Truffle/Graal.
From Interpreters to Optimizing Compilers

via Partial Evaluation

Jonathan Aldrich
17-396/17-696/17-960: Language Design and Prototyping

Carnegie Mellon University

Many slides from Oracle’s PLLDI 2016 and 2017 tutorials on Truffle/Graal—marked where they

OcCcur.

Interpreters for Prototyping

* Writing optimizing compilers is hard
* Many complex optimization algorithms
* Relies on knowledge of architecture and performance characteristics

e See 15-411/15-611, 15-745

* So when we prototype with interpreters
* Easy to write
* Easy to change when the language changes

* Unfortunately, interpreters are slow
* Especially if you make them simple!
* Could be 2 orders of magnitude slower than an optimizing compiler
* Is there any way to make an interpreter faster?

From Interpreter to Compiler

 (G1ven

* An interpreter for guest language G written in host language H
* “if you see an add expression, add the two arguments”

* A program in language G
* “add(add(x,y), 2)”
* What if we “run” the interpreter on the program?
* Whenever we get to actual input data, we’ll stop evaluating there (but keep going
elsewhere)
* “add(add(x, y), 2)” =2 xty+z

* We have essentially “compiled” the language

* This 1s called Partial Evaluation
* When applied in the context of interpreters and programs, it’s called the First Futamura
Projection (after Futamura, who proposed 1t in 1971)

Example: Partial Evaluation

class ExampleNode { // parameter this in rsi
@CompilationFinal boolean flag; normal compilation cmpb [rsi + 16], ©
of method foo () jz L1
int foo() { > mov eax, 42
if (this.flag) { ret
return 42; L1: mov eax, -1
} else { ret
return -1;
}
}

mov rax, 42

Object value of this / ret
ExampleNode
flag: true partial evaluation

of method foo()
with known parameter this Memory access is eliminated and condition is

constant folded during partial evaluation

@CompilationFinal field is treated like a final
field during partial evaluation

5 o
OR Cl-e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 21

Introduction to Partial Evaluation

abstract class Node {
abstract int execute(int[] args);

}

class AddNode extends Node {
final Node left, right;

AddNode(Node left, Node right) {

this.left = right; this.right
}

int execute(int args[]) {

class Arg extends Node {
final int index;
Arg(int i) {this.index = i;}

int execute(int[] args) {
return args[index];

}
right;

int interpret(Node node, int[] args) {
return node.execute(args);

return left.execute(args) + right.execute(args); | }

¥

// Sample program (arg[@] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(@), new Arg(1l)), new Arg(2));

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

93

Introduction to Partial Evaluation

// Sample program (arg[@] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(®), new Arg(1l)), new Arg(2));

int interpret(Node node, int[] args) {
return node.execute(args);
}

partiallyEvaluate(interpret, sample)

/
int interpretSample(int[] args) { !
return sample.execute(args); <«
}

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

94

Introduction to Partial Evaluation

// Sample program (arg[@] + arg[1]) + arg[2]

sample = new Add(new Add(new Arg(@), new Arg(1l)), new Arg(2));

int interpretSample(int[] args) {
. return sample.execute(args);
/
/ } b 4
I /’
| /
\\ int interpretSample(int[] args) {)
u return sample.left.execute(args) / ,
+ sample.right.execute(args); / J
} ! !
// | \
/ \
{ int interpretSample(int[] args) {
‘\ return sample.left.left.execute(args)
Y + sample.left.right.execute(args)

+ args[sample.right.index];

ORACLE

int interpretSample(int[] args) {
return args[sample.left.left.index]
+ args[sample.left.right.index]
+ args[sample.right.index];

int interpretSample(int[] args) {
return args[0]
+ args[1]
+ args[2];

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

95

Challenge: how to get high-performance code? (1)

 With naive Futamura projection / partial evaluation, code size explodes

* Real implementation of “+”” in a dynamic language 1s something like:
it (argl instanceof Int && arg2 instanceof Int)
return argl-+arg?;
else if (argl instanceof String | | arg2 instanceof String)
return strcat(toString(argl), toString(arg?)
else

throw addError

* This is a lot of code to generate every time we see a + operator

Challenge: how to get high-performance code? (2)

* Alternative: don’t partially evaluate inside complex operations
add(add(x, y), z)
is transformed to

let t = doAdd(x, y) in
doAdd(z)

* But now we lose many of the benefits of partial evaluation
* We want add to turn into ~2 instructions, not an expensive function call.
* Plus we can’t do further optimization easily — e.g. constant-fold when x and y are
constants.

Challenge: how to get high-performance code? (3)

* Assume y 1s the constant 1, z is an Int, and x is probably an Int

* What we want 1s to translate “add(add(x, y), z)” into:

/| guess that x is an Int, but check to make sure
it (I(x instanceof Int)) goto do_it_slowly
x+1+z

* We can figure out the y is the constant 1 with partial evaluation
* How do we know that z is definitely an Int?

* How can we guess that x 1s probably an Int?

Profile-Based Optimizing Interpreters

* Run each function in the Guest language a few times

* Gather profile information for each node in the AST
e (Call nodes: what functions are called?
* Operation nodes: what are the datatypes?

* Specialize the interpreter

* Replace unspecialized nodes with specialized ones
* E.g. replace unspecializeAdd() with intAdd()
* Each specialized node has a guard

e 1ntAdd(): check that my arguments are ints
* If the guard fails, intAdd() knows how to replace itself with genericAdd\()

e Partially evaluate the specialization
* Generates optimized code
* This 1s speculative — must include a check, and a hook to jump back to the interpreter to de-specialize

The Truffle Idea

ORACLE

—— -

Collect

profiling
feedback

’_____——-__~~
- —

.’ Optimize using partial
evaluation assuming stable

profiling feedback

Deoptimize if profiling
feedback is invalid and

®_ X reprofile .

