
Truffle/Graal:
From Interpreters to Optimizing Compilers
via Partial Evaluation

Jonathan Aldrich

17-396/17-696/17-960: Language Design and Prototyping

Carnegie Mellon University

Many slides from Oracle’s PLDI 2016 and 2017 tutorials on Truffle/Graal—marked where they
occur.

1

Interpreters for Prototyping

• Writing optimizing compilers is hard
• Many complex optimization algorithms
• Relies on knowledge of architecture and performance characteristics
• See 15-411/15-611, 15-745

• So when we prototype with interpreters
• Easy to write
• Easy to change when the language changes

• Unfortunately, interpreters are slow
• Especially if you make them simple!
• Could be 2 orders of magnitude slower than an optimizing compiler
• Is there any way to make an interpreter faster?

2

From Interpreter to Compiler

• Given
• An interpreter for guest language G written in host language H
• “if you see an add expression, add the two arguments”

• A program in language G
• “add(add(x, y), z)”

• What if we “run” the interpreter on the program?
• Whenever we get to actual input data, we’ll stop evaluating there (but keep going

elsewhere)
• “add(add(x, y), z)”  x+y+z
• We have essentially “compiled” the language

• This is called Partial Evaluation
• When applied in the context of interpreters and programs, it’s called the First Futamura

Projection (after Futamura, who proposed it in 1971)

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example: Partial Evaluation

21

class ExampleNode {
 @CompilationFinal boolean flag;

 int foo() {
 if (this.flag) {
 return 42;
 } else {
 return -1;
 }
}

 // parameter this in rsi
 cmpb [rsi + 16], 0
 jz L1
 mov eax, 42
 ret
L1: mov eax, -1
 ret

normal compilation
of method foo()

 mov rax, 42
 ret

partial evaluation
of method foo()
with known parameter this

ExampleNode
flag: true

Object value of this

@CompilationFinal field is treated like a final
field during partial evaluation

Memory access is eliminated and condition is
constant folded during partial evaluation

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Introduction to Partial Evaluation

93

abstract class Node {
 abstract int execute(int[] args);
}

class AddNode extends Node {
 final Node left, right;

 AddNode(Node left, Node right) {
 this.left = right; this.right = right;
 }

 int execute(int args[]) {
 return left.execute(args) + right.execute(args);
 }
}

class Arg extends Node {
 final int index;
 Arg(int i) {this.index = i;}

 int execute(int[] args) {
 return args[index];
 }
}

int interpret(Node node, int[] args) {
 return node.execute(args);
}

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Introduction to Partial Evaluation

94

int interpret(Node node, int[] args) {
 return node.execute(args);
}

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

int interpretSample(int[] args) {
 return sample.execute(args);
}

partiallyEvaluate(interpret, sample)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Introduction to Partial Evaluation

95

// Sample program (arg[0] + arg[1]) + arg[2]
sample = new Add(new Add(new Arg(0), new Arg(1)), new Arg(2));

int interpretSample(int[] args) {
 return sample.execute(args);
}

int interpretSample(int[] args) {
 return sample.left.execute(args)
 + sample.right.execute(args);
}

int interpretSample(int[] args) {
 return args[sample.left.left.index]
 + args[sample.left.right.index]
 + args[sample.right.index];
}

int interpretSample(int[] args) {
 return args[0]
 + args[1]
 + args[2];
}

int interpretSample(int[] args) {
 return sample.left.left.execute(args)
 + sample.left.right.execute(args)
 + args[sample.right.index];
}

Challenge: how to get high-performance code? (1)

• With naïve Futamura projection / partial evaluation, code size explodes

• Real implementation of “+” in a dynamic language is something like:

if (arg1 instanceof Int && arg2 instanceof Int)

return arg1+arg2;

else if (arg1 instanceof String || arg2 instanceof String)

return strcat(toString(arg1), toString(arg2)

else

throw addError

• This is a lot of code to generate every time we see a + operator

5

Challenge: how to get high-performance code? (2)

• Alternative: don’t partially evaluate inside complex operations

add(add(x, y), z)

is transformed to

let t = doAdd(x, y) in

doAdd(z)

• But now we lose many of the benefits of partial evaluation
• We want add to turn into ~2 instructions, not an expensive function call.
• Plus we can’t do further optimization easily – e.g. constant-fold when x and y are

constants.

6

Challenge: how to get high-performance code? (3)

• Assume y is the constant 1, z is an Int, and x is probably an Int

• What we want is to translate “add(add(x, y), z)” into:

// guess that x is an Int, but check to make sure

if (!(x instanceof Int)) goto do_it_slowly

x+1+z

• We can figure out the y is the constant 1 with partial evaluation

• How do we know that z is definitely an Int?

• How can we guess that x is probably an Int?

7

Profile-Based Optimizing Interpreters

• Run each function in the Guest language a few times

• Gather profile information for each node in the AST
• Call nodes: what functions are called?
• Operation nodes: what are the datatypes?

• Specialize the interpreter
• Replace unspecialized nodes with specialized ones
• E.g. replace unspecializeAdd() with intAdd()

• Each specialized node has a guard
• intAdd(): check that my arguments are ints
• If the guard fails, intAdd() knows how to replace itself with genericAdd()

• Partially evaluate the specialization
• Generates optimized code
• This is speculative – must include a check, and a hook to jump back to the interpreter to de-specialize

8

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

The Truffle Idea

90

Collect
profiling
feedback

Optimize using partial
evaluation assuming stable

profiling feedback

U

U U

U

U I

I I

S

S I

I I

S

S

Deoptimize if profiling
feedback is invalid and

reprofile

I S

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Stability

91

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example: Transfer to Interpreter

22

class ExampleNode {
 int foo(boolean flag) {
 if (flag) {
 return 42;
 } else {
 throw new IllegalArgumentException(
 "flag: " + flag);
 }
}

