Project Presentation

“Generic Python API for Robot Control”

Group 6
Thomas Nourse
Greg Hoch
December 12, 2005

Agenda

- **Project Overview**
 - Problem
 - Goals
 - Product
 - Demo

- **Results and Lessons**
 - Results
 - Changes
 - Evaluation
 - Lessons Learned
Project Overview

The Problem

- Lack of code portability between robotic platforms.
 - Platforms have different interfaces to use the same hardware.
 - Platforms have different hardware with similar capabilities.
 - Range Finders (Laser vs. Sonar)
 - Drive Systems (Differential vs. Holonomic)
 - Communication (Serial vs. WiFi)

Project Overview

Goals

- “Create a high level Python API which will run the same robot behaviors on multiple robots.”
- Portability
- Extensibility
- Simplicity
Project Overview

Goals - Robotic Landscape

Project Overview

Product

- Designed and implemented both the API and an example implementation on the Nomad Scout.
 - API: Hides the robotic platform from user if he/she desires.
 - Implementation: Bridges the gap between the API and the individual platform implementation
- Documented with Doxygen the API and process necessary for extension.
Project Overview
Product – API

- Divided into sensors, actuators and configuration.
- Single interface (RobotAPI) provides access to all robotic functionality.
 - Initializes from an easily interchangeable init file.
- Programmatic way to discover robot type and general sensor / actuator capabilities.

Project Overview
Product – Implementation

- Nomad scout as our test platform.
 - Useful for testing API conceptually.
 - Integral in documentation by example.
- Implemented serial interface for basic communication with the robot.
- Connected this interface with the API.
- Functional test using a virtual null modem cable testing output against traces from the original C interface.
Project Overview

Product – Built in Extensibility

- Designed specifically to add new robots and robot functionality.
 - Robots split among directories / packages, easily interchangeable.
 - Extensible methods for determining the current type of robot being used.
- Designed with flexibility to ease addition of new layers such as:
 - GUI Debugging Interface
 - Teleoperation Interface

Project Overview

Demo – Basic Movement

Command: “python nomad_functional.py”
An example run of a qualitative functional test.
Project Overview

Demo – Dancing!

```python
for i in range(3):
    self._rap.getVelocityActuators()[0].setVelocity(100, -100) == 1
    time.sleep(3)

self._rap.getVelocityActuators()[0].setVelocity(-100, 100) == 1
    time.sleep(3)

self._rap.getVelocityActuators()[0].setVelocity(150, -150) == 1
    time.sleep(3)

self._rap.getVelocityActuators()[0].setVelocity(-150, 150) == 1
    time.sleep(3)

self._rap.getVelocityActuators()[0].setVelocity(-200, 200) == 1
    time.sleep(3)

self._rap.getVelocityActuators()[0].setVelocity(200, -200) == 1
    time.sleep(3)

self._rap.getVelocityActuators()[0].setVelocity(250, -250) == 1
    time.sleep(3)

self._rap.getVelocityActuators()[0].setVelocity(-250, 250) == 1
    time.sleep(3)
```

Results and Lessons

Results – Orig. Picture of Success

- Follow XP and course practices
 - Meet all deliverable expectations
 - Pair programming
- Significant behavior on AIBO and ER1
- Client should use it within a year
- One additional device and one additional robot added within a year
- Client satisfied
Results and Lessons

Results – Pict. of Success Changes

- Project focus changed from the AIBO to the Nomad Scout
 - Complexity of the AIBO
 - Group familiarity with the Nomad Scout
- Client’s focus changed from the AIBO to the ER1

Results and Lessons

Results – Success?

- XP and course practices? **YES**
- Significant behavior on Nomad? **YES**
- Client use within a year? **TBD**
- Additional device/robot? **TBD**
- Client satisfied? **TBD**
- Get an A in this course? **WE HOPE SO**
Results and Lessons

Results – Metrics

![Software Engineering Metrics Graph]

Changes – Prototype Results

- Provided early image of the project
- Redirected project
 - Platform AIBO -> Nomad Scouts
 - Actuator API -> Sensor API specifically Range Finder
Results and Lessons

Changes – Low Time Estimation

- Experience in Computer Networks gave us better skill in estimating time requirements for network programming.
- Determined we had underestimated our time needed for teleoperation and network communication.
- Dropped priority of involved stories as a result.

Results and Lessons

Changes – Team Member Dropped

- Left group with two members.
- Caused drop in available time resulting in lower prioritization of more requirements.
 - Debugging framework
 - Logging driver
 - Information GUI
- Focused on achieving picture of success when slimming down project.
Results and Lessons

Strengths

- Loss of a Partner
 - Required replanning the project to bring it within scope of a two person group
- Consistently meeting deadlines
- Keeping client informed
 - Weekly status meetings
 - Website

Results and Lessons

Strengths

- We have been partners on previous projects
 - Work well together
 - Easy to recognize and capitalize on our strengths as developers
- Centralized Project Wiki
 - Kept team members and clients universally updated
 - Acted as a repository for our course documents
 - Kept meeting minutes in case someone was absent or we needed to refer to what was said
 - Common source for resource material
Results and Lessons

Weaknesses

☐ We have been partners on previous projects
 ■ Easy to fall into old habits, which did not fit within the XP framework for development.

☐ Time
 ■ Difficult to consistently find common time to work together.

Results and Lessons

Weaknesses

☐ Pair Programming
 ■ Did not schedule time for pair programming
 ■ Hard to find overlapping free time that was not taken up with class assignments

☐ Stories
 ■ Difficulty understanding scope of stories
 ■ Difficulty forming comprehensive stories for project
Results and Lessons

Lessons Learned

- Nomad Serial Interface
 - Written without originally testing on the robot
 - Unit and functional tests simulated communication and checked bounds
 - Used traces from C-API communications
 - Worked the first time!
- Lesson: XP Works!

Results and Lessons

Lessons Learned

- Regular review of results and revision of requirements
 - Prototype – new direction
 - Learning more information – revise story priority
 - Loosing a partner – dropped stories
- Consistent meetings
- Robots are hard!
Conclusions