Basic Blocks

We can decompose any program into a control flow graph of basic blocks. A
basic block is a contiguous series of instructions such that:

o Entry into the basic block only happens at the start of the basic block
o Exit out of the basic block only happens at the end of the basic block

Because the instructions 1n a basic block are always executed together, 1t’s
much simpler to perform optimizations within basic blocks.



Value Numbering within Basic Blocks

First, we write the original code we have into a form where every calculated
value 1s placed 1n a different virtual register. Let’s look at an example block.

vli := a We keep track of a dictionary and process the
v2 = a block line by line.

v3 = 17

vd = vl + v3

vb = v2 + Vv3

a := vbhb



Value Numbering within Basic Blocks

key value
a vl
vli = a a isn’t available anywhere
v2 = a so we have to load it.
v3 := 17
vd = vl + v3
v = v2 + v3
a := vb

vl :



Value Numbering within Basic Blocks

key value
a vl
V2 vl

vl := a

v2 = a

v3 = 17

vd = vl + v3
vhb = v2 + v3
a := vb

a is already available in v1.
We can replace all future
Instances of v2 with v1.

No instruction to be
generated here.

vl :



Value Numbering within Basic Blocks

key value
a vl
V2 vl
v3 17

vl := a
v2 = a
v3 = 17
vd = vl + v3
vhb = v2 + v3
a := vb

We can replace all future
uses of v3 with the constant
17 directly.

vl :



Value Numbering within Basic Blocks

key value

a vl

V2 vl vl := a

v3 17 vd = vl + 17
vl + 17 va

vl := a
v2 = a
v3 = 17
vd = vl + v3
vhb = v2 + v3
a := vb

First, we consult the dictionary to process vl + v3.v3is
already in there, so we replace it with 17.

Since vl + 17 wasn’t computed before, we make note
that we can find that value in v4.



Value Numbering within Basic Blocks

key value
a vl
vl := a V2 vl vl := a
V2 = a v3 17 vd := vl + 17
v3 := 17
vd = vl + v3 vli + 17 va
vh := v2 + v3 vh va
a := vb

Now, we consult the dictionary to process v2 + v3.v2
and v3 are already in there, so we replace it with vl + 17.

vl + 17 was computed before in v4! We can replace all
Instances of v5 with v4.



Value Numbering within Basic Blocks

key value
vl := a v2 vl vl := a
V2 = a v3 17 vd = vl + 17
e P I S VR 7 s v
vb 1= v2 + v3 vb v4
a_i= Vo a V2!

We are storing the value of virtual register v5 (whose value
is found in v4) into a. We need to invalidate the old entry
saying that the value of a can be found in v1, and place a
new entry.



Records in Dynamic Languages

* Assumption: all values have a size of one word

« Simplest approach 1s a tuple/fixed-length array “object”
« Stores N “slots” of equal size
« Read/write access 1s by index
« Tuples of various sizes can be created, so the runtime stores N
at the beginning of the memory block to check bounds
e Total size: N+1 words

* Need to know what type 1s 1n each slot

« Typical approach: values are tagged, so self-describing
« If values aren’t tagged, then you need a tag for each slot (does

it store an int, bool, or object?)

« Naively uses 2N+1 words, but can compress to 1 byte
or a couple of bits per slot



Records in Dynamic Languages

* More complicated approach:
« Stores N fields

« Layout: first the size (N) then an array of pairs of words

e The first element is a pointer to the field name (typically a string, but a
compiler could assign numbers if all field names are known)
» The second element is the actual value

» Size used: 2N+1 words
« Same tagging i1ssues apply, could result in using more space



Implementing allocation

Simple “bump allocator” approach
1. Get a big chunk of memory from the operating system
—  Or from Rust, in this class
2. Pick a register for allocation, initialize it to the start of the
chunk

— Callee-save registers are good choices, if you call an external
function they won’t get messed up.
3.  When allocating:
a. Make sure there is enough room left in the chunk to allocate. If not,
throw an error, or garbage collect (see below)
b. Copy the allocation register to the new pointer
c. Increment (bump) the allocation register by the specified amount

There are many more sophisticated approaches!

« We’ll discuss garbage collection and reference counting in the
next lecture
» guest lecture by my postdoc, whose research focuses on GC



Section 8.5 part 2: Recursive Types

ISR Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

PRAGMATICS

Copyright © 2025 by Elsevier. Slides written by Jonathan Aldrich and Michael L. Scott. Licensed under CC-BY 4.0.



https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Recursive types

Definition: a recursive type is one whose objects may contain
one or more references to other objects of the type

* Support common heap data structures such as lists, trees /R\
0 > 2 > 4 > 6 M AR

Recursive types are usually combined with a record (and maybe union) type
* The type typically needs to hold something in addition to the recursive reference
* There needs to be a non-recursive variant of the type as the base case for recursion

Examples
* Classes are unions, records, and recursive types
* ML datatypes are unions and recursive types
* records are separate but often used with datatypes

* Languages with null can encode simple unions by using a null pointer/reference

* null represents an empty base case, so an explicit union construct may not be needed
13