 // parameter flag in edi
 cmp edi, 0
 jz L1
 mov eax, 42
 ret
L1: ...
 // lots of code here

transferToInterpreter() is a call into the VM
runtime that does not return to its caller,
because execution continues in the interpreter

class ExampleNode {
 int foo(boolean flag) {
 if (flag) {
 return 42;
 } else {
 transferToInterpreter();
 throw new IllegalArgumentException(
 "flag: " + flag);
 }
}

 // parameter flag in edi
 cmp edi, 0
 jz L1
 mov eax, 42
 ret
L1: mov [rsp + 24], edi
 call transferToInterpreter
 // no more code, this point is unreachable

compilation of method foo()

compilation of method foo()

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example: Partial Evaluation and Transfer to Interpreter

23

class ExampleNode {

 @CompilationFinal boolean minValueSeen;

 int negate(int value) {
 if (value == Integer.MIN_VALUE) {
 if (!minValueSeen) {
 transferToInterpreterAndInvalidate();
 minValueSeen = true;
 }
 throw new ArithmeticException()
 }

 return -value;
 }
}

 // parameter value in eax
 cmp eax, 0x80000000
 jz L1
 neg eax
 ret
L1: mov [rsp + 24], eax
 call transferToInterpreterAndInvalidate
 // no more code, this point is unreachable

if compiled code is invoked with minimum int value:
1) transfer back to the interpreter
2) invalidate the compiled code

ExampleNode
minValueSeen: true

ExampleNode
minValueSeen: false

partial evaluation
of method negate()
with known parameter this

 // parameter value in eax
 cmp eax, 0x80000000
 jz L1
 neg eax
 ret
L1: ...
 // lots of code here to throw exception

second
partial evaluation

Expected behavior: method negate() only
called with allowed values

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Assumptions

Assumption assumption = Truffle.getRuntime().createAssumption();

void foo() {
 if (assumption.isValid()) {
 // Fast-path code that is only valid if assumption is true.
 } else {
 // Perform node specialization, or other slow-path code to respond to change.
 }
}

assumption.invalidate();

Create an assumption:

Check an assumption:

Invalidate an assumption:

27

Assumptions allow non-local speculation
(across multiple compiled methods)

Checking an assumption does not need
machine code, it really is a "free lunch"

When an assumption is invalidate, all compiled
methods that checked it are invalidated

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example: Assumptions

28

class ExampleNode {

 public static final Assumption addNotRedefined = Truffle.getRuntime().createAssumption();

 int add(int left, int right) {
 if (addNotRedefined.isValid()) {
 return left + right;
 } else {
 ...
 // Complicated code to call user-defined add function
 }
 }
}

Expected behavior: user does not redefine "+" for
integer values

void redefineFunction(String name, ...) {
 if (name.equals("+")) {
 addNotRedefined.invalidate()) {
 ...
 }
} This is not a synthetic example: Ruby allows

redefinition of all operators on all types, including the
standard numeric types

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Specialization

29

I

S

U

instanceof
String

instanceof
Integer

T

F

T

F

value instanceof
{Integer, String}

Truffle provides a DSL for this use case, see
later slides that introduce @Specialization

U

value instanceof
{}

I

U

instanceof
Integer

T

F

value instanceof
{Integer}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Profile, Assumption, or Specialization?
• Use profiles where local, monomorphic speculation is sufficient

– Transfer to interpreter is triggered by the compiled method itself
– Recompilation does not speculate again

• Use assumptions for non-local speculation
– Transfer to interpreter is triggered from outside of a compiled method
– Recompilation often speculates on a new assumption (or does not speculate again)

• Use specializations for local speculations where polymorphism is required
– Transfer to interpreter is triggered by the compiled method method
– Interpreter adds a new specialization
– Recompilation speculates again, but with more allowed cases

30

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

A Simple Language

31

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

SL: A Simple Language
• Language to demonstrate and showcase features of Truffle

– Simple and clean implementation
– Not the language for your next implementation project

• Language highlights
– Dynamically typed
– Strongly typed

• No automatic type conversions
– Arbitrary precision integer numbers
– First class functions
– Dynamic function redefinition
– Objects are key-value stores

• Key and value can have any type, but typically the key is a String

32

About 2.5k lines of code

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Types
SL Type Values Java Type in Implementation

Number Arbitrary precision integer numbers long for values that fit within 64 bits
java.lang.BigInteger on overflow

Boolean true, false boolean

String Unicode characters java.lang.String

Function Reference to a function SLFunction

Object key-value store DynamicObject

Null null SLNull.SINGLETON

Best Practice: Do not use the Java null value for the guest language null value

Best Practice: Use Java primitive types as much as possible to increase performance

Null is its own type; could also be called "Undefined"

33

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Syntax
• C-like syntax for control flow

– if, while, break, continue, return

• Operators
– +, -, *, /, ==, !=, <, <=, >, >=, &&, ||, ()
– + is defined on String, performs String concatenation
– && and || have short-circuit semantics
– . or [] for property access

• Literals
– Number, String, Function

• Builtin functions
– println, readln: Standard I/O
– nanoTime: to allow time measurements
– defineFunction: dynamic function redefinition
– stacktrace, helloEqualsWorld: stack walking and stack frame manipulation
– new: Allocate a new object without properties

34

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Parsing
• Scanner and parser generated from grammar

– Using Coco/R
– Available from http://ssw.jku.at/coco/

• Refer to Coco/R documentation for details
– This is not a tutorial about parsing

• Building a Truffle AST from a parse tree is usually simple

Best Practice: Use your favorite parser generator, or an existing parser for your language

35

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

SL Examples

function main() {
 println("Hello World!");
}

Hello World:
function main() {
 i = 0;
 sum = 0;
 while (i <= 10000) {
 sum = sum + i;
 i = i + 1;
 }
 return sum;
}

Simple loop:

function foo() { println(f(40, 2)); }

function main() {
 defineFunction("function f(a, b) { return a + b; }");
 foo();

 defineFunction("function f(a, b) { return a - b; }");
 foo();
}

Function definition and redefinition:

function add(a, b) { return a + b; }
function sub(a, b) { return a - b; }

function foo(f) {
 println(f(40, 2));
}

function main() {
 foo(add);
 foo(sub);
}

First class functions:

function f(a, b) {
 return a + " < " + b + ": " + (a < b);
}

function main() {
 println(f(2, 4));
 println(f(2, "4"));
}

Strings:

36

function main() {
 obj = new();
 obj.prop = "Hello World!";
 println(obj["pr" + "op"]);
}

Objects:

Hello World!

