Metrics based
field problem prediction

Paul Luo Li
ISRI- SE - CMU

An exception 06 has occured at 0028:C11B3ADC in WxD DiskTSD(03) +
00001660, This was called from 0028:C11B40C8 in WkD voltrack(04) +
00000000, It may be possible to continue normally,

* Press any key to attempt to continue.
% Press CTRLHALT+RESET to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

Field problems “happen”

Program testing can be used
to show the presence of bugs,
but never to show their absence!
-Dijkstra

Statement coverage, branch coverage, all
definitions coverage, all p-uses coverage, all
definition-uses coverage finds only 50% of a

sample of field problems in TeX
- Foreman and Zweben 1993

Better, cheaper, faster... pick two
-Anonymous

Take away

Field problem predictions can help lower the
costs of field problems for software producers
and software consumers

Metrics based models are better suited to model
field defect when information about the
deployment environment is scarce

« The four categories of predictors are product,
development, deployment and usage, and
software and hardware configurations

Depending on the objective, different predictions
are made and different predictions methods are
used

Benefits of field problem predictions

Guide testing (Khoshgoftaar et. al. 1996)

Improve maintenance resource allocation
(Mockus et. al. 2005)

Guide process improvement (Bassin and
Santhanam 1997)

Adjust deployment (Mockus et. al. 2005)
Enable software insurance (Li et. al. 2004)

Lesson objectives

@ Why predict field defects?
* When to use time based models?
* When to use metrics based models?

* What are the component of metrics based
models?
— What predictors to use?
— What can | predict?
— How do | predict?

Methods to predict field problems

» Time based models

— Predictions based on the time when problems
occur

» Metrics based models

— Predictions based on metrics collected
before release and field problems

The idea behind time based models

* The software system has a chance of
encountering problems remaining during every
execution

— More problems there are in the code, higher the
probability a problem will be encountered

« Assuming that a problem is discovered and is
removed, the probability of encountering a
problem during the next execution decreases.

« The more executions, higher the number of
problems found

Example

Exponential model - rate of problems

TS current time

Example

« A(t) =107.01*10% e - 10t

« Integrate the function
from t=10 to infinity, to
get ~43 problems

Exponential model - rate of problems

Key limitation

« In order for the defect occurrence pattern
to continue into future time intervals,
testing environment ~ operating
environment

— Operational profile
— Hardware and software configurations in use
— Deployment and usage information

Situations when time based models
have been used

» Controlled environment

— McDonell Douglas (defense contractors
building airplanes) studied by Jelinski and
Moranda

— NASA projects studied by Schneidewind

Situations when time based models
may not appropriate
» Operating environment is not known or
infeasible to test completely
— COTS systems

— Open source software systems

The idea behind metrics based models

« Certain characteristics make the presences of
field defects more or less likely

— Product, development, deployment and usage,
software and hardware configurations in use

« Capture the relationship between predictors and
field problems using past observations to predict
field problems for future observations

Difference between time based models
and metrics based models

* Explicitly account for characteristics that
can vary

» Model constructed using historical
information on predictors and field defects

Upshot: more robust against
differences between
development and deployment

Lesson objectives

@ Why predict field defects?
@ When to use time based models?
* When to use metrics based models?

* What are the component of metrics based
models?
— What predictors to use?
— What can | predict?
— How do | predict?

Difference between time based models
and metrics based models

* Explicitly account for characteristics that
can vary

» Model constructed using historical
information on predictors and field defects

An example model

RLSTOT:
vertices plus
arcs within
loops in flow
graph
NL:
loops in a flow
graph
>14.5 VG:
Cyclomatic
| s | [525 complexity

16 obs 136 obs

RLSTOT

4034 obs <=421.0

462 obs

Khoshgoftaar et. al 1993

Lesson objectives

@ Why predict field defects?
@ When to use time based models?
@ When to use metrics based models?

* What are the component of metrics based
models?
— What predictors to use?
— What can | predict?
— How do | predict?