-
i T

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

~
N

N\

|

90

Stability

2 100%

S

g 0

S 60% /

|

O

S 40%

= /)Z —»¢— JavaScript
= 20% =— Ruby
S —+—R

S 0%

15-19
20-29
30-59

Number of function invocations

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Example: Transfer to Interpreter

class ExampleNode {
int foo(boolean flag) { o ter fl i di
if (flag) { compilation of method foo() ééppagzri"e ;P A
)
return 42; > jz L1
} else { mov eax, 42
throw new IllegalArgumentException(ret
"flag: " + flag); L1: ...
} ¥ // lots of code here
class ExampleNode { // parameter flag in edi
int foo(boolean flag) { o die el @
if (flag) { compilation of method foo() P T
) Jz
ST A2 > mov eax, 42
} else { e
t;ansferToi;;erp;:ter(); i . L1: mov [rsp + 24], edi
throw: new e%il rguTentf§cepFlon(call transferToInterpreter
) ag: + flag); // no more code, this point is unreachable
}

transferToInterpreter() is acall into the VM

runtime that does not return to its caller,
because execution continues in the interpreter

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 22

Example: Partial Evaluation and Transfer to Interpreter

class ExampleNode { Expected behavior: method negate() only
@CompilationFinal boolean minvalueSeen; partial evaluation called with allowed values
P g of method negate()
int negate(int value) { with known parameter this . S
if (value == Integer.MIN_VALUE) { > // parameter value in eax
if (!minvalueSeen) { cmp eax, @x80000000
transferToInterpreterAndInvalidate(); ExampleNode jz L1
minValueSeen = true: minValueSeen: false neg eax
J
ret
} .
throw new ArithmeticException() L1: mov [rsp + 24], eax .
} call transferToInterpreterAndInvalidate
// no more code, this point is unreachable

return -value;

}
¥ if compiled code is invoked with minimum int value:

1) transfer back to the interpreter
2) invalidate the compiled code

// parameter value in eax

cmp eax, Ox80000000 M

jz L1 ExampleNode

neg eax < minValueSeen: true
ret second

L1: partial evaluation

// lots of code here to throw exception

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 23

Assumptions

Create an assumption:

Assumptions allow non-local speculation

Assumption assumption = Truffle.getRuntime().createAssumption();

(across multiple compiled methods)

Check an assumption:
void foo() {

Checking an assumption does not need

if (assumption.isvalid()) { machine code, it really is a "free lunch"
// Fast-path code that is only valid if assumption is true.

} else {
// Perform node specialization, or other slow-path code to respond to change.

}

}

Invalidate an assumption:

When an assumption is invalidate, all compiled

tion.invalidate(); i . .
assumption.invalidate() methods that checked it are invalidated

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 27

Example: Assumptions

class ExampleNode {

int add(int left, int right) {
if (addNotRedefined.isValid()) {
return left + right;

public static final Assumption addNotRedefined = Truffle.getRuntime().createAssumption();

Expected behavior: user does not redefine "+" for

integer values

} else {
// Complicated code to call user-defined add function
}
}
}
void redefineFunction(String name, ...) {

if (name.equals("+")) {
addNotRedefined.invalidate()) {

This is not a synthetic example: Ruby allows

ORACLE’

redefinition of all operators on all types, including the
standard numeric types

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 28

Specialization

value instanceof value instanceof value instanceof
{} {Integer} {Integer, String}

instanceof
Integer

instanceof
Integer

instanceof
String

Truffle provides a DSL for this use case, see
later slides that introduce @Specialization

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Profile, Assumption, or Specialization?

* Use profiles where local, monomorphic speculation is sufficient
— Transfer to interpreter is triggered by the compiled method itself
— Recompilation does not speculate again

* Use assumptions for non-local speculation
— Transfer to interpreter is triggered from outside of a compiled method
— Recompilation often speculates on a new assumption (or does not speculate again)

* Use specializations for local speculations where polymorphism is required
— Transfer to interpreter is triggered by the compiled method method
— Interpreter adds a new specialization
— Recompilation speculates again, but with more allowed cases

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

30

A Simple Language

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

31

SL: A Simple Language

* Language to demonstrate and showcase features of Truffle
— Simple and clean implementation
— Not the language for your next implementation project

* Language highlights

. About 2.5k lines of code
_ Dynamically typed About25klinesofcode |

— Strongly typed
* No automatic type conversions
— Arbitrary precision integer numbers
— First class functions
— Dynamic function redefinition

— Objects are key-value stores
* Key and value can have any type, but typically the key is a String

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

32

Types

Number Arbitrary precision integer numbers long for values that fit within 64 bits
java.lang.BigInteger on overflow

Boolean true, false boolean

String Unicode characters java.lang.String
Function Reference to a function SLFunction

Object key-value store DynamicObject
Null null SLNull.SINGLETON

Null is its own type; could also be called "Undefined"

Best Practice: Use Java primitive types as much as possible to increase performance

Best Practice: Do not use the Java null value for the guest language null value

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 33

Syntax

C-like syntax for control flow
— 1if,while, break, continue, return

Operators

— +,-, %, [, ==, 15,5, <=, >, 5=, &&, ||, ()

— +is defined on String, performs String concatenation
— && and || have short-circuit semantics

— . or[] for property access

Literals
— Number, String, Function

Builtin functions

— println, readIn: Standard 1/0

— nanoTime: to allow time measurements

— defineFunction: dynamic function redefinition

— stacktrace, helloEqualsWorld: stack walking and stack frame manipulation

— new: Allocate a new object without properties

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

34

Parsing

e Scanner and parser generated from grammar
— Using Coco/R
— Available from http://ssw.jku.at/coco/

* Refer to Coco/R documentation for details

— This is not a tutorial about parsing

* Building a Truffle AST from a parse tree is usually simple

Best Practice: Use your favorite parser generator, or an existing parser for your language

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

35

SL Examples

Hello World: Simple loop: First class functions:
function main() { function main() { function add(a, b) { return a + b;
println("Hello World!"); i=09; function sub(a, b) { return a - b;
} sum = 9;
pi2E O L Sl e — while (i <= 10000) { function foo(f) {
Strings: sum = sum + ij; println(f(40, 2));
i=1+1; }
function f(a, b) { }
return a + " < " + b+ ": " + (a < b); return sum; function main() {
} } foo(add);
50005000 . foo(sub);
function main() { } 42
println(f(2, 4)); 38 —
println(f(2, "4")); Function definition and redefinition:
} 2 < 4: true - -
Type error || function foo() { println(f(40, 2)); }
Objects: function main() {
function main() { gef%;eFunction("function f(a, b) { return a + b; }");
00();

obj = new();
obj.prop = "Hello World!"; . . " . "
println(obj["pr" + "op"1); defineFunction("function f(a, b) { return a - b; }");

foo();
} Hello World! I Y g;

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 36

Getting Started

* Clone repository

— git clone https://github.com/graalvm/simplelanguage Version used in this tutorial: tag PLDI_2016