2 < 4: true
Type error

50005000
42
38

42
38

Hello World!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Getting Started
• Clone repository

– git clone https://github.com/graalvm/simplelanguage

• Download Graal VM Development Kit
– http://www.oracle.com/technetwork/oracle-labs/program-languages/downloads
– Unpack the downloaded graalvm_*.tar.gz into simplelanguage/graalvm
– Verify that launcher exists and is executable: simplelanguage/graalvm/bin/java

• Build
– mvn package

• Run example program
– ./sl tests/HelloWorld.sl

• IDE Support
– Import the Maven project into your favorite IDE
– Instructions for Eclipse, NetBeans, IntelliJ are in README.md

 37

Version used in this tutorial: tag PLDI_2016

Version used in this tutorial: Graal VM 0.12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Simple Tree Nodes

38

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

AST Interpreters
• AST = Abstract Syntax Tree

– The tree produced by a parser of a high-level language compiler

• Every node can be executed
– For our purposes, we implement nodes as a class hierarchy
– Abstract execute method defined in Node base class
– Execute overwritten in every subclass

• Children of an AST node produce input operand values
– Example: AddNode to perform addition has two children: left and right

• AddNode.execute first calls left.execute and right.execute to compute the operand values
• Then peforms the addition and returns the result

– Example: IfNode has three children: condition, thenBranch, elseBranch
• IfNode.execute first calls condition.execute to compute the condition value
• Based on the condition value, it either calls thenBranch.execute or elseBranch.execute (but never both of them)

• Textbook summary
– Execution in an AST interpreter is slow (virtual call for every executed node)
– But, easy to write and reason about; portable

39

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle Nodes and Trees
• Class Node: base class of all Truffle tree nodes

– Management of parent and children
– Replacement of this node with a (new) node
– Copy a node
– No execute() methods: define your own in subclasses

• Class NodeUtil provides useful utility methods

public abstract class Node implements Cloneable {

 public final Node getParent() { ... }
 public final Iterable<Node> getChildren() { ... }

 public final <T extends Node> T replace(T newNode) { ... }
 public Node copy() { ... }

 public SourceSection getSourceSection();
}

40

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Rule: A field for a child node must be annotated with @Child and must not be final

If Statement
public final class SLIfNode extends SLStatementNode {
 @Child private SLExpressionNode conditionNode;
 @Child private SLStatementNode thenPartNode;
 @Child private SLStatementNode elsePartNode;

 public SLIfNode(SLExpressionNode conditionNode, SLStatementNode thenPartNode, SLStatementNode elsePartNode) {
 this.conditionNode = conditionNode;
 this.thenPartNode = thenPartNode;
 this.elsePartNode = elsePartNode;
 }

 public void executeVoid(VirtualFrame frame) {
 if (conditionNode.executeBoolean(frame)) {
 thenPartNode.executeVoid(frame);
 } else {
 elsePartNode.executeVoid(frame);
 }
 }
}

41

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

If Statement with Profiling
public final class SLIfNode extends SLStatementNode {
 @Child private SLExpressionNode conditionNode;
 @Child private SLStatementNode thenPartNode;
 @Child private SLStatementNode elsePartNode;

 private final ConditionProfile condition = ConditionProfile.createCountingProfile();

 public SLIfNode(SLExpressionNode conditionNode, SLStatementNode thenPartNode, SLStatementNode elsePartNode) {
 this.conditionNode = conditionNode;
 this.thenPartNode = thenPartNode;
 this.elsePartNode = elsePartNode;
 }

 public void executeVoid(VirtualFrame frame) {
 if (condition.profile(conditionNode.executeBoolean(frame))) {
 thenPartNode.executeVoid(frame);
 } else {
 elsePartNode.executeVoid(frame);
 }
 }
}

42

Best practice: Profiling in the interpreter allows the
compiler to generate better code

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Blocks
public final class SLBlockNode extends SLStatementNode {
 @Children private final SLStatementNode[] bodyNodes;

 public SLBlockNode(SLStatementNode[] bodyNodes) {
 this.bodyNodes = bodyNodes;
 }

 @ExplodeLoop
 public void executeVoid(VirtualFrame frame) {
 for (SLStatementNode statement : bodyNodes) {
 statement.executeVoid(frame);
 }
 }
}

Rule: The iteration of the children must be annotated with @ExplodeLoop

Rule: A field for multiple child nodes must be annotated with @Children and a final array

43

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Return Statement: Inter-Node Control Flow

Best practice: Use Java exceptions for inter-node control flow

Rule: Exceptions used to model control flow extend ControlFlowException

public final class SLFunctionBodyNode extends SLExpressionNode {
 @Child private SLStatementNode bodyNode;
 ...
 public Object executeGeneric(VirtualFrame frame) {
 try {
 bodyNode.executeVoid(frame);
 } catch (SLReturnException ex) {
 return ex.getResult();
 }
 return SLNull.SINGLETON;
 }
}

public final class SLReturnException
 extends ControlFlowException {

 private final Object result;
 ...
}

public final class SLReturnNode extends SLStatementNode {
 @Child private SLExpressionNode valueNode;
 ...
 public void executeVoid(VirtualFrame frame) {
 throw new SLReturnException(valueNode.executeGeneric(frame));
 }
}

44

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 45

Exceptions for Inter-Node Control Flow

Inter-Node
Control Flow

SLBlockNode

SLFunctionBodyNode

...