Definition of metrics and predictors

* Metrics are outputs of measurements,
where measurement is defined as the
process by which values are assigned to
attributes of entities in the real world in
such a way as to describe them according
to clearly defined rules.

— Fenton and Pfleeger

Predictors are metrics available before
release

Categories of predictors

 Product metrics
» Development metrics
» Deployment and usage metrics

 Software and hardware configurations
metrics

Categories of predictors

* Product metrics
» Development metrics
» Deployment and usage metrics

 Software and hardware configurations
metrics

Help us to think about the
different kinds of attributes that
are related to field defects

The idea behind product metrics

 Metrics that measure the attributes of any
intermediate or final product of the
development process

— Examined by most studies
— Computed using snapshots of the code
— Automated tools available

Sub-categories of product metrics

 Control: Metrics measuring attributes of
the flow of the program control

— Cyclomatic complexity
— Nodes in control flow graph

Sub-categories of product metrics

» Control

* Volume: Metrics measuring attributes
related to the number of distinct operations
and statements (operands)

— Halstead’s program volume
—Unique operands

Sub-categories of product metrics

» Control
* VVolume

« Action: Metrics measuring attributes
related to the total number of operations
(line count) or operators

— Source code lines
— Total operators

Sub-categories of product metrics

» Control
* VVolume
» Action

« Effort: Metrics measuring attributes of the
mental effort required to implement

— Halstead'’s effort metric

Sub-categories of product metrics

« Control
* Volume
¢ Action
« Effort

« Modularity: Metrics measuring attributes related
to the degree of modularity
— Nesting depth greater than 10
— Number of calls to other modules

Commercial and open source tools that
compute product metrics automatically

The idea behind development metrics

» Metrics that measure attributes of the
development process

— Examined by many studies

— Computed using information in change
management and version control systems

Rough grouping of development
metrics

» Problems discovered prior to release:
metrics that mention measuring attributes
of the problems found prior to release.

— Number of field problems in the prior release,
Ostrand et. al.

— Number of development problems, Fenton
and Ohlsson

— Number of problems found by designers
Khoshgotaar et. al.

Rough grouping of development
metrics

 Problems discovered prior to release

» Changes to the product: metrics that
mention measuring attributes of the
changes made to the software product.

— Reuse status, Pighin and Marzona

— Changed source instructions, Troster and
Tian

— Number of deltas, Ostrand et. al.
—Increase in lines of code Khoshgotaar et. al.

Rough grouping of development
metrics

» Problems discovered prior to release
» Changes to the product

» People in the process: metrics that
measure attributes of the people in the
development process.

— Number of different designers making
changes, Khoshgoftaar et. al.

— Number of updates by designers who had 10
or less total updates in entire company
career, Khoshgoftaar et. al.

Rough grouping of development
metrics

 Problems discovered prior to release
» Changes to the product
» People in the process

 Process efficiency: metrics that measure
attributes of the efficiency of the
development process.

— CMM level, Harter et. al.

— Total development effort per 1000 executable
statements, Selby and Porter

Development metrics in bug tracking
systems and change management systems

The idea behind deployment and usage
metrics

» Metrics that measure attributes of the
deployment of the software system and
usage in the field

— Examined by few studies
— No data source is consistently used

Examples of deployment and usage
metrics

» Khoshgoftaar et. al. (unit of observation is
modules)
— Proportion of systems with a module installed

— Execution time of an average transaction on a
system serving customers

— Execution time of an average transaction on a
systems serving businesses

— Execution time of an average transaction on a
tandem system

Examples of deployment and usage
metrics

Khoshgoftaar et. al.