Download Graal VM Development Kit Version used in this tutorial: Graal VM 0.12
— http://www.oracle.com/technetwork/oracle-labs/program-languages/downloads

— Unpack the downloaded graalvm_*.tar.gz into simplelanguage/graalvm

— Verify that launcher exists and is executable: simplelanguage/graalvm/bin/java

Build
— mvn package

Run example program
— ./sl tests/HelloWorld.sl

IDE Support
— Import the Maven project into your favorite IDE
— Instructions for Eclipse, NetBeans, IntelliJ are in README.md

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Simple Tree Nodes

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

38

AST Interpreters

e AST = Abstract Syntax Tree

— The tree produced by a parser of a high-level language compiler

* Every node can be executed
— For our purposes, we implement nodes as a class hierarchy
— Abstract execute method defined in Node base class
— Execute overwritten in every subclass

e Children of an AST node produce input operand values

— Example: AddNode to perform addition has two children: 1eft and right
* AddNode.execute first calls left.execute and right.execute to compute the operand values
* Then peforms the addition and returns the result

— Example: IfNode has three children: condition, thenBranch, elseBranch
 IfNode.execute first calls condition.execute to compute the condition value
* Based on the condition value, it either calls thenBranch.execute or elseBranch.execute (but never both of them)
* Textbook summary
— Execution in an AST interpreter is slow (virtual call for every executed node)
— But, easy to write and reason about; portable

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 39

Truffle Nodes and Trees

* Class Node: base class of all Truffle tree nodes
— Management of parent and children
— Replacement of this node with a (new) node
— Copy a node
— No execute() methods: define your own in subclasses

* Class NodeUtil provides useful utility methods

public abstract class Node implements Cloneable {

public final Node getParent() { ... }

public final Iterable<Node> getChildren() { ... }

public final <T extends Node> T replace(T newNode) { ... }
public Node copy() { ... }

public SourceSection getSourceSection();

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

40

If Statement

public final class SLIfNode extends SLStatementNode {
@Child private SLExpressionNode conditionNode;
@Child private SLStatementNode thenPartNode;
@Child private SLStatementNode elsePartNode;

this.conditionNode = conditionNode;
this.thenPartNode = thenPartNode;
this.elsePartNode = elsePartNode;

}

public void executeVoid(VirtualFrame frame) {
if (conditionNode.executeBoolean(frame)) {
thenPartNode.executeVoid(frame);
} else {
elsePartNode.executeVoid(frame);
}
}
}

public SLIfNode(SLExpressionNode conditionNode, SLStatementNode thenPartNode, SLStatementNode elsePartNode) {

Rule: A field for a child node must be annotated with @Child and must not be final

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

41

If Statement with Profiling

public final class SLIfNode extends SLStatementNode {
@Child private SLExpressionNode conditionNode;
@Child private SLStatementNode thenPartNode;
@Child private SLStatementNode elsePartNode;

this.conditionNode = conditionNode;
this.thenPartNode thenPartNode;
this.elsePartNode elsePartNode;

}

public void executeVoid(VirtualFrame frame) {

thenPartNode.executeVoid(frame);
} else {
elsePartNode.executeVoid(frame);
}
}
}

private final ConditionProfile condition = ConditionProfile.createCountingProfile();

public SLIfNode(SLExpressionNode conditionNode, SLStatementNode thenPartNode, SLStatementNode elsePartNode) {

if (condition.profile(conditionNode.executeBoolean(frame))) {

Best practice: Profiling in the interpreter allows the

ORACLE

compiler to generate better code

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 42

Blocks

public final class SLBlockNode extends SLStatementNode {
@Children private final SLStatementNode[] bodyNodes;

public SLBlockNode(SLStatementNode[] bodyNodes) {
this.bodyNodes = bodyNodes;
}

@ExplodelLoop
public void executeVoid(VirtualFrame frame) {
for (SLStatementNode statement : bodyNodes) {
statement.executeVoid(frame);
}
}
}

Rule: A field for multiple child nodes must be annotated with @Children and a final array

Rule: The iteration of the children must be annotated with @ExplodeLoop

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Return Statement: Inter-Node Control Flow

@Child private SLExpressionNode valueNode;

public void executeVoid(VirtualFrame frame) {

}
}

public final class SLReturnNode extends SLStatementNode {

throw new SLReturnException(valueNode.executeGeneric(frame));

@Child private SLStatementNode bodyNode;

public Object executeGeneric(VirtualFrame frame) {
try {
bodyNode.executeVoid(frame);
} catch (SLReturnException ex) {
return ex.getResult();
}
return SLNull.SINGLETON;

public final class SLFunctionBodyNode extends SLExpressionNode {

public final class SLReturnException
extends ControlFlowException {

private final Object result;

Best practice: Use Java exceptions for inter-node control flow

Rule: Exceptions used to model control flow extend ControlFlowException

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

44

Exceptions for Inter-Node Control Flow

ORACLE’

SLFunctionBodyNode

¢ bodyNode

SLBlockNode

Z

SLReturnNode

valueNode

«— <«

try {
bodyNode.executeVoid(frame);

} catch (SLReturnException ex) {
return ex.getResult();

¥
SLReturnException Inter-Node
value: ... Control Flow

Object value = valueNode.executeGeneric(frame);
throw new SLReturnException(value);

Exception unwinds all the interpreter stack frames of

the method (loops, conditions, blocks, ...)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

45

Truffle DSL for Specializations

ORACLE’

Addition

@NodeChildren({@NodeChild("leftNode"), @NodeChild("rightNode")})
public abstract class SLBinaryNode extends SLExpressionNode { }

public abstract class SLAddNode extends SLBinaryNode {

@Specialization(rewriteOn = ArithmeticException.class)

protected final long add(long left, long right) {
return ExactMath.addExact(left, right);

}

@Specialization

protected final BigInteger add(BigInteger left, BigInteger right) {
return left.add(right);

}

@Specialization(guards = "isString(left, right)")

protected final String add(Object left, Object right) {
return left.toString() + right.toString();

}

protected final boolean isString(Object a, Object b) {
return a instanceof String || b instanceof String;
¥
¥

The order of the @Specialization

methods is important: the first matching
specialization is selected

For all other specializations, guards are

implicit based on method signature

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

a7

Code Generated by Truffle DSL (1)

Generated code with factory method:

@GeneratedBy(SLAddNode.class)
public final class SLAddNodeGen extends SLAddNode {

public static SLAddNode create(SLExpressionNode leftNode, SLExpressionNode rightNode) { ... }