SLReturnNode

bodyNode

...

valueNode

try {
 bodyNode.executeVoid(frame);
} catch (SLReturnException ex) {
 return ex.getResult();
}

Object value = valueNode.executeGeneric(frame);
throw new SLReturnException(value);

SLReturnException
value: ...

Exception unwinds all the interpreter stack frames of
the method (loops, conditions, blocks, ...)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle DSL for Specializations

46

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Addition
@NodeChildren({@NodeChild("leftNode"), @NodeChild("rightNode")})
public abstract class SLBinaryNode extends SLExpressionNode { }

public abstract class SLAddNode extends SLBinaryNode {

 @Specialization(rewriteOn = ArithmeticException.class)
 protected final long add(long left, long right) {
 return ExactMath.addExact(left, right);
 }

 @Specialization
 protected final BigInteger add(BigInteger left, BigInteger right) {
 return left.add(right);
 }

 @Specialization(guards = "isString(left, right)")
 protected final String add(Object left, Object right) {
 return left.toString() + right.toString();
 }

 protected final boolean isString(Object a, Object b) {
 return a instanceof String || b instanceof String;
 }
}

For all other specializations, guards are
implicit based on method signature

47

The order of the @Specialization
methods is important: the first matching
specialization is selected

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Generated code with factory method:

Code Generated by Truffle DSL (1)

@GeneratedBy(SLAddNode.class)
public final class SLAddNodeGen extends SLAddNode {

 public static SLAddNode create(SLExpressionNode leftNode, SLExpressionNode rightNode) { ... }

 ...
} The parser uses the factory to create a node

that is initially in the uninitialized state

48

The generated code performs all the transitions
between specialization states

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Code Generated by Truffle DSL (2)
@GeneratedBy(methodName = "add(long, long)", value = SLAddNode.class)
private static final class Add0Node_ extends BaseNode_ {
 @Override
 public long executeLong(VirtualFrame frameValue) throws UnexpectedResultException {
 long leftNodeValue_;
 try {
 leftNodeValue_ = root.leftNode_.executeLong(frameValue);
 } catch (UnexpectedResultException ex) {
 Object rightNodeValue = executeRightNode_(frameValue);
 return SLTypesGen.expectLong(getNext().execute_(frameValue, ex.getResult(), rightNodeValue));
 }
 long rightNodeValue_;
 try {
 rightNodeValue_ = root.rightNode_.executeLong(frameValue);
 } catch (UnexpectedResultException ex) {
 return SLTypesGen.expectLong(getNext().execute_(frameValue, leftNodeValue_, ex.getResult()));
 }
 try {
 return root.add(leftNodeValue_, rightNodeValue_);
 } catch (ArithmeticException ex) {
 root.excludeAdd0_ = true;
 return SLTypesGen.expectLong(remove("threw rewrite exception", frameValue, leftNodeValue_, rightNodeValue_));
 }
 }

 @Override
 public Object execute(VirtualFrame frameValue) {
 try {
 return executeLong(frameValue);
 } catch (UnexpectedResultException ex) {
 return ex.getResult();
 }
}

49

The generated code can and will change
at any time

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Type System Definition in Truffle DSL

@TypeSystemReference(SLTypes.class)
public abstract class SLExpressionNode extends SLStatementNode {

 public abstract Object executeGeneric(VirtualFrame frame);

 public long executeLong(VirtualFrame frame) throws UnexpectedResultException {
 return SLTypesGen.SLTYPES.expectLong(executeGeneric(frame));
 }
 public boolean executeBoolean(VirtualFrame frame) ...
}

@TypeSystem({long.class, BigInteger.class, boolean.class,
 String.class, SLFunction.class, SLNull.class})

public abstract class SLTypes {
 @ImplicitCast
 public BigInteger castBigInteger(long value) {
 return BigInteger.valueOf(value);
 }
}

Rule: One execute() method per type you want to specialize on, in addition to the abstract executeGeneric() method

Not shown in slide: Use @TypeCheck and
@TypeCast to customize type conversions

SLTypesGen is a generated subclass
of SLTypes

50

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

UnexpectedResultException
• Type-specialized execute() methods have specialized return type

– Allows primitive return types, to avoid boxing
– Allows to use the result without type casts
– Speculation types are stable and the specialization fits

• But what to do when speculation was too optimistic?
– Need to return a value with a type more general than the return type
– Solution: return the value “boxed” in an UnexpectedResultException

• Exception handler performs node rewriting
– Exception is thrown only once, so no performance bottleneck

51

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 52

Truffle DSL Workflow

Java Annotation Processor
(DSL Implementation)

Java Code
with Node Specifications

Java Annotations
 (DSL Definition)

uses

Java compiler
(javac, Eclipse, …) Generated Java Code for

Specialized Nodes

Executable

generates

compiles

compiles

generates

calls

iterates
annotations

1

2 3
5

4

6
7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Frames and Local Variables

53

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Frame Layout
• In the interpreter, a frame is an object on the heap

– Allocated in the function prologue
– Passed around as parameter to execute() methods

• The compiler eliminates the allocation
– No object allocation and object access
– Guest language local variables have the same performance as Java local variables

• FrameDescriptor: describes the layout of a frame
– A mapping from identifiers (usually variable names) to typed slots
– Every slot has a unique index into the frame object
– Created and filled during parsing

• Frame
– Created for every invoked guest language function

54

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Frame Management
• Truffle API only exposes frame interfaces

– Implementation class depends on the optimizing system

• VirtualFrame
– What you usually use: automatically optimized by the compiler
– Must never be assigned to a field, or escape out of an interpreted function