Recursive tree data structure in a language with pointers

* Each node in the data structure refers to left and right
nodes of the same type (or null, denoted with a slash)

R/‘\

e

\Y

/

2|1/

N\

/\
/\

Abstract (conceptual)
tree

14




Recursive tree data structure in Lisp

* Pointers are implicit as Lisp uses a reference model of variables
* Recursive data structures are typically built of cons cells
* The tag (C or A) distinguishes between a cons cell and an atom

15



Recursive datatype declarations in OCaml

* The following declares an integer list type in OCaml:

type IntList =
Cons of { value:int, next:IntList }
| Nil

* This is a recursive type because IntList is used within its type
definition (for the next field)

* The | denotes a union type, and { } denote a record type
* As mentioned earlier, these are often combined with recursive types

16



Modeling recursive types

* To understand recursive types better, let’s identify their
essence separately from records and unions

* We’ll add a recursive type rec T.tto our grammat.
* Tisthe name of the recursive type
* tisthe type’s definition
e Tcanappearin-t

T = ...|rec T.7|T
« Now we can model lists as follows:
rec List . union { Cons: { val:int, next:List }, Nil:unit }

* We use a recursive types, a union type, and a record type
e unit is a type that contains no data — conceptually a record with no fields

17




Unfolding recursive types

* Arecursive type is conceptually equivalent to its definition
* We can unfold a recursive type by replacing the type name with its definition

unfold(rec T.1) = |rec T.7/T|T

* The notation[rec T.t/T]Jt meanst, but with rec T substituted for T wherever it appears

18



Unfolding recursive types

* Arecursive type is conceptually equivalent to its definition
* We can unfold a recursive type by replacing the type name with its definition

unfold(rec T.1) = |rec T.7/T|T

* Here’s an example:

rec List|. union { Cons: { val:int, next:List|}, Nil:unit }

l unfold once

union { Cons: { val:int,
next:rec List . union { Cons: { val:int, next:List 1},
Nil: wunit } },

Nil: wunit }

* A symmetric fold operation replaces the body of a recursive type with the
recursive type itself

19



How do we know when to fold/unfold?

* Conceptually we can unfold as many times as we want
* butit’s not practical (the fully unfolded type would be infinite)
* in practice, type checkers unfold when needed

* but they need hints--this is why practical languages don’t provide a
recursive type by itself

* Thus, recursive types are combined with unions (and often fields)
ML datatypes, C structs, Java classes
* Operations on the combined type trigger folds and unfolds

* Afold operation is inserted when creating a class, struct, or datatype
instance

* An unfold operation is inserted when pattern matching (ML) or accessing
a field (C or Java)

20



Recursive type syntax

* We extend our syntax with:
* recursive types,
T — ... |recTs|T

* fold and unfold operations,

e — | fold e | unfold e

rec T.1

 and folded values

v — ...]| fold v

rec 1.1

* Our fold operation keeps track of the folded recursive type, for
bookkeeping

21



Recursive type semantics

* Folded data structures are values, so we only need to add
a rule for unfolding these values to get at their contents:

Er el fold Vv

recT .t

ev-unfold
EF unfold el v

* The typing rules convert between folded and unfolded representations
of types:

I'Fe:recT.7T I'Fe:|rec T.7/T|r
t-unfold t-fold
[' - unfold e: [rec T.7/T]|r ['F fold e:rec T.7T

recT.T

* The notation[rec T.1/T]Jt means 1, butwith rec T substituted for T
wherever it appears

22




Recursive type subtyping

* The main rule for recursive type subtyping is analogous
to depth subtyping

* One recursive is a subtype of another if their definitions have a
corresponding subtyping relationship, assuming in the check that the
recursive type variables are subtypes

P.T<:TFr<:7 T<-T T
— s-rec — - s-assume
I'FrecT. Tt <:recT'.7 I'=T<:T

* The second rule, s-assume, allows us to use this assumption
* We extend the definition of I to allow subtyping assumptions

23




Check your understanding: recursive types

* Why are recursive types typically combined with union
and record types?

* (press pause for more time)

24



Check your understanding: recursive types

* Why are recursive types typically combined with union
and record types?

* Answer: the recursive type typically stores data, and fields are
needed for that. Unions are needed to ensure the data structure
has a non-recursive base case. In languages with null pointers,
null can be used to represent an (empty) base case instead of an
explicit union.

25



	Basic Blocks
	Value Numbering within Basic Blocks
	Value Numbering within Basic Blocks
	Value Numbering within Basic Blocks
	Value Numbering within Basic Blocks
	Value Numbering within Basic Blocks
	Value Numbering within Basic Blocks
	Value Numbering within Basic Blocks
	Records in Dynamic Languages
	Records in Dynamic Languages
	Implementing allocation
	Section 8.5 part 2: Recursive Types
	Recursive types
	Recursive tree data structure in a language with pointers
	Recursive tree data structure in Lisp
	Recursive datatype declarations in OCaml
	Modeling recursive types
	Unfolding recursive types
	Unfolding recursive types
	How do we know when to fold/unfold?
	Recursive type syntax
	Recursive type semantics
	Recursive type subtyping
	Check your understanding: recursive types
	Check your understanding: recursive types

