
Copyright © 2016 Elsevier

Implementation of Objects

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 10

Acknowledgments: some presentation ideas
from Craig Chambers

HW 6 Thoughts
• The main challenge in HW6 is probably just writing

tree traversals in OCaml

• We assigned a checkpoint (due Thursday, October 26)
to make sure you get started

• The checkpoint is a small portion of the overall work
but we hope it will help you get over this “hump.”

HW 6 Mystery Explained

• When we studied composite types, we learned that
records have two subtyping rules:

• But in the µTS specification, there is only the S-width
rule. Why?

HW 6 Mystery Explained
• µTS has no S-width rule. Why?

• µTS interfaces are a combination of 3 things:
• Records – because there are several fields with names
• Recursive types – because the interface type can be used in

its own definition
• Pointer types – because the fields are mutable

• Remember – τ1* ≤ τ2* only if τ1 = τ2

• Fun fact: TypeScript interfaces are tagged unions too!
• But not in the µTS language you are implementing

HW 6 Mystery Explained
• µTS has no S-width rule. Why?

• Our µTS rule is similar to the rules of Typescript
• Interestingly, Flow does support depth subtyping!

• Flow is a different type system for JavaScript
• Why? Flow lets you designate some fields as immutable

• Can’t write to those fields after initialization
• Depth subtyping applies only to immutable fields

• These fields are still implemented with pointers, but don’t
have to follow the invariant subtyping rules that pointers do

Object-Oriented Programming

• Analogy to the real world is central to the OO
paradigm - you think in terms of real-world objects
that interact to get things done

• Many OO languages are strictly sequential, but the
model adapts well to parallelism as well

• Strict interpretation of the term
– uniform data abstraction - everything is an object
– inheritance
– dynamic method binding

Object-Oriented Programming

• Lots of conflicting uses of the term out there
object-oriented style available in many
languages
– data abstraction crucial
– inheritance required by most users of the term OO
– centrality of dynamic method binding a matter of

dispute

Object-Oriented Programming

• SMALLTALK is, historically, the canonical
object-oriented language
– It has all three of the characteristics listed above
– It's based on the thesis work of Alan Kay at Utah in

the late 1960’s
– It went through 5 generations at Xerox PARC,

where Kay worked after graduating
– Smalltalk-80 is the current standard

Object-Oriented Programming

• Modula-3
– single inheritance
– all methods virtual
– no constructors or destructors

• Java, C#
– interfaces, mix-in inheritance
– all methods virtual

• Scala
– Multi-paradigm, classes, functions, traits

• JavaScript
– Prototype-based, dynamically typed

Object-Oriented Programming

•Ada 95
–tagged types
–single inheritance
–no constructors or destructors
–class-wide parameters:

•methods static by default
•can define a parameter or pointer that grabs the object-specific
version of all methods

–base class doesn't have to decide what will be virtual

–notion of child packages as an alternative to friends

Object-Oriented Programming

• Is C++ object-oriented?
– Uses all the right buzzwords
– Has (multiple) inheritance and generics (templates)
– Allows creation of user-defined classes that look

just like built-in ones
– Has all the low-level C stuff to escape the

paradigm
– Has friends
– Has static type checking

Object-Oriented Programming

• In the same category of questions:
– Is Prolog a logic language?
– Is Common Lisp functional?

• However, to be more precise:
– Smalltalk is really pretty purely object-oriented
– Prolog is primarily logic-based
– Common Lisp is largely functional
– C++ can be used in an object-oriented style

Object Models

• An object model denotes the data and metadata representation
used by a language implementation

• Tradeoffs in implementing object models:
• Complexity
• Performance
• Memory usage

• Common features
• An object is usually (at least one) contiguous block of memory

• Sometimes several related blocks are used
• Objects usually needs metadata– a “tag” or “header”

• More information if more dynamic, has reflection, or is garbage collected

• We’ll start with object models for statically typed
single-inheritance OO languages like Java and C#

Prefixing - Implementing Inheritance

• Prefixing: layout of subclass has layout of superclass as a prefix

class Point {
int x;
int y;

}
class ColorPoint extends Point {
 Color color;
}

// OK, ColorPoint is a subtype of Point
Point p = new ColorPoint(0, 1, green);
// subclasses of Point have x and y in the same place
int manhattanDistance = p.x + p.y;

0

0

23

24

BLUE

Example due to Craig Chambers

x

x

y

y

color

Implementing Method Calls

Possible Strategies

1. Each object knows its type; search the inheritance hierarchy
• Very slow

2. Use a hashtable
• Can be a cache for strategy #1
• Still slow, but was used in early Smalltalk systems

3. Store function pointers in objects, as if they were fields
• Invocation is fast & constant time: load and indirect jump
• Con: objects are big!

• Observation: in this strategy, all objects of the same class will
store the same function pointers. Can we factor them out?