• MaterializedFrame
– A frame that can be stored without restrictions
– Example: frame of a closure that needs to be passed to other function

• Allocation of frames
– Factory methods in the class TruffleRuntime

55

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Frame Management
public interface Frame {
 FrameDescriptor getFrameDescriptor();
 Object[] getArguments();

 boolean isType(FrameSlot slot);
 Type getType(FrameSlot slot) throws FrameSlotTypeException;
 void setType(FrameSlot slot, Type value);

 Object getValue(FrameSlot slot);

 MaterializedFrame materialize();
}

Rule: Never allocate frames yourself, and never make your own frame implementations

SL types String, SLFunction, and SLNull are stored as Object in the frame

Frames support all Java primitive types, and Object

56

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Local Variables
@NodeChild("valueNode")
@NodeField(name = "slot", type = FrameSlot.class)
public abstract class SLWriteLocalVariableNode extends SLExpressionNode {

 protected abstract FrameSlot getSlot();

 @Specialization(guards = "isLongOrIllegal(frame)")
 protected long writeLong(VirtualFrame frame, long value) {
 getSlot().setKind(FrameSlotKind.Long);
 frame.setLong(getSlot(), value);
 return value;
 }
 protected boolean isLongOrIllegal(VirtualFrame frame) {
 return getSlot().getKind() == FrameSlotKind.Long || getSlot().getKind() == FrameSlotKind.Illegal;
 }
 ...

 @Specialization(contains = {"writeLong", "writeBoolean"})
 protected Object write(VirtualFrame frame, Object value) {
 getSlot().setKind(FrameSlotKind.Object);
 frame.setObject(getSlot(), value);
 return value;
 }
}

57

If we cannot specialize on a single primitive type,
we switch to Object for all reads and writes

setKind() is a no-op if kind is already Long

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Local Variables
@NodeField(name = "slot", type = FrameSlot.class)
public abstract class SLReadLocalVariableNode extends SLExpressionNode {

 protected abstract FrameSlot getSlot();

 @Specialization(guards = "isLong(frame)")
 protected long readLong(VirtualFrame frame) {
 return FrameUtil.getLongSafe(frame, getSlot());
 }
 protected boolean isLong(VirtualFrame frame) {
 return getSlot().getKind() == FrameSlotKind.Long;
 }
 ...

 @Specialization(contains = {"readLong", "readBoolean"})
 protected Object readObject(VirtualFrame frame) {
 if (!frame.isObject(getSlot())) {
 CompilerDirectives.transferToInterpreter();
 Object result = frame.getValue(getSlot());
 frame.setObject(getSlot(), result);
 return result;
 }

 return FrameUtil.getObjectSafe(frame, getSlot());
 }

Slow path: we can still have frames with
primitive values written before we switched the
local variable to the kind Object

58

The guard ensure the frame slot contains a
primitive long value

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compilation

59

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compilation
• Automatic partial evaluation of AST

– Automatically triggered by function execution count

• Compilation assumes that the AST is stable
– All @Child and @Children fields treated like final fields

• Later node rewriting invalidates the machine code
– Transfer back to the interpreter: “Deoptimization”
– Complex logic for node rewriting not part of compiled code
– Essential for excellent peak performance

• Compiler optimizations eliminate the interpreter overhead
– No more dispatch between nodes
– No more allocation of VirtualFrame objects
– No more exceptions for inter-node control flow

60

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle Compilation API
• Default behavior of compilation: Inline all reachable Java methods

• Truffle API provides class CompilerDirectives to influence compilation
– @CompilationFinal

• Treat a field as final during compilation
– transferToInterpreter()

• Never compile part of a Java method
– transferToInterpreterAndInvalidate()

• Invalidate machine code when reached
• Implicitly done by Node.replace()

– @TruffleBoundary
• Marks a method that is not important for performance, i.e., not part of partial evaluation

– inInterpreter()
• For profiling code that runs only in the interpreter

– Assumption
• Invalidate machine code from outside
• Avoid checking a condition over and over in compiled code

61

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Slow Path Annotation
public abstract class SLPrintlnBuiltin extends SLBuiltinNode {

 @Specialization
 public final Object println(Object value) {
 doPrint(getContext().getOutput(), value);
 return value;
 }

 @TruffleBoundary
 private static void doPrint(PrintStream out, Object value) {
 out.println(value);
 }
}

Why @TruffleBoundary? Inlining something as big as
println() would lead to code explosion

When compiling, the output stream is a constant

62

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Compiler Assertions
• You work hard to help the compiler
• How do you check that you succeeded?

• CompilerAsserts.partialEvaluationConstant()
– Checks that the passed in value is a compile-time constant early during partial evaluation

• CompilerAsserts.compilationConstant()
– Checks that the passed in value is a compile-time constant (not as strict as partialEvaluationConstant)
– Compiler fails with a compilation error if the value is not a constant
– When the assertion holds, no code is generated to produce the value

• CompilerAsserts.neverPartOfCompilation()
– Checks that this code is never reached in a compiled method
– Compiler fails with a compilation error if code is reachable
– Useful at the beginning of helper methods that are big or rewrite nodes
– All code dominated by the assertion is never compiled

63

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

function loop(n) {
 i = 0;
 sum = 0;
 while (i <= n) {
 sum = sum + i;
 i = i + 1;
 }
 return sum;
}

Compilation
SL source code: Machine code for loop:

 mov r14, 0
 mov r13, 0
 jmp L2
L1: safepoint
 mov rax, r13
 add rax, r14
 jo L3
 inc r13
 mov r14, rax
L2: cmp r13, rbp
 jle L1
 ...
L3: call transferToInterpreter

