### **Announcements**

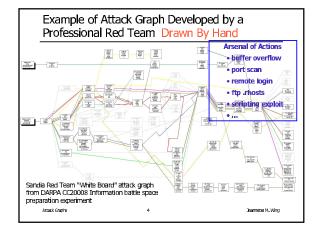
- · Project progress report due Thursday at 11:59pm (by email)
- Guest lectures
  - Thursday: David Brumley
    - Application partitioning
    - Timing attacks
  - Tuesday: Liam O'Brien
    - Re-engineering

Attack Graphs

Jeannette M. Wino

### Tools for Generating and Analyzing Attack Graphs

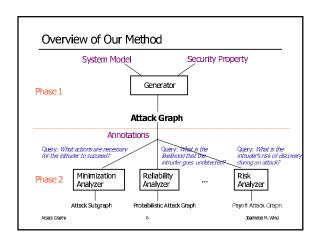
Paper by Oleg Sheyner and Jeannette Wing


Slides adapted from a presentation by Jeannette Wing Used by permission

17-654/17-765 Analysis of Software Artifacts Jonathan Aldrich

### Attack Graphs

- Analyzing the security of a network
  - Heterogeneous hardware and software
  - Complex connectivity
  - Difficult to ensure complete lack of security holes
- · Defense in depth
  - Multiple layers
    - Multiple firewalls
    - Authentication
       Limited privilege
  - Achieving root access on machine X may require multiple steps
     Get inside firewall
     Scan network for vulnerabilities


    - · Get root access to machine
- Question: how does security of whole system depend on parts?



### Problem Statement

- Problem: Generating attack graphs by hand is tedious, error-prone, and impractical for large systems.
- Our Goal: Automate the generation and analysis of attack graphs.
  - Generation
    - Must be fast and completely automatic
    - Must handle large, realistic examples
    - Should guarantee properties of attack graphs
  - - · Must enable security analysis by system administrators
    - · Should support incremental, partial specification

Jeannette M. Wing Attack Graphs



### Why Model Checking?

- · Pragmatic reasons
  - Off-the-shelf technology
  - Major verification success story
- · Technical reasons
  - Fast, automatic
  - Large state spaces
  - Handles safety and liveness properties
  - Generates counterexamples

Attack Graphs Jeannette M. Wing

### Counterexample = Attack

### Φ≡AG p

single counterexample = violation of  $\boldsymbol{\Phi}$ 

= path by which intruder succeeds

= attack

### For example,

 $\Phi \equiv AG$  (intruder does not have admin access to host H)

Hence, an attack (violation of  $\Phi$ ) is an example of how the intruder can gain unauthorized access to H.

Attack Graphs 8 Jeannette M. Wing

### Definition of Attack Graph

- Given
  - a finite state model, M, of network
  - a security property Φ
- An attack is an execution of M that violates Φ.
- An attack graph is a set of attacks of M.

### Properties of Attack Graphs

- - An attack generated violates  $\Phi$ .
- Exhaustive
  - All possible attacks are represented in G.
- Succinct
  - Only relevant states are contained in G.
  - Only relevant transitions are contained in G.

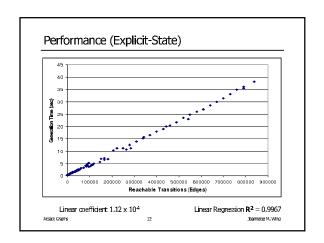
We developed two algorithms that satisfy these properties.

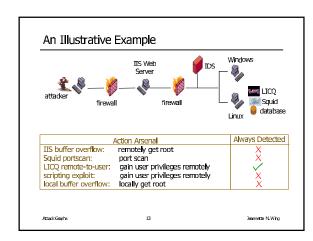
### Explicit-State Attack Graph Generation Algorithm

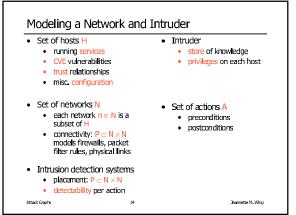
### Inputs

- $\Phi$  = LTL property (safety or liveness)

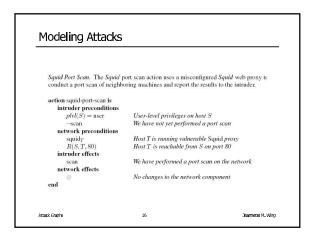
### Output


 $\square$ (request  $\Rightarrow \lozenge$ (response))

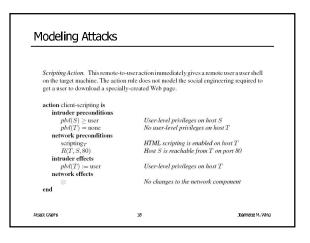

- Attack graph G s.t.  $L(G) = L(M) \setminus L(\Phi)$ 

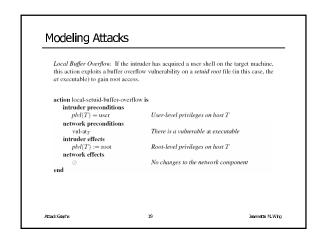

### Algorithm

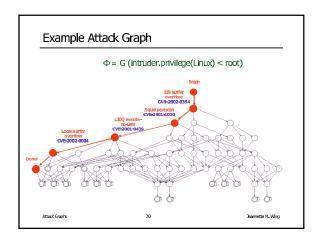
- 1. Interpret network model M and security property  $\Phi$  as Budhi automata [Gerth et al.95].
- M and Φ induce languages L(M) and L(Φ).
   Compute intersection M \(\triangle \sim 0\) of Buchi automata.
- L(M ∩ ~Φ) = L(M )\L(Φ) = executions of M that violate Φ.
- Derive G from strongly connected components of intersection automaton [Tarjan72].