Virtual Method Tables (vtables)

• The assembly pseudocode generated for f->m() is:
r1 := f
r2 := ∗r1 –– vtable address
r2 := ∗(r2 + (3−1) × 4) –– assuming 4=sizeof(address)
call ∗r2

Method Overriding

Dynamic Type Casts

• Note that if you can query the type of an
object, then you need to be able to get from
the object to run-time type info
– The standard implementation technique is a type

info at the beginning of the vtable
– In C++, the class only has a vtable if the class

has virtual functions
• That's why dynamic_cast is disallowed on a pointer

whose static type doesn't have virtual functions
– Other approaches: intervals, Cohen display

Implementing Methods: this

• Methods are passed an extra, hidden, initial parameter:
this (called self in Smalltalk and some other languages)
• Allows the method to access the fields of the object and call

other methods
• Usually a pointer to the start of the object storage in memory

Multiple Interface Inheritance
class widget { ... }
class named_widget extends widget

implements sortable_object { ... }
class augmented_widget extends named_widget  

implements graphable_object, storable_object
{ ... }

Multiple Interface Inheritance

• Consider a cast from augmented_widget to sortable_object:
r2 := r1 + a

Multiple Interface Inheritance

• Consider a call to an interface method of sortable_object
r2 := ∗r1 –– vtable address
r3 := *r2 –– this correction
r3 += r1 -- add correction to old address
call ∗(r2 + 4) -- call (assumes first method in
vtable)

Object model practice

• Draw the layout of the object created at the end of this code.
Show all virtual function tables.

interface Pingable {
 public void ping();
}
class Counter implements Pingable {
 int count = 0;
 public void ping() {
 ++count;
 }
 public int val() {
 return count;
 }
}

Counter c = new Counter();

Real Multiple Inheritance

Two approaches:

• “non-virtual inheritance” – A C++ hack
• Just include state from both inherited classes
• Works like multiple interface inheritance
• If there’s a diamond in the hierarchy, you get some fields twice

• Good luck fixing bugs if the duplicate fields have inconsistent values!
• Fast, simple, and works if there are no diamonds, or if the diamond

classes have no state

• The right way (C++ virtual inheritance)
• Essentially treat fields like methods – look up their location in a vtable
• Slower, but has reasonable semantics

Animal

FlyingAnimalMammal

Bat

JavaScript’s Object Model
• Each object has multiple dynamically-typed properties

• Indexed by strings
• Can be added or deleted dynamically
• When a property is not found, the object’s prototype is consulted

• The prototype is the value of the property __proto__
• This property can be a mutable object!

• The vtable strategy doesn’t apply!
• Instead, start with a map from property name to value

• Implemented as a list of pairs, or a hashtable
• Slow!

Optimizing JavaScript
• Start with a map from property name to value

• Implemented as a list of pairs, or a hashtable
• Slow!

• Observation: most objects fall into one of a few “shapes”
• Used “hidden classes” (aka “shapes” or “maps”)

• Every object has a pointer to an immutable map describing object’s
properties

• No need for a hashtable for most objects
• Adding or removing a property changes the pointer to the map

Hidden Classes
• Hidden classes form a tree with transitions
• Example:

 function Foo(x, y) {
 this.x = x;
 this.y = y;
 }
 var x = new Foo(33, 44);  

• Each time a property is added, the hidden class is updated
• Deleting a property in LIFO order reverses the process
• Delete a different property?

• Typically go to hashtable strategy (known as “dictionary mode” in V8)
– otherwise too many hidden classes are generated

Foo2

x

Foo1

x

y

Foo3
add x add y

Inline Caches
• Consider looking up field x in the statement:

var f = o.x;

• An inline cache stores K entries, where an entry can be of the form:

 entry = {shape, offset}

• The access searches through the entries, looking for a matching shape
– The hashtable is a backup

• Code for the inline cache access looks like:

 lookup(o: Object, ic: InlineCache, propertyName: string)
{
 for (i = 0; i < K; i++) {
 if (o.shape == ic.entries[i].shape)
 return o.properties[ic.entries[i].offset];
 }
 // ic might be updated in this call
 return o.hashtable.lookup(propertyName, ic);
}

Mix-In Inheritance

• Classes can inherit from only one “real”
parent

• Can “mix in” any number of interfaces,
simulating multiple inheritance

• Interfaces appear in Java, C#, Go, Ruby, etc.
– contain only abstract methods, no method

bodies or fields
• Has become dominant approach,

superseding true multiple inheritance

True Multiple Inheritance

• In C++, you can say
class professor : public
teacher, public researcher {
 ...
 }
Here you get all the members of teacher and
all the members of researcher
– If there's anything that's in both (same name and

argument types), then calls to the member are
ambiguous; the compiler disallows them

True Multiple Inheritance

• You can of course create your own member in the
merged class
 professor::print () {
 teacher::print ();
 researcher::print (); ...
 }
Or you could get both:
 professor::tprint () {
 teacher::print ();
 }
 professor::rprint () {
 researcher::print ();
 }

True Multiple Inheritance

• Virtual base classes: In the usual case if you
inherit from two classes that are both
derived from some other class B, your
implementation includes two copies of B's
data members

• That's often fine, but other times you want a
single copy of B
– For that you make B a virtual base class