Run this example:
./sl -dump -disassemble tests/SumPrint.sl

Disassembling is enabled

Graph dumping to IGV is enabled

64

Background compilation is disabled

Truffle compilation printing is enabled

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Visualization Tools: IGV

65

Download IGV from
https://lafo.ssw.uni-linz.ac.at/pub/idealgraphvisualizer

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Visualization Tools: IGV

66

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle Mindset
• Do not optimize interpreter performance

– Only optimize compiled code performance

• Collect profiling information in interpreter
– Yes, it makes the interpreter slower
– But it makes your compiled code faster

• Do not specialize nodes in the parser, e.g., via static analysis
– Trust the specialization at run time

• Keep node implementations small and simple
– Split complex control flow into multiple nodes, use node rewriting

• Use final fields
– Compiler can aggressively optimize them
– Example: An if on a final field is optimized away by the compiler
– Use profiles or @CompilationFinal if the Java final is too restrictive

• Use microbenchmarks to assess and track performance of specializations
– Ensure and assert that you end up in the expected specialization

67

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Truffle Mindset: Frames
• Use VirtualFrame, and ensure it does not escape

– Graal must be able to inline all methods that get the VirtualFrame parameter
– Call must be statically bound during compilation
– Calls to static or private methods are always statically bound
– Virtual calls and interface calls work if either

• The receiver has a known exact type, e.g., comes from a final field
• The method is not overridden in a subclass

• Important rules on passing around a VirtualFrame
– Never assign it to a field
– Never pass it to a recursive method

• Graal cannot inline a call to a recursive method

• Use a MaterializedFrame if a VirtualFrame is too restrictive
– But keep in mind that access is slower

68

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Function Calls

69

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Polymorphic Inline Caches
• Function lookups are expensive

– At least in a real language, in SL lookups are only a few field loads
• Checking whether a function is the correct one is cheap

– Always a single comparison

• Inline Cache
– Cache the result of the previous lookup and check that it is still correct

• Polymorphic Inline Cache
– Cache multiple previous lookups, up to a certain limit

• Inline cache miss needs to perform the slow lookup

• Implementation using tree specialization
– Build chain of multiple cached functions

70

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example: Simple Polymorphic Inline Cache

71

public abstract class ANode extends Node {

 public abstract Object execute(Object operand);

 @Specialization(limit = "3",
 guards = "operand == cachedOperand")
 protected Object doCached(AType operand,
 @Cached("operand") AType cachedOperand) {
 // implementation
 return cachedOperand;
 }

 @Specialization(contains = "doCached")
 protected Object doGeneric(AType operand) {
 // implementation
 return operand;
 }
}

The cachedOperand is a compile time constant

Up to 3 compile time constants are cached

The operand is no longer a compile time constant

The @Cached annotation leads to a final field in the generated code

Compile time constants are usually the starting point for more constant folding

The generic case contains all cached cases, so the 4th
unique value removes the cache chain

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example of cache with length 2
Polymorphic Inline Cache for Function Dispatch

SLUninitializedDispatch

SLInvokeNode

function arguments

SLDirectDispatch

SLInvokeNode

SLUninitializedDispatch SLDirectDispatch

SLInvokeNode

SLUninitializedDispatch

SLDirectDispatch

SLInvokeNode

SLGenericDispatch

After Parsing 1 Function 2 Functions >2 Functions

72

The different dispatch nodes are for
illustration only, the generated code
uses different names

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Invoke Node
public final class SLInvokeNode extends SLExpressionNode {

 @Child private SLExpressionNode functionNode;
 @Children private final SLExpressionNode[] argumentNodes;
 @Child private SLDispatchNode dispatchNode;

 @ExplodeLoop
 public Object executeGeneric(VirtualFrame frame) {
 Object function = functionNode.executeGeneric(frame);

 Object[] argumentValues = new Object[argumentNodes.length];
 for (int i = 0; i < argumentNodes.length; i++) {
 argumentValues[i] = argumentNodes[i].executeGeneric(frame);
 }

 return dispatchNode.executeDispatch(frame, function, argumentValues);
 }
}

Separation of concerns: this node evaluates the function and arguments only

73

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Separation of concerns: this node builds the inline cache chain

Dispatch Node
public abstract class SLDispatchNode extends Node {

 public abstract Object executeDispatch(VirtualFrame frame, Object function, Object[] arguments);

 @Specialization(limit = "2",
 guards = "function == cachedFunction",
 assumptions = "cachedFunction.getCallTargetStable()")
 protected static Object doDirect(VirtualFrame frame, SLFunction function, Object[] arguments,
 @Cached("function") SLFunction cachedFunction,
 @Cached("create(cachedFunction.getCallTarget())") DirectCallNode callNode) {

 return callNode.call(frame, arguments);
 }

 @Specialization(contains = "doDirect")
 protected static Object doIndirect(VirtualFrame frame, SLFunction function, Object[] arguments,
 @Cached("create()") IndirectCallNode callNode) {

 return callNode.call(frame, function.getCallTarget(), arguments);
 }
}

74

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Partial evaluation can go across function boundary (function inlining) because callNode with its callTarget is final

Code Created from Guards and @Cached Parameters

if (number of doDirect inline cache entries < 2) {

if (function instanceof SLFunction) {

cachedFunction = (SLFunction) function;

if (function == cachedFunction) {

callNode = DirectCallNode.create(cachedFunction.getCallTarget());

assumption1 = cachedFunction.getCallTargetStable();

if (assumption1.isValid()) {

create and add new doDirect inline cache entry

75

Code creating the doDirect inline cache (runs infrequently):
assumption1.check();

if (function instanceof SLFunction) {

if (function == cachedFunction)) {

callNode.call(frame, arguments);

Code checking the inline cache (runs frequently):

Code that is compiled to a no-op is
marked strikethrough

The inline cache check is only one comparison with a compile time constant

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Language Nodes vs. Truffle Framework Nodes

