

if{ y€FV(a) A (y,7) € RDenry (€) A
V(2,') € RDentry (€) : (z =y = [+)¢ is [y := n]t)

[ass2] RDF[z:=a)f b [z:=n]t
i FV(a) =0 A a ¢ Num A a evaluates to n

(sea] RDF S b 5]
) RDF 5% b 555
RDFS; > S}
el RDFsns & 51353
] RDF S > S)
") RDF if [b]f then S; else 5; b if [b]! then 5, else 5;
i) RDFS, > S
?! RDFif [b]f then 5; else S; b if (5 then S; else 5)
"
(] RDFS > §

RD F while 8]’ do S > while [b]¢ do S’

Taken from Nielson, Nielson, and Hankin, page 27

Example

[x:=10]%; [y:=x+10J; [z:=y+10°

* RDged(2) = { (x.1), (v,?), (z.?7) }
* RD [y:=x+10]? > [y:=10+10]? by [ass,]
* Thus:
—RD + [x:=10]%; [y:=x+10]?; [2:=y+10]3 >
[x:=10]%; [y:=10+10]2; [z:=y+10]3 by [seq] rules

Example

RD + [x:=10]%; [y:=x+10]% [z:=y+10]3
> [x:=10]%; [y:=10+10]%; [z:=y+10]3 by [ass,]
> [x:=10]%; [y:=20]%; [z:=y+10]3 by [ass,]
> [x:=10]%; [y:=20]%; [z:=20+10]° by [ass,]
> [x:=10]%; [y:=20]%; [z:=30]3 by [ass,]