The parser uses the factory to create a node

ORACLE’

that is initially in the uninitialized state

The generated code performs all the transitions
between specialization states

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 48

Code Generated by Truffle DSL (2)

@GeneratedBy(methodName = "add(long, long)", value = SLAddNode.class)
private static final class Add@Node_ extends BaseNode_ {
@Override

public long executeLong(VirtualFrame frameValue) throws UnexpectedResultException { The generated code can and will Change
long leftNodeValue_; at any time
try {
leftNodeValue_ = root.leftNode_.executelLong(frameValue);

} catch (UnexpectedResultException ex) {
Object rightNodeValue = executeRightNode_(frameValue);
return SLTypesGen.expectLong(getNext().execute_(frameValue, ex.getResult(), rightNodeValue));

}
long rightNodeValue_;
try {
rightNodeValue_ = root.rightNode_.executelLong(frameValue);

} catch (UnexpectedResultException ex) {
return SLTypesGen.expectLong(getNext().execute_(frameValue, leftNodeValue_ , ex.getResult()));
3
try {
return root.add(leftNodeValue_, rightNodeValue_);
} catch (ArithmeticException ex) {
root.excludeAddo_ = true;
return SLTypesGen.expectLong(remove("threw rewrite exception", frameValue, leftNodeValue_, rightNodeValue_));
b
3

@Override
public Object execute(VirtualFrame frameValue) {
try {
return executelLong(frameValue);
} catch (UnexpectedResultException ex) {
return ex.getResult();

}

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 49

Type System Definition in Truffle DSL

@TypeSystem({long.class, BigInteger.class, boolean.class,
String.class, SLFunction.class, SLNull.class})

public abstract class SLTypes {

}

@ImplicitCast . e

public BigInteger castBigInteger(long value) { Not shown in slide: Use @TypeCheck and
return BigInteger.valueOf(value); @TypeCast to customize type conversions

}

@TypeSystemReference(SLTypes.class)
public abstract class SLExpressionNode extends SLStatementNode {

public abstract Object executeGeneric(VirtualFrame frame);

public long executelLong(VirtualFrame frame) throws UnexpectedResultException {
return SLTypesGen.SLTYPES.expectLong(executeGeneric(frame));
}

public boolean executeBoolean(VirtualFrame frame) ...

}

SLTypesGen is a generated subclass

of SLTypes

Rule: One execute() method per type you want to specialize on, in addition to the abstract executeGeneric() method

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 50

UnexpectedResultException

* Type-specialized execute() methods have specialized return type
— Allows primitive return types, to avoid boxing
— Allows to use the result without type casts
— Speculation types are stable and the specialization fits

* But what to do when speculation was too optimistic?
— Need to return a value with a type more general than the return type
— Solution: return the value “boxed” in an UnexpectedResultException

* Exception handler performs node rewriting
— Exception is thrown only once, so no performance bottleneck

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

51

Truffle DSL Workflow

ORACLE

Java Annotations
(DSL Definition)
@ TUSGS
iterates
Java Code <annotations @

with Node Specifications

@ Tcompiles

@ calls

Java compiler
(Javac, Eclipse, ...)

Java Annotation Processor
(DSL Implementation)

@ igenerates

@ lgenerates

@ compiles Specialized Nodes

Executable

P Generated Java Code for

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

52

Frames and Local Variables

ORACLE’

Frame Layout

* In the interpreter, a frame is an object on the heap

— Allocated in the function prologue
— Passed around as parameter to execute() methods

* The compiler eliminates the allocation

— No object allocation and object access
— Guest language local variables have the same performance as Java local variables

 FrameDescriptor: describes the layout of a frame
— A mapping from identifiers (usually variable names) to typed slots
— Every slot has a unique index into the frame object
— Created and filled during parsing

* Frame
— Created for every invoked guest language function

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

54

Frame Management

* Truffle APl only exposes frame interfaces
— Implementation class depends on the optimizing system

* VirtualFrame
— What you usually use: automatically optimized by the compiler
— Must never be assigned to a field, or escape out of an interpreted function

* MaterializedFrame
— A frame that can be stored without restrictions
— Example: frame of a closure that needs to be passed to other function

* Allocation of frames
— Factory methods in the class TruffleRuntime

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

55

Frame Management

public interface Frame {
FrameDescriptor getFrameDescriptor();
Object[] getArguments();

boolean isType(FrameSlot slot);

Type getType(FrameSlot slot) throws FrameSlotTypeException;
void setType(FrameSlot slot, Type value);

Object getValue(FrameSlot slot);

MaterializedFrame materialize();

Frames support all Java primitive types, and Object

SL types String, SLFunction, and SLNull are stored as Object in the frame

Rule: Never allocate frames yourself, and never make your own frame implementations

OR Cl-e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

56

Local Variables

@NodeChild("valueNode")
@NodeField(name = "slot", type = FrameSlot.class)
public abstract class SLWritelLocalVariableNode extends SLExpressionNode {

protected abstract FrameSlot getSlot();

@Specialization(guards = "isLongOrIllegal(frame)")

protected long writelLong(VirtualFrame frame, long value) {
getSlot().setKind(FrameSlotKind.Long);
frame.setlLong(getSlot(), value);
return value;

}

protected boolean islLongOrIllegal(VirtualFrame frame) {
return getSlot().getKind() == FrameSlotKind.Long || getSlot().getKind() == FrameSlotKind.Illegal;

}

setKind() is a no-op if kind is already Long

@Specialization(contains = {"writelLong", "writeBoolean"})

protected Object write(VirtualFrame frame, Object value) {
getSlot().setKind(FrameSlotKind.Object); we switch to Object for all reads and writes
frame.setObject(getSlot(), value);
return value;

}

If we cannot specialize on a single primitive type,

}

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 57

Local Variables

@NodeField(name = "slot", type = FrameSlot.class)

protected abstract FrameSlot getSlot();

@Specialization(guards = "isLong(frame)")

protected long readLong(VirtualFrame frame) {
return FrameUtil.getLongSafe(frame, getSlot());

}

protected boolean isLong(VirtualFrame frame) {
return getSlot().getKind() == FrameSlotKind.Long;

}

protected Object readObject(VirtualFrame frame) {
if (!frame.isObject(getSlot())) {
CompilerDirectives.transferToInterpreter();
Object result = frame.getValue(getSlot());
frame.setObject(getSlot(), result);
return result;

