Requirements Modeling

15-413: Introduction to Software Engineering
Jonathan Aldrich

The Value of Modeling

• Structure
 • Identify missing information

• Precision
 • Conflict identification
 • Documentation for implementers
 • Often achieved through formal notation

• Form
 • Often graphical
 • Aids in communicating relationships

Why Model?

Student answers
• Catch mistakes early
• Flesh out general design to details
• Find problems or inconsistencies
• Help with estimations
• Experience with problem or design
• Allows you to test against hardware that doesn’t exist

Modeling Goals

• Modeling should be targeted

• When to use models?
 • Aid in communication
 • Increase precision
 • Manage uncertainty

• What models to use?
 • Use models that are easy to understand
 • Use models with semantics
 • Use a model that captures something you don’t understand very well

Analytic and Analogic Models

• This is why object-oriented designers usually do not spend their time in academic discussions of methods to find the objects: in the physical or abstract reality being modeled, the objects are just there for the picking!
 • Bertrand Meyer

Analytic and Analogic Models

• In summer lots of birds will start to sing around sunrise... Does the sun send a message to all the birds individually? If so, in what order? ... These are silly questions, because they are questions about software execution, not the sunrise.
 • Steve Cook and John Daniels
Analytic and Analogic Models

- **Analytic (descriptive) model**
 - A (possibly formal) description of how a system works
 - Economic models with differential equations
 - Finite state machine model showing how software reacts to stimulus
 - Limitations: may not capture all behavior of the target system accurately

- **Analogic (representative) model**
 - A (possibly formal) representation of a system
 - Maps of a battlefield in a war room, with toy planes and tanks positioned
 - Records or Objects representing customers in a corporate database
 - Limitations: the world has properties not captured in the model, and vice versa

 Take home point: Models can be useful, but they are not the same as the thing they describe or represent

Kinds of Requirements Models

- **Goal models**
 - Breaking down complex requirements into simpler ones
 - Understanding the relationship between the machine and parts of the world

- **Scenarios**
 - Use cases
 - Sequence diagrams

- **Information models**
 - Class diagrams
 - Note: although designed to capture OO classes in your program, they may be used to capture more general information domains

Motivation for Goal Modeling

- **Limitations of Scenarios**
 - Inherently partial
 - What should the system do in scenarios not explicitly enumerated?
 - Combinatorial explosion of scenarios
 - Can’t list them all
 - Forces premature commitment to machine/world boundary
 - Scenario picks some boundary
 - May not be the right one
 - Leave required properties implicit
 - Says what happens in this case, but leaves open the question in general

Goal Modeling

- **Goal**
 - An objective the system should achieve through the cooperation of the software and its environment
 - A problem in the world that may not be entirely under software control

- **Requirement**
 - Relations between objects in the environment that are monitored and controlled by the software
 - A problem in the world that is under software control

- **Specification**
 - Relations between input and output of the software
 - The interface of the world and machine

 The purpose of goal modeling is to refine abstract goals into concrete requirements, and design a specification that, together with the properties of the world, will fulfill the requirement

Relationships Among Terms

- **R \&\& As \&\& D = G**
 - The goal G is achieved as a consequence of the requirements R, the assumptions As about actors in the environment, and the properties of the domain D

- **S \&\& Ac \&\& D = R**
 - The requirements R are achieved as a consequence of the specification S, the accuracy of the machine’s knowledge about its environment, and the properties of the domain D

Goal Modeling

- **Goal**
 - Say what should be true of domains in the world
 - Relates two domains: an observed domain and a controlled domain

- **Assumptions**
 - Like a goal, says what should be true of domains in the world
 - Carried out by some actor that is NOT the machine

- **Domains**
 - Machine domains (the machine)
 - Designed domains (interfaces, data formats)
 - Given domains (the world)

- **Goal Refinement**
 - AND-refinement: satisfying all subgoals will satisfy goal
Goal Modeling: Simple Example

- Maintain room temperature according to user preference
- Determine target temperature from user
- Measure current room temperature
- Adjust radiator value
- We use central heating

Legend:
- Client
- Room
- Radiator
- Gate

Extended Example: BART

Extended Example: BART

Building a Domain Model

- Goal Refinement
 - AND-refinement: satisfying all subgoals will satisfy goal
 - OR-refinement: satisfying one subgoal will satisfy goal
- Conflict link
 - Satisfaction of one goal may preclude satisfying the other
- Responsibility link
 - States that an agent can commit to act in such a way that it ensures the satisfaction of the goal

Building a Domain Model

- Goal Maintain[TrainSegment(speedLimit)]
 - InformalDef: A train should stay below the maximum speed it can handle.

FormalDef: ∀ t, s: Train, s: TrackSegment
 On(t, s) = Speed ≤ s.speedLimit

- Goal Maintain[TrainAccess(speedLimit)]
 - InformalDef: A train should stay within the access limit.

FormalDef: ∀ t, s: Train, s: TrackSegment
 On(t, s) = Speed ≤ s.speedLimit

Building a Domain Model

- Goal Maintain[TrainLocation(ofTrain, ofLocation)]: A train should be located at a specific location.
- Goal Maintain[TrainAccess(speedLimit)]: A train should access a specific speed limit.

Abstract to Higher-Level Goals by Asking Why?

- If it enters a closed gate, it could get switched onto the wrong track
- Achieving this requires an additional subgoal!
 - Gate closed when switch is in wrong position
Refine to Concrete Goals by Asking How?

Goal Modeling Takeaways

- Refine abstract goal into precise machine specification. Steps:
 - Refine goals to make them concrete
 - State goals precisely
 - Analyze goals for conflict
 - Develop domain models from goals
 - Assign subgoals to machines
 - Derive machine interfaces from goals
 - Identify operations from interfaces
 - Specify operations to ensure goals

Operationalization of Goals

- Specify operations so that the goal will be achieved
- Operation SendCommandMessage
 - Trigger: No message sent in time window

Formal Analysis of Goal Model

- Automated tool support
 - Detect goal conflicts
 - Prove that subgoals imply goal
- Relies on formal specification of goals
 - Hard to do at top level
 - E.g., safe train operation
 - Expensive
 - Worth it for safety-critical applications

Questions?