Mockus et. al. (unit of observation is
individual customer installations of
telecommunications systems)

— Number of ports on the customer installation

— Total deployment time of all installations in the
field at the time of installation

Deployment and usage metrics may be
gathered from download tracking
systems or mailing lists

Bug Query Results

The idea behind software and
hardware configurations metrics

* Metrics that measure attributes of the
software and hardware systems that
interact with the software system in the
field
— Examined by few studies

—No data source is consistently used

Examples of hardware and software
configurations metrics

» Mockus et. al. (unit of observation is
individual customer installations of
telecommunications systems)

— Systems size of the installation (large or
small/medium)

— Operating system of the installation
(proprietary, Linux, or Windows)

Software and hardware configurations
metrics can be gathered from bug
tracking systems and mailing lists

Metrics to collect

* Prior work shows each category of metrics
to be important

—In general, more metrics will result in more
accurate predictions

* A cost-benefit analysis is recommended
(IEEE standard on software quality
metrics)

Lesson objectives

@ Why predict field defects?
@ When to use time based models?
@ When to use metrics based models?

* What are the component of metrics based
models?

@#What predictors to use?
— What can | predict?
— How do | predict?

Predictions

* A relationship
—What predicts field problems?
* A categorization

—Is it risky or not (is the number of field
problems above a threshold)?

e A number
—What is the number of field problems?

Importance of relationships

+ Evaluation of the development process
« Better allocation of maintenance resources

 Improvement of testing efforts

Harter et. al. evaluated the development process by
examining the CMM level of the organization

Bassin and Santhanam evaluate the development
process by examining the distribution of ODC triggers of
problems found during development

Importance of relationships

 Evaluation of the development process
« Better allocation of maintenance resources

 Improvement of testing efforts

Mockus et. al establish the relationship between the
operating systems platform (i.e. a proprietary OS, Linux,
and Windows) and field problems

Importance of relationships

+ Evaluation of the development process
« Better allocation of maintenance resources
 Improvement of testing efforts

 Categorization predictions and nhumber
predictions are based on relationships

How to evaluate relationships

1. Show high correlation between the
predictor and field defects

2. Show that the predictor is selected using
a model selection method

3. Show that the accuracy of predictions
improves with the predictor included in
the prediction model

Importance of categorizations

* Focus testing in the appropriate places

— Cost of fixing problems later is 10x times
more expensive

How to evaluate categorizations

» Type | error (false positive)

— An observation is classified as risky when the
observation is actually not risky

How to evaluate categorizations

* Type | error

» Type Il error (false negative)

— An observation is classified as not risky when
the observation is actually risky

How to evaluate categorizations

* Type | error
* Type Il error

 Overall rate of error
— Either type | or type Il error

Trade-offs between
type | and type Il error

¢ Reducing false negatives is usually more
important
— Main objective of classification is to focus resources

on risky modules to prevent field problems (Jones et.
al.)

« Resources are limited so high type | errors and
overall errors are also not desirable
— The costs of misclassification need to be considered

in each setting to select an optimal balance
(Khoshgoftaar et. al.)

Importance of a numerical output

* Allocate the appropriate amount of
maintenance resources

— Not having sufficient resources may delay
fixing field problems, which results in reduced
customer satisfaction (Chulani et. al.)

— Allocating too many maintenance resources
hinders other efforts (e.g. development)

Importance of a numerical output

* Allocate the appropriate amount of
maintenance resources

* Plus all the benefits of a categorization
and a relationship

How to evaluate a numerical output

» The absolute average error (AAE) and its
standard deviation

—How much a typical prediction will be off by on
average

How to evaluate a numerical output

The absolute average error (AAE) and its
standard deviation

» The average relative error (ARE) and its
standard deviation

—The AAE can be misleading when the
predicted number of field problems differs
significant between observations

— Relative to the actual number of field
problems, how much a typical prediction will
be off by on average

Lesson objectives

@ Why predict field defects?
@ When to use time based models?
@ When to use metrics based models?

* What are the component of metrics based
models?

@What predictors to use?
gWhat can | predict?
— How do | predict?