}

return FrameUtil.getObjectSafe(frame, getSlot());
}

public abstract class SLReadlLocalVariableNode extends SLExpressionNode {

@Specialization(contains = {"readLong", "readBoolean"})

The guard ensure the frame slot contains a

primitive long value

Slow path: we can still have frames with

primitive values written before we switched the
local variable to the kind Object

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 58

Compilation

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

59

Compilation

* Automatic partial evaluation of AST
— Automatically triggered by function execution count

* Compilation assumes that the AST is stable
— All@Child and @Children fields treated like final fields

* Later node rewriting invalidates the machine code
— Transfer back to the interpreter: “Deoptimization”
— Complex logic for node rewriting not part of compiled code
— Essential for excellent peak performance

* Compiler optimizations eliminate the interpreter overhead
— No more dispatch between nodes
— No more allocation of VirtualFrame objects
— No more exceptions for inter-node control flow

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

60

Truffle Compilation API

* Default behavior of compilation: Inline all reachable Java methods

* Truffle APl provides class CompilerDirectives to influence compilation
— @CompilationFinal
* Treat a field as final during compilation

— transferTolnterpreter()
* Never compile part of a Java method

— transferTolInterpreterAndInvalidate()
* Invalidate machine code when reached
* Implicitly done by Node.replace()

— @TruffleBoundary

* Marks a method that is not important for performance, i.e., not part of partial evaluation
— inInterpreter()

* For profiling code that runs only in the interpreter

— Assumption
* Invalidate machine code from outside
* Avoid checking a condition over and over in compiled code

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

61

Slow Path Annotation

@Specialization

public final Object println(Object value) {
doPrint(getContext().getOutput(), value);
return value;

}

@TruffleBoundary

out.println(value);

}

}

public abstract class SLPrintlnBuiltin extends SLBuiltinNode {

private static void doPrint(PrintStream out,

When compiling, the output stream is a constant

Object value) {

Why @TruffleBoundary? Inlining something as big as

ORACLE

println() would lead to code explosion

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 62

Compiler Assertions

* You work hard to help the compiler
 How do you check that you succeeded?

CompilerAsserts.partialEvaluationConstant()
— Checks that the passed in value is a compile-time constant early during partial evaluation

CompilerAsserts.compilationConstant()

— Checks that the passed in value is a compile-time constant (not as strict as partialEvaluationConstant)
— Compiler fails with a compilation error if the value is not a constant

— When the assertion holds, no code is generated to produce the value

CompilerAsserts.neverPartOfCompilation()

— Checks that this code is never reached in a compiled method

— Compiler fails with a compilation error if code is reachable

— Useful at the beginning of helper methods that are big or rewrite nodes
— All code dominated by the assertion is never compiled

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compilation

SL source code:

function loop(n) {
i=0;
sum = 0;
while (i <= n) {
sum = sum + i;
i=1+1;
}

return sum;

}

Machine code for loop:

Run this example:

mov rl4, ©
mov rl3, ©
jmp L2
L1: safepoint
mov rax, rl3
add rax, ri4
jo L3
inc ri3
mov rl4, rax
L2: cmp r13, rbp
jle L1

L3: call transferToInterpreter

./sl -dump -disassemble tests/SumPrint.sl

ORACLE

Truffle compilation printing is enabled

Background compilation is disabled

Graph dumping to IGV is enabled

Disassembling is enabled

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Visualization Tools:

IdealGraphVisualizer

Help
Outline X B || owfeer TruffleTier X LR A =
8w = 8 [EOEET 5 @& o o G Q-

3:.ConvertDeoptimizeToGuard
iDominatorConditionalElimination

Canonicalizer |
6;DeadCodeElimination [
Canonicalizer =

\PartizlEscape

10:Canonicalizer

11:Preciselnlining

12:DeadCodeElimination

13:Canonicalizer =

140 Unbox

Start - Properties X =
~ Properties

id 0 =
idx 0

stamp void e 310 LoopBegin

category begin =)

node-to-block 0

name Start

class StartNode Zoz ol
block 0 = 769 Phi(203, 487)
Start (]

Filters X =]

--Custorn--¥v N1 @ E B * *

] Remove Floating

@ Remove State

Call Graph Coloring

Stamp Coloring

|| Probability Colaring

|| c2 Basic Coloring

["] €2 matcher Flags Coloring
|| €2 Register Coloring

@ Coloring

[cz only Control Flow

530 LoopExit | [393 Begin |

—1
775 Proxy(768))l 776 Proxy(769)

633 LoopEnd

Download IGV from

https://lafo.ssw.uni-linz.ac.at/pub/idealgraphvisualizer

C2 Remaove Filter 760 Return

[} €2 structural
@ Reduce Edges 40 ¥

5 o
OR Cl_e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 65

Visualization Tools:

IdealGraphVisualizer

Help

Outline X B | rootloop X e\l
- _ =

FILIIEN Y F%® +we QAR QX0 D@ &
¥) TruffleCompilerThread-12:Truffleiroot_loop(T

» |}, com.oracle.graal.truffle.OptimizedCallTarget:ica

» |}, com.oracle.graal.truffle.OptimizedCallTarget:ica
¥ |\ rooktloop ~

SLFunctionBody
SLBlock

17 J v

SLRoot - Properties X =
~ Properties -
id o ‘ SLWriteLocalvariableNodeGen | | SLWriteLocalvVariableNodeGen ‘ |SLWhMe‘ | SLWriteLocalVariableNodeGen ‘ SLReturn
name SLRoot

cost MONOMORPHIC

class StRoothode | SLLongLiteral || WriteLonghode H SLLongLiteral || ‘WriteLorgNode || ProfilePeelingLoop || WriteLongNode, H SLReadArgument ‘ | SLReadLocalvariableNodeGe
language class com.oracle. truff.. = - =

callTarget root loop
frameDescriptor FrameDescriptor@68...

sourceSection source=SumPrint.sl p.. | UninitializedMode_ | UninitializedNode_ H SLWhileRepeating || OptimizedDefaultOSRLoop || UninitializedNode_ H ReadLongNudei|
isCloningAllowed false =

SLRoot (]

| SlLessOrEqualModeGen || SLB\{JCKH SLWhileRepeating H UninitializedMode_ |

Filters X =]

--Custom -- | ¥ L B E @ 1* %

(") rRemove Floating

& remove State UninitializedNode_ H SLReadlocalVariableNodeGen || SLReadlLocalvariableModeGen ‘

] call Graph Coloring

[T stamp Coloring

ml " .