Language specific

Truffle framework

Language specific

Truffle framework code triggers compilation, function inlining, …

Callee

Caller

SLDispatchNode

SLInvokeNode

DirectCallNode

CallTarget

SLRootNode

76

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Function Redefinition (1)
• Problem

– In SL, functions can be redefined at any time
– This invalidates optimized call dispatch, and function inlining
– Checking for redefinition before each call would be a huge overhead

• Solution
– Every SLFunction has an Assumption
– Assumption is invalidated when the function is redefined

• This invalidates optimized machine code

• Result
– No overhead when calling a function

77

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Function Redefinition (2)
public abstract class SLDefineFunctionBuiltin extends SLBuiltinNode {

 @TruffleBoundary
 @Specialization
 public String defineFunction(String code) {
 Source source = Source.fromText(code, "[defineFunction]");
 getContext().getFunctionRegistry().register(Parser.parseSL(source));
 return code;
 }
}

SL semantics: Functions can be defined and redefined at any time

Why @TruffleBoundary? Inlining something as big as the
parser would lead to code explosion

78

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Function Redefinition (3)
public final class SLFunction {

 private final String name;
 private RootCallTarget callTarget;
 private Assumption callTargetStable;

 protected SLFunction(String name) {
 this.name = name;
 this.callTarget = Truffle.getRuntime().createCallTarget(new SLUndefinedFunctionRootNode(name));
 this.callTargetStable = Truffle.getRuntime().createAssumption(name);
 }

 protected void setCallTarget(RootCallTarget callTarget) {
 this.callTarget = callTarget;
 this.callTargetStable.invalidate();
 this.callTargetStable = Truffle.getRuntime().createAssumption(name);
 }
} The utility class CyclicAssumption simplifies this code

79

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Function Arguments
• Function arguments are not type-specialized

– Passed in Object[] array

• Function prologue writes them to local variables
– SLReadArgumentNode in the function prologue
– Local variable accesses are type-specialized, so only one unboxing

Example SL code:
function add(a, b) {
 return a + b;
}

function main() {
 add(2, 3);
}

Specialized AST for function add():

SLRootNode
 bodyNode = SLFunctionBodyNode
 bodyNode = SLBlockNode
 bodyNodes[0] = SLWriteLocalVariableNode<writeLong>(name = "a")
 valueNode = SLReadArgumentNode(index = 0)
 bodyNodes[1] = SLWriteLocalVariableNode<writeLong>(name = "b")
 valueNode = SLReadArgumentNode(index = 1)
 bodyNodes[2] = SLReturnNode
 valueNode = SLAddNode<addLong>
 leftNode = SLReadLocalVariableNode<readLong>(name = "a")
 rightNode = SLReadLocalVariableNode<readLong>(name = "b")

80

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Function Inlining vs. Function Splitting
• Function inlining is one of the most important optimizations

– Replace a call with a copy of the callee

• Function inlining in Truffle operates on the AST level
– Partial evaluation does not stop at DirectCallNode, but continues into next CallTarget
– All later optimizations see the big combined tree, without further work

• Function splitting creates a new, uninitialized copy of an AST

– Specialization in the context of a particular caller
– Useful to avoid polymorphic specializations and to keep polymorphic inline caches shorter
– Function inlining can inline a better specialized AST
– Result: context sensitive profiling information

• Function inlining and function splitting are language independent
– The Truffle framework is doing it automatically for you

81

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 82

Compilation with Inlined Function
Machine code for loop without call:

function add(a, b) {
 return a + b;
}

function loop(n) {
 i = 0;
 sum = 0;
 while (i <= n) {
 sum = add(sum, i);
 i = add(i, 1);
 }
 return sum;
}

SL source code with call: Machine code for loop with call:
function loop(n) {
 i = 0;
 sum = 0;
 while (i <= n) {
 sum = sum + i;
 i = i + 1;
 }
 return sum;
}

SL source code without call:
 mov r14, 0
 mov r13, 0
 jmp L2
L1: safepoint
 mov rax, r13
 add rax, r14
 jo L3
 inc r13
 mov r14, rax
L2: cmp r13, rbp
 jle L1
 ...
L3: call transferToInterpreter

 mov r14, 0
 mov r13, 0
 jmp L2
L1: safepoint
 mov rax, r13
 add rax, r14
 jo L3
 inc r13
 mov r14, rax
L2: cmp r13, rbp
 jle L1
 ...
L3: call transferToInterpreter

Truffle gives you function inlining for free!

Truffle as an Internal DSL

• The base VM, Graal, is based on partial evaluation without code generation
• Annotations are only used to denote fields that should be viewed as final by the partial

evaluator

• Initial language implementations included a lot of boilerplate
• E.g. multiple execute() methods that differed only in argument/return types
• To specialize for types

• Complicated, handwritten logic to choose and combine specializations

• Truffle DSL
• Implemented purely within Java, using annotations
• Annotation processor reads annotations, generates additional code

• Case study: partial JavaScript interpreter
• 3500 LOC in Java  1000 LOC in Java + Truffle annotations
• Ran faster (more consistent optimizations) and less error-prone

12

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Overall System Structure

Low-footprint VM, also
suitable for embedding

Common API separates
language implementation,
optimization system,
and tools (debugger)

Language agnostic
dynamic compiler

Interpreter for every
language

Integrate with Java
applications

Substrate VM

Graal

JavaScript Ruby LLVM R

Graal VM

…

Truffle Tools

C C++ Fortran …

88

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Performance: Graal VM

6

1.02 1.2

4.1
4.5

0.85 0.9

0

1

2

3

4

5

Java Scala Ruby R Native JavaScript

Speedup, higher is better

Performance relative to:
HotSpot/Server, HotSpot/Server running JRuby, GNU R, LLVM AOT compiled, V8

Graal
Best Specialized Competition

Demonstration

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Tools

111

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Tools: We Don’t Have It All

• Difficult to build
– Platform specific
– Violate system abstractions
– Limited access to execution state