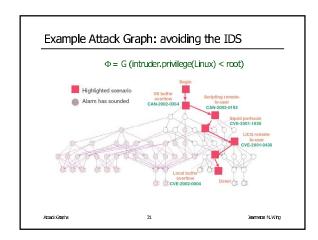

11 Jeannette M. Wing Attack Graphs





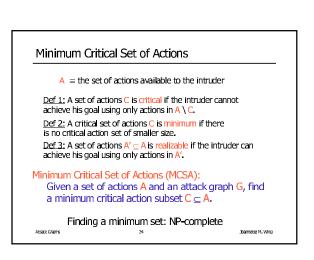



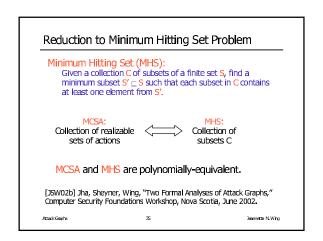


### Modeling Attacks IIS Buffer Overflow: This remote-to-root action immediately gives a remote user a root shell on the target machine. action IIS-buffer-overflow is intruder preconditions plnt(S) $\geq$ user plnt(T) root No root-level privileges on host S No intruder effects plnt(T) := root No root-level privileges on host S No intruder effects Plnt(T) := root No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No root-level privileges on host S No network effects No netwo

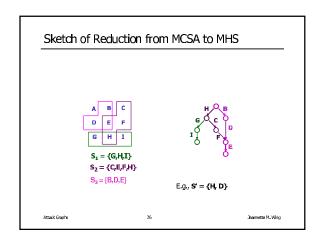



## Modeling Attacks LICQ Remote to User. This remote-to-user action immediately gives a remote user a user shell on the target machine. The action rule assumes that a port scan has been performed previously, modeling the fact that such actions typically become apparent to the intruder only after a scan reveals the possibility of exploiting software listening on lesser-known ports. action LICQ-remote-to-user is intruder preconditions plvl(S) ≥ user plvl(T) = none scan network preconditions licqr R(S, T, 5190) intruder effects plvl(T) := user network component No changes to the network component

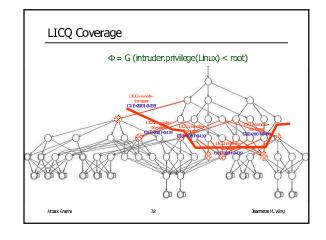




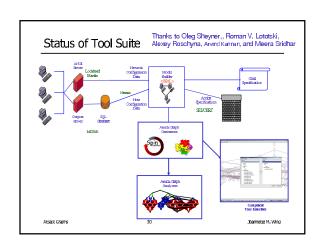



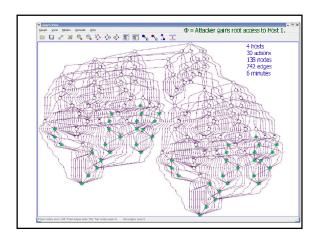



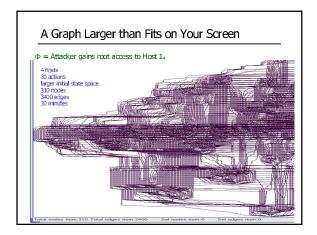




## Minimization Analysis Scenario: The system analyst must decide - among several different firewall configurations, or - among several witherabilities to patch, or - among several intrusion detection systems to set up, each of which prevents different subsets of actions. What should he do? Problem Question (Minimum Critical Set of Actions): What is a minimum set of actions that must be prevented to guarantee the intruder cannot achieve his goal? Solution (Sketch): 1. Reduce MCSA to Minimum Hitting Set (MHS) Problem [JSW02]. 2. Reduce MHS to Minimum Set Covering (MSC) Problem [ADG80]. 3. Use textbook Greedy Approximation Algorithm to approximate solution [QLR85].







### Reduction of MHS to Minimum Set Covering Minimum Set-Covering (MSC): Given a collection C of subsets of a finite set S that covers S, find a minimum sub-collection C' ⊆ C that covers S. MHS and MSC are polynomially-equivalent [ADP80]. Use textbook Greedy Approximation Algorithm for MSC [CLR85, p. 975.]



# Other Minimization Analyses [S04, JSW02b] Scenario: The system analyst has a set of measures, M, each of which prohibits a subset of actions. Eg, M = {packet filter firewall, application firewall, smart cards, one-time passwords, authentication policy servers, VPNs, anti-virus sortware, email filters, database encyption, host-based DS, net-based IDS, net-based IDS, net-oracle IDS, network monitors, auditing, key stroke replicator, log analysis, forensic sortware, hardened O/S} Problem Question: What is a smallest subset of measures he can deploy to make the system safe? [S04] Solution Approach: Greedy algorithm with provable bounds. General case is NP-complete (slightly more complex than minimum cover problem).







### XML Specification of a Host host name="lin" ip="192.1/68.0.4" network="internal"> services> <Squid/> <NICO/> <database/> <host name="lin" ip=|Outpost|> <services source=|Nessus|> <connectivity source=|ANGI|> <cve source=|Outpost|> <CVE 2002 0004/> <CVE 2001 1030/> <CVE 2001 0439/> </cve> </host> 33

### Current Work

- Input to graph generation
  - Building a library of action specifications
    - To describe majority of CERT advisories, MSR security bulletins, Symantec, ...
    - Starting point: CERT database of 100+ rule-based specs
  - Goal: Discover new attacks
- More experimentation and analyses
  - Run tools over different security properties and system models
     Goal: Push on limits of state-space explosion problem.
  - Dynamic analysis
  - Goal: Adapt to on-going attacks.
- · Scenario graphs
  - Application to other domains, e.g., test-case generation, embedded systems