— Probabilicy Coloring UninitializedNode_ UninitializedNode_

|| c2 Basic Coloring

C2 Makcher Flags Colaring

C2 Regisker Coloring

@ Coloring T
C2 Only Control Flow

C2 Remove Filter

[} €2 structural

@ Reduce Edges o ¥

e ®
OR CI-E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

66

Truffle Mindset

* Do not optimize interpreter performance
— Only optimize compiled code performance

* Collect profiling information in interpreter
— Yes, it makes the interpreter slower
— But it makes your compiled code faster

* Do not specialize nodes in the parser, e.g., via static analysis
— Trust the specialization at run time

* Keep node implementations small and simple
— Split complex control flow into multiple nodes, use node rewriting

 Use final fields

— Compiler can aggressively optimize them
— Example: An if on a final field is optimized away by the compiler
— Use profiles or @CompilationFinal if the Java final is too restrictive

e Use microbenchmarks to assess and track performance of specializations
— Ensure and assert that you end up in the expected specialization

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

67

Truffle Mindset: Frames

* Use VirtualFrame, and ensure it does not escape
— Graal must be able to inline all methods that get the VirtualFrame parameter
— Call must be statically bound during compilation

— Calls to static or private methods are always statically bound
— Virtual calls and interface calls work if either

* The receiver has a known exact type, e.g., comes from a final field
* The method is not overridden in a subclass

* Important rules on passing around a VirtualFrame
— Never assign it to a field

— Never pass it to a recursive method
* Graal cannot inline a call to a recursive method

 Use aMaterializedFrame if a VirtualFrame is too restrictive
— But keep in mind that access is slower

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

68

Function Calls

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

69

Polymorphic Inline Caches

* Function lookups are expensive
— At least in a real language, in SL lookups are only a few field loads

* Checking whether a function is the correct one is cheap
— Always a single comparison

Inline Cache
— Cache the result of the previous lookup and check that it is still correct

* Polymorphic Inline Cache
— Cache multiple previous lookups, up to a certain limit

Inline cache miss needs to perform the slow lookup

* Implementation using tree specialization
— Build chain of multiple cached functions

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

70

Example: Simple Polymorphic Inline Cache

public abstract class ANode extends Node {
public abstract Object execute(Object operand);

@Specialization(limit = "3",
guards = "operand == cachedOperand")
protected Object doCached(AType operand,
@Cached("operand") AType cachedOperand) {
// implementation
return cachedOperand;

}

@Specialization(contains = "doCached")
protected Object doGeneric(AType operand) {
// implementation
return operand;

The cachedOperand is a compile time constant

Up to 3 compile time constants are cached

The generic case contains all cached cases, so the 4"
unique value removes the cache chain

The operand is no longer a compile time constant

The @Cached annotation leads to a final field in the generated code

Compile time constants are usually the starting point for more constant folding

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

71

Polymorphic Inline Cache for Function Dispatch
Example of cache with length 2

After Parsing O 1 Function O 2 Functions O >2 Functions

SLInvokeNode SLInvokeNode SLInvokeNode SLInvokeNode
function /J¢ l l
arguments

SLDirectDispatch SLDirectDispatch

The different dispatch nodes are for
illustration only, the generated code

uses different names

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

72

Invoke Node

public final class SLInvokeNode extends SLExpressionNode {

@Child private SLExpressionNode functionNode;
@Children private final SLExpressionNode[] argumentNodes;
@Child private SLDispatchNode dispatchNode;

@ExplodelLoop
public Object executeGeneric(VirtualFrame frame) {
Object function = functionNode.executeGeneric(frame);

Object[] argumentValues = new Object[argumentNodes.length];
for (int i = @; i < argumentNodes.length; i++) {
argumentValues[i] = argumentNodes[i].executeGeneric(frame);

}

return dispatchNode.executeDispatch(frame, function, argumentValues);

Separation of concerns: this node evaluates the function and arguments only

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

73

Dispatch Node

}

public abstract class SLDispatchNode extends Node {

public abstract Object executeDispatch(VirtualFrame frame, Object function, Object[] arguments);

@Specialization(limit = "2",
guards = "function == cachedFunction",
assumptions = "cachedFunction.getCallTargetStable()")

protected static Object doDirect(VirtualFrame frame, SLFunction function, Object[] arguments,
@Cached("function") SLFunction cachedFunction,
@Cached("create(cachedFunction.getCallTarget())") DirectCallNode callNode) {

return callNode.call(frame, arguments);

}

@Specialization(contains = "doDirect")
protected static Object doIndirect(VirtualFrame frame, SLFunction function, Object[] arguments,
@Cached("create()") IndirectCallNode callNode) {

return callNode.call(frame, function.getCallTarget(), arguments);

}

Separation of concerns: this node builds the inline cache chain

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

74

Code Created from Guards and @Cached Parameters

Code creating the doDirect inline cache (runs infrequently): Code checking the inline cache (runs frequently):
if (number of doDirect inline cache entries < 2) { assumptionl.check()s

if (function instanceof SLFunction) { if—{Ffunetion-instanceof-SkFunction)—{
cachedFunction = (SLFunction) function; if (function == cachedFunction)) {

if (function ==—cachedFunction){ callNode.call(frame, arguments);

callNode = DirectCallNode.create(cachedFunction.getCallTarget());

assumptionl = cachedFunction.getCallTargetStable();

Code that is compiled to a no-op is

if (assumptionl.isValid()) {

marked strikethrough

create and add new doDirect inline cache entry

The inline cache check is only one comparison with a compile time constant

Partial evaluation can go across function boundary (function inlining) because callNode with its callTarget is final

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 75

Language Nodes vs. Truffle Framework Nodes

SLInvokeNode

v

Language specific SLDispatchNode

Caller

Truffle framework
Callee

Language specific SLRootNode

Truffle framework code triggers compilation, function inlining, ...