• Productivity tradeoffs for programmers
– Performance – disabled optimizations
– Functionality – inhibited language features
– Complexity – language implementation requirements
– Inconvenience – nonstandard context (debug flags)

112

(Especially for Debuggers)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Tools: We Can Have It All
• Build tool support into the Truffle API

– High-performance implementation
– Many languages: any Truffle language can be tool-ready with minimal effort
– Reduced implementation effort

• Generalized instrumentation support
1. Access to execution state & events
2. Minimal runtime overhead
3. Reduced implementation effort (for languages and tools)

113

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Implementation Effort: Language Implementors
• Treat AST syntax nodes specially

– Precise source attribution
– Enable probing
– Ensure stability

• Add default tags, e.g., Statement, Call, ...
– Sufficient for many tools
– Can be extended, adjusted, or replaced dynamically by other tools

• Implement debugging support methods, e.g.
– Eval a string in context of any stack frame
– Display language-specific values, method names, …

• More to be added to support new tools & services

114

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

 “Mark Up” Important AST Nodes for Instrumentation

115

Tag: Statement

Probe: A program location (AST
node) prepared to give tools
access to execution state.

Tag: An annotation for
configuring tool behavior at a
Probe. Multiple tags, possibly
tool-specific, are allowed.

P N

…

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Access to Execution Events

Instr. 1 Instr. 2 Instr. 3

116

Tag: Statement

Instrument: A receiver of
program execution events
installed for the benefit of
an external tool

Tool 1

Tool 2

Tool 3

Event: AST execution flow
entering or returning from
a node.

…
P N

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Implementation: Nodes

117
117

W PN

WrapperNode
• Inserted before any execution
• Intercepts Events
• Language-specific Type

ProbeNode
• Manages “instrument chain” dynamically
• Propagates Events
• Instrumentation Type

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

More Details on Instrumentation and Debugging

118

http://dx.doi.org/10.1145/2843915.2843917

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 119

Node Tags
@Instrumentable(factory = SLStatementNodeWrapper.class)
public abstract class SLStatementNode extends Node {

 private boolean hasStatementTag;
 private boolean hasRootTag;

 @Override
 protected boolean isTaggedWith(Class<?> tag) {
 if (tag == StandardTags.StatementTag.class) {
 return hasStatementTag;
 } else if (tag == StandardTags.RootTag.class) {
 return hasRootTag;
 }
 return false;
 }
}

Annotation generates type-specialized WrapperNode

The set of tags is extensible, tools can provide new tags

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 120

Example: Debugger
mx repl
==> GraalVM Polyglot Debugger 0.9
Copyright (c) 2013-6, Oracle and/or its affiliates
 Languages supported (type "lang <name>" to set default)
 JS ver. 0.9
 SL ver. 0.12
() loads LoopPrint.sl
Frame 0 in LoopPrint.sl
 1 function loop(n) {
 2 i = 0;
 3 while (i < n) {
 4 i = i + 1;
 5 }
 6 return i;
 7 }
 8
 9 function main() {
--> 10 i = 0;
 11 while (i < 20) {
 12 loop(1000);
 13 i = i + 1;
 14 }
 15 println(loop(1000));
 16 }

Simple command line debugger is in Truffle
development repository:
https://github.com/graalvm/truffle#hacking-truffle

(<1> LoopPrint.sl:10)(SL) break 4
==> breakpoint 0 set at LoopPrint.sl:4
(<1> LoopPrint.sl:10)(SL) continue
Frame 0 in LoopPrint.sl
[...]
--> 4 i = i + 1;
[...]
(<1> LoopPrint.sl:4)(SL) frame
==> Frame 0:
 #0: n = 1000
 #1: i = 0
(<1> LoopPrint.sl:4)(SL) step
Frame 0 in LoopPrint.sl
[...]
--> 3 while (i < n) {
[...]
(<1> LoopPrint.sl:3)(SL) frame
==> Frame 0:
 #0: n = 1000
 #1: i = 1
(<1> LoopPrint.sl:3)(SL) backtrace
==> 0: at LoopPrint.sl:3 in root loop line=" while (i <
 1: at LoopPrint.sl:12~ in root main line=" loop(1

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

NetBeans Debugger
• NetBeans has experimental Truffle debugging support
• Download latest nightly build of NetBeans

– This demo uses nightly build 201606100002

• Install Truffle plugin
– Tools -> Plugins -> Available Plugins -> search for "Truffle"
– Install "Truffle Debugging Support"

• Start SL in debug mode
– sl -debug tests/SumObject.sl

• Manually insert debugger; statement into SumObject.sl
• Attach NetBeans debugger to port 8000

121

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example: NetBeans Debugger

122

sl -debug tests/SumObject.sl

debugger; statement sets a breakpoint manually
because NetBeans does not know .sl files

Stepping and Variables view work as expected

Stacktrace view has small rendering issues

Bibliography

• Wurthinger et al. Practical Partial Evaluation for High-Performance Dynamic Language
Runtimes. PLDI, 2017.

• Humer et al. A Domain-Specific Language for Building Self-Optimizing AST Interpreters.
GPCE, 2014.

• Y. Futamura. Partial Evaluation of Computation Process—An Approach to a Compiler-
Compiler. Systems, Computers, Controls 2(5):721-728, 1971

• Christian Wimmer. One VM to Rule Them All Tutorial. PLDI 2016.

• Christian Wimmer. Graal Tutorial. PLDI 2017.

• Interesting comparison: tracing-based metacompilation (e.g. PyPy)
• Bolz et al. Tracing the meta-level: PyPy's tracing JIT compiler. ICOOLPS 2009.
• Stefan Marr and Stéphane Ducasse. Tracing vs. Partial Evaluation: Comparing Meta-Compilation

Approaches for Self-Optimizing Interpreters. OOPSLA 2015.

16