The idea behind modeling methods

* Build models using historical information
on the predictors and the observed field
defects

* Predicts for a new observation given
predictors’ values

10

Level 1 modeling techniques Example: the trees technique

* Linear modeling (logistic regression) « Creating partitions based on predictor
o Trees value that minimizes the error in
o . classifications within partitions
¢ Discriminant analysis
» Repeat process until

— Error within each partition is below some limit

— Number of observations within each partition

¢ Rules
¢ Neural networks

+ Clustering is below some limit
* Sets + The observations within each partition
« Linear programming determine the class of the partition

« Heuristics or any level 2 method with heuristics

Example description Example training set
* Predictor A has three values: Value of Predictor A | Value of Predictor B Clparsosb?efr:]hsenf]ieetl:::c
-1,2,3 1 1 0
. 1 2 0
* Predictor B has two values: 1 1 0
-1,2 1 2 0
' 2 1 1
* The field problem metric has two classes 2 1 1
(values): 3 1 0
3 2 0
—1 (at least 1 field problem), 0 (no field 3 1 0
problems) 3 2 1
Example stopping criteria Example iteration 1
. . Value of | Value of C|a5§ of
* The measure of error is: * Predictor A <=1 Predictor | Predictor ptquoebflleerlr?s
-y 3 o dion Vi - ¥ — error in partition 1 A B metric
partitions < all observations in partition Vi yl (A<=1) (0 +0+0+ 0) 1 1 0
» § = mean of classifications in the partition =0 1 2 0
.. . .. 1 1 0
e The minimum error in partition: a 2 3
-0 2 1 1
2 1 1
* The minimum number of observation in 3 1 0
partition: 3 2 0
3 1 0
-2 3 2 1

Example iteration 1

Example iteration 1

. Value of | Value of ClaS.S of
* Predictor A<=2 Predictor | Predictor the field
. " A B proble_ms
— error in partition 1 metric
(A<=2) (1/3 + 1/3+1/3 1 1 0
+ 1/3 + 2/3 + 2/3) 1 2 0
=2.667 1 1 0
1 2 0
2 1 1
2 1 1
3 1 0
3 2 0
3 1 0
3 2 1
Example iteration 1
Class of
+ Predictor B <=1 Predictor | Predictor | the field
. " A B proble_ms
— error in partition 1 metric
(B<=1) (1/3 + 1/3 +1/3 1 1 0
+1/3+2/3+2/3)= 1 2 0
2.667 1 1 0
1 2 0
2 1 1
2 1 1
3 1 0
3 2 0
3 1 0
3 2 1

. Value of | Value of ClaS.S of
* Predictor A <=1 Predictor | Predictor the field
. . A B proble_ms
— error in partition 1 metric
(A<=1)(0+0+0+0) 1 1 0
=0 1 2 0
— error in partition 2 1 1 0
(A>1) 1/2 + 1/2 +1/2 + 1 2 0
1/2+112+1/2)=3 2 1 1
« total error =3 i 0 L
3 1 0
3 2 0
3 1 0
3 2 1
Example iteration 1
Class of
» Predictor A<=2 predictor | Predicior | (e eld
. . A B proble_ms
— error in partition 1 metric
(A<=2) (1/13 + 1/3+1/3 1 1 0
+1/3+ 2/3 + 2/3) 1 2 0
=2.667 1 1 0
— error in partition 2 1 2 0
(A>2) (1/4 + 1/4 +1/4 2 1 1
+3/4) =1.5 2 1 1
- total error = 4.167 3 g g
3 2 0
3 1 0
3 2 1
Example iteration 1
Class of
* Predictor B <=1 F\‘/ril(ljiitoofr F\‘/ril(ljiitoofr the field
. . A B proble_ms
— error in partition 1 metric
(B<=1) (1/3 + 1/3 +1/3 1 1 0
+1/3+2/3+2/3)= 1 2 0
2.667 1 1 0
— error in partition 2 1 2 0
(B>1) (1/4 + 1/4 +1/4 2 1 1
+3/4) =1.5 2 1 1
- total error = 4.167 s 1 0
3 2 0
3 1 0
3 2 1