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

76

Function Redefinition (1)

* Problem
— In SL, functions can be redefined at any time
— This invalidates optimized call dispatch, and function inlining
— Checking for redefinition before each call would be a huge overhead

e Solution
— Every SLFunction has an Assumption

— Assumption is invalidated when the function is redefined
* This invalidates optimized machine code

* Result
— No overhead when calling a function

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

77

Function Redefinition (2)

public abstract class SLDefineFunctionBuiltin extends SLBuiltinNode {

@TruffleBoundary

@Specialization

public String defineFunction(String code) {
Source source = Source.fromText(code, "[defineFunction]");
getContext().getFunctionRegistry().register(Parser.parseSL(source));
return code;

}

}

Why @TruffleBoundary? Inlining something as big as the
parser would lead to code explosion

SL semantics: Functions can be defined and redefined at any time

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

78

Function Redefinition (3)

public final class SLFunction {

private final String name;
private RootCallTarget callTarget;
private Assumption callTargetStable;

protected SLFunction(String name) {
this.name = name;
this.callTarget = Truffle.getRuntime().createCallTarget(new SLUndefinedFunctionRootNode(name));
this.callTargetStable = Truffle.getRuntime().createAssumption(name);

}

protected void setCallTarget(RootCallTarget callTarget) {
this.callTarget = callTarget;
this.callTargetStable.invalidate();
this.callTargetStable = Truffle.getRuntime().createAssumption(name);

}

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

¥ The utility class CyclicAssumption simplifies this code

79

Function Arguments

Function arguments are not type-specialized
Passed inObject[] array

Function prologue writes them to local variables

SLReadArgumentNode in the function prologue
Local variable accesses are type-specialized, so only one unboxing

Example SL code: Specialized AST for function add():
function add(a, b) { SLRootNode
return a + b; bodyNode = SLFunctionBodyNode
} bodyNode = SLBlockNode
bodyNodes[@] = SLWritelLocalVariableNode<writelLong>(name = "a")
function main() { valueNode = SLReadArgumentNode(index = 0)
add(2, 3); bodyNodes[1] = SLWritelLocalVariableNode<writelLong>(name = "b")
} valueNode = SLReadArgumentNode(index = 1)
bodyNodes[2] = SLReturnNode
valueNode = SLAddNode<addLong>
leftNode = SLReadlLocalVariableNode<readLong>(name = "a")
rightNode = SLReadlLocalVariableNode<readLong>(name = "b")

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

Function Inlining vs. Function Splitting

* Function inlining is one of the most important optimizations
— Replace a call with a copy of the callee

* Function inlining in Truffle operates on the AST level

— Partial evaluation does not stop at DirectCallNode, but continues into next CallTarget
— All later optimizations see the big combined tree, without further work

* Function splitting creates a new, uninitialized copy of an AST
— Specialization in the context of a particular caller
— Useful to avoid polymorphic specializations and to keep polymorphic inline caches shorter
— Function inlining can inline a better specialized AST
— Result: context sensitive profiling information

* Function inlining and function splitting are language independent
— The Truffle framework is doing it automatically for you

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

81

Compilation with Inlined Function

SL source code without call: Machine code for loop without call: SL source code with call: Machine code for loop with call:
function loop(n) { mov rl4, © function add(a, b) { mov rl4, ©
i=0; mov rl3, O return a + b; mov rl3, O
sum = 9; jmp L2 } jmp L2
while (i <= n) { L1: safepoint L1: safepoint
sum = sum + 1i; mov rax, ril3 function loop(n) { mov rax, ril3
i=1+1; add rax, ri4 i=0; add rax, ril4
} jo L3 sum = 0; jo L3
return sum; inc ri3 while (i <= n) { inc ri3
} mov rl4, rax sum = add(sum, i); mov rl4, rax
L2: cmp ril13, rbp i = add(i, 1); L2: cmp rl13, rbp
jle L1 } jle L1
500 return sum; 500
L3: call transferToInterpreter } L3: call transferToInterpreter

Truffle gives you function inlining for free!

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 82

Truffle as an Internal DSL

* The base VM, Graal, 1s based on partial evaluation without code generation
* Annotations are only used to denote fields that should be viewed as final by the partial
evaluator

* Initial language implementations included a lot of boilerplate

* E.g. multiple execute() methods that differed only in argument/return types
* To specialize for types

* Complicated, handwritten logic to choose and combine specializations

e Truffle DSL

* Implemented purely within Java, using annotations
* Annotation processor reads annotations, generates additional code

* Case study: partial JavaScript interpreter
* 3500 LOC in Java = 1000 LOC in Java + Truffle annotations

* Ran faster (more consistent optimizations) and less error-prone

12

Overall System Structure

Interpreter for every
language

Common API separates
language implementation,
optimization system,

and tools (debugger)

Integrate with Java
applications

ORACLE

Language agnostic
dynamic compiler

Low-footprint VM, also
suitable for embedding

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

88

Performance: Graal VM

Speedup, higher is better

5
4.5
4.1 B Graal
4
Best Specialized Competition

3

2

1.2
. 1.02 0.85 0.9
0 - . l
Java Scala Ruby R Native JavaScript

Performance relative to:
HotSpot/Server, HotSpot/Server running JRuby, GNU R, LLVM AOT compiled, V8

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Demonstration

14

Tools

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 111

Tools: We Don’t Have It All
(Especially for Debuggers)

e Difficult to build
— Platform specific
— Violate system abstractions
— Limited access to execution state

* Productivity tradeoffs for programmers
— Performance — disabled optimizations
— Functionality — inhibited language features
— Complexity — language implementation requirements
— Inconvenience — nonstandard context (debug flags)

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 112

Tools: We Can Have It All

* Build tool support into the Truffle API
— High-performance implementation

— Many languages: any Truffle language can be tool-ready with minimal effort
— Reduced implementation effort

* Generalized instrumentation support

1. Access to execution state & events
2. Minimal runtime overhead
3. Reduced implementation effort (for languages and tools)

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 113

Implementation Effort: Language Implementors

* Treat AST syntax nodes specially
— Precise source attribution
— Enable probing
— Ensure stability

* Add default tags, e.g., Statement, Call, ...

— Sufficient for many tools
— Can be extended, adjusted, or replaced dynamically by other tools

* Implement debugging support methods, e.g.
— Eval a string in context of any stack frame
— Display language-specific values, method names, ...

* More to be added to support new tools & services

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserve

d.

114

“Mark Up” Important AST Nodes for Instrumentation

Probe: A program location (AST

node) prepared to give tools
access to execution state.

Tag: Statement Tag: An annotation for
configuring tool behavior at a
°® Probe. Multiple tags, possibly

tool-specific, are allowed.

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 115

Access to Execution Events

Instrument: A receiver of

program execution events
Event: AST execution flow installed for the benefit of
entering or returning from an external tool

a node.

Instr. 1 i Instr. 2 ‘ Instr. 3 }
\ Tag: Statement

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 116

ORACLE’

Implementation: Nodes

WrapperNode

* Inserted before any execution
* Intercepts Events

« Language-specific Type

ProbeNode

« Manages “instrument chain” dynamically
* Propagates Events

 Instrumentation Type

117
Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 117

ORACLE’

More Details on Instrumentation and Debugging
http://dx.doi.org/10.1145/2843915.2843917

ORACLE

Building Debuggers and Other Tools: We Can “Have it All”
Position Paper ICOOOLPS ‘15

Michael L. Van De Vanter

Oracle Labs
michael.van.de.vanter@oracle.com

Abstract

Software development tools that “instrument” running programs,
notably debuggers, are presumed to demand difficult tradeoffs
among performance, functionality, implementation complexity, and
user convenience. A fundamental change in our thinking about such
tools makes that presumption obsolete.

By building instrumentation directly into the core of a high-
performance language implementation framework, tool-support
can be always on, with confidence that optimization will apply uni-
formly to instrumentation and result in near zero overhead. Tools
can be always available (and fast), not only for end user program-
mers, but also for language implementors throughout development.

2. Roadblocks

Why is it so difficult to have tools that are as good and timely as
our programming languages? Why can’t we “‘have it all”?

2.1 Tribes

One perspective is historical and cultural. Concerns about program
execution speed (utilization of expensive machines) came long be-
fore concerns about software development rate and correctness (uti-
lization of expensive people).

Our legacy is that people who write compilers and people who
build developer tools essentially belong to different fribes, each
with its own technologies and priorities'. More significantly, each

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

118

Node Tags

@Instrumentable(factory = SLStatementNodeWrapper.class)

public abstract class SLStatementNode extends Node { Annotation generates type-specialized WrapperNode

private boolean hasStatementTag;
private boolean hasRootTag;

Override
grotected boolean isTaggedWith(Class<?> tag) { The set of tags is extensible, tools can provide new tags
if (tag == StandardTags.StatementTag.class) {
return hasStatementTag;
} else if (tag == StandardTags.RootTag.class) {
return hasRootTag;

}

return false;

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 119

Simple command line debugger is in Truffle

Example: DEbugger development repository:

https://github.com/graalvm/truffle#hacking-truffle

mx repl
==> GraalVM Polyglot Debugger 0.9
Copyright (c) 2013-6, Oracle and/or its affiliates (<1> LoopPrint.sl:10)(SL) break 4
Languages supported (type "lang <name>" to set default) ==> breakpoint 0 set at LoopPrint.sl:4
JS ver. 0.9 (<1> LoopPrint.sl:10)(SL) continue
SL ver. 0.12 Frame © in LoopPrint.sl
() loads LoopPrint.sl [...]
Frame © in LoopPrint.sl --> 4 i=1+1;
1 function loop(n) { [...]
2 i=0; (<1> LoopPrint.sl:4)(SL) frame
3 while (i < n) { ==> Frame 0:
4 i=1+1; #0: n = 1000
5 } #1: i = 0
6 return i; (<1> LoopPrint.sl:4)(SL) step
7 } Frame © in LoopPrint.sl
8 [...]
9 function main() { --> 3 while (i < n) {
--> 10 i=0; [...]
11 while (i < 20) { (<1> LoopPrint.sl:3)(SL) frame
12 loop(1000); ==> Frame 0:
13 i=1+1; #0: n = 1000
14 } #1: i = 1
15 println(loop(1000)); (<1> LoopPrint.sl:3)(SL) backtrace
16 } == 0: at LoopPrint.sl:3 in root loop line=" while (i <
1: at LoopPrint.sl:12~ in root main line=" loop(1

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 120

NetBeans Debugger

* NetBeans has experimental Truffle debugging support

* Download latest nightly build of NetBeans
— This demo uses nightly build 201606100002

* Install Truffle plugin
— Tools -> Plugins -> Available Plugins -> search for "Truffle"

— Install "Truffle Debugging Support"

 Start SL in debug mode
— sl -debug tests/SumObject.sl

* Manually insert debugger; statement into SumQObject.sl
* Attach NetBeans debugger to port 8000

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 121

Example: NetBeans Debugger

simplelanguage - NetBeans IDE 8.1

sl -debug tests/SumObject.sl

File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help

*Fj B O @ [whueode v F @ D B B (VN I I

= -ﬁf:wuf;.f:!;;ssLoop-fum? Qumotectatx| Je) (e debugger; statement sets a breakpoint manually
v @ 'main suspended at ‘Polygloter b [L5uEe | Fistory B-8- A" sEH Fo % I 68 § because NetBeans does not know .sl files

] sumobject.sl:6 (SumObjeck. 1 function loop(n) { -]

[optimizedDirectCallMode(ta 2 phi = new();
3 gb;l = 0;
DT NI Stepping and Variables view work as expected
53 ohi.sum = ghj.sum + ghj.1;
7 obj.i = obj.1 + 1;
8 } . . .
o retum sbj.cum; Stacktrace view has small rendering issues
11
12 function main{) {

13 |: debugger;

14

15 1 =0;

16 while (1 = 20) {

17 Loop(10000] ;

18 1 =1+ 1;

19 } -

Java Call Hierarchy Sources Tesk Resulks Qutput - Debugger Console Variables X | Breakpoinks =

.@. Mame Type Value g

@ =Enter new wakch= 2 = =

6 &rn Lang) 10000 .
"Oobj Object - com.oracle.truffle.slruntime.sLObjectTy... -

Qi Long .6 -

@] ©sum Long .15

Te— = =,
A b

@ % B a B ®B

61 NS

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 122

Bibliography

Whurthinger et al. Practical Partial Evaluation for High-Performance Dynamic Language
Runtimes. PLDI, 2017.

Humer et al. A Domain-Specific Language for Building Self-Optimizing AST Interpreters.
GPCE, 2014.

Y. Futamura. Partial Evaluation of Computation Process—An Approach to a Compiler-
Compiler. Systems, Computers, Controls 2(5):721-728, 1971

Christian Wimmer. One VM to Rule Them All Tutorial. PLLDI 2016.
Christian Wimmer. Graal Tutorial. PLLDI 2017.

Interesting comparison: tracing-based metacompilation (e.g. PyPy)
* Bolz et al. Tracing the meta-level: PyPy's tracing JIT compiler. ICOOLPS 2009.

 Stefan Marr and Stéphane Ducasse. Tracing vs. Partial Evaluation: Comparing Meta-Compilation
Approaches for Self-Optimizing Interpreters. OOPSLA 2015.

16