Example iteration 1

« Based on error, partition using A<=1

<=1

4 obs, error=0

>1

6 obs, error=3

| Recall stopping criteria is error = 0 or obs <=2 |

12

Example iteration 2

Class of
. Value of | Value of the field

* Predictor A <=2 Predictor | Predictor | \'¢ ¢
problems

A B

metric

— error in partition 1
(A<=2) (0+0)=0

WIW W wWiNN

N[RN[R P[P
rlolo|lo|r|r

Example iteration 3

A
wt \1
e L a1
4 obs, error =0 <=2 >2
[B
2 obs, error=0 <=1 X1
B
2 obs, error =0 2obs, error=.5

Example: the trees technique

 To predict, an observation is sent through
the tree until it reaches a leaf

 Class of the leaf (i.e. partition) is taken to
be the predicted value

Example prediction

e Example: A=3,B=1

L~ |
<=1 >1
0 [a1
4 obs, error=0 <=2 &
(I L=]
2obs, error =0 =1 -
e] s
2obs, error = 0 2 obs, error = .5

Example prediction

e Example: A=3,B=1
« Classification = 0 (not risky)

g g

4 obs, error=0 <=2 >2
B

2obs, error =0

<=1 >1
e] s
2obs, error=0 2obs, error=25

Example prediction

¢ Example: A=2,B=2

L
<=1 \1
0 (=
4 obs, error =0 <=2 >2
O Ere]
2 obs, error=0 <=1 1
o] [
2 obs, error=0 2o0bs, error=.5

13

Example prediction

¢ Example: A=2,B=2
« Classification =1 (risky)

- \:,

D A]

4 obs, error =0 <=2 >2

2obs, error =0 <=1 1

o] [
2 obs, error=0 2o0bs, error=.5

Example prediction

« Example A=3, B=2
¢ Classification =.5 ?

You have to make a
trade off here, but it will
be an informed
decision

2obs, error=0 2o0bs, error=.5

Level 2 modeling techniques

* Linear modeling (linear regression and
negative binomial regression)

* Non-linear regression
» Trees

» Neural networks

Lesson objectives

@ Why predict field defects?
@ When to use time based models?
@ When to use metrics based models?

* What are the component of metrics based
models?
@wvhat predictors to use?
@What can | predict?
gfHow do | predict?

Recap

« Field defect predictions can lower the costs of
field defects by:

— Guiding testing

— Improving maintenance resource allocation
— Guiding process improvement

— Adjusting deployment

— Enabling software insurance

« Metrics based models are better when
deployment and testing environment differ or
when there is insufficient resources to test all
configurations

Recap

* Metrics based models use:
— Product metrics (most often)
— Development metrics (next most often)

— Deployment and usage metrics
(infrequently)

— Software and hardware configurations
metrics (infrequently)

« Trees is the most widely used method to
produce a level 1 output

14

Partial ordering of methods using
accuracy

Neural networks

Sets
// \\
N/ \ Trees
Case based \‘ ‘/ \. Fuzzy rules with principle .
R X Discriminant analysis component analysis
Linear modeling P 7
o . with principle / \
{linear regression) /
component analysis | / \
/ AN
/ \4 b
Clustering Linear programming D'“”"“”"“‘ Heuristics Trees
analysis

Drawback of using accuracy as the
only criterion of evaluation

» Sometimes accurate predictions is not the
objective:

— Planning for improvement

An explicable model

RLSTOT

4034 obs <=421.0

462 obs 145

| s | [52

16 obs 136 obs

A less explicable model

Metric CompoTent Compo;ent Compo;ent Field problems =
RLSTOT 901 359 137 520

NL 880 370 12 +1.233 (ISCHG)
PCSTOT | 719 545 316 | *-541 (ISNEW)
NELTOT | .683 593 33 | +.577 (Component 3)

TCT 359 864 216 +.368 (Component 1)

ucT 426 830 245 +.338 (Component 2)

VG 597 724 309

IFTH 599 681 357

NDI 77 265 939

15

