
Chapter 9: Subroutines and Control Abstraction
Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

Copyright © 2024 by Jonathan Aldrich and Michael L. Scott.

Static Scoping

• What does this Java code print?
class Outer {
 int x = 1;
 class Inner {
 int x = 2;
 void foo() {
 if (flag) {
 int x = 3;
 }
 System.out.println(“x = ” + x); // what do I print?
} } }

• With static (or lexical) scope rules, a scope is defined in terms of the
lexical structure of the program

• The determination of scopes can be made by the compiler
• Bindings for identifiers are resolved by examining code
• Typically, the most recent binding in an enclosing scope
• Most compiled languages, C and Pascal included, employ static scope rules 2

Static Scoping

• What does this Java code print?
class Outer {
 int x = 1;
 class Inner {
 int x = 2;
 void foo() {
 if (flag) {
 int x = 3;
 }
 System.out.println(“x = ” + x); // what do I print?
} } }

• With static (or lexical) scope rules, a scope is defined in terms of the
lexical structure of the program

• The determination of scopes can be made by the compiler
• Bindings for identifiers are resolved by examining code
• Typically, the most recent binding in an enclosing scope
• Most compiled languages, C and Pascal included, employ static scope rules 3

Answer: 2

Scope Rules

• Most closely nested rule
• Origin: block-structured languages like Algol 60, Pascal
• An identifier is known in the scope in which it is declared and in each

enclosed scope, unless it is re-declared in an enclosed scope
• To resolve a reference to an identifier, we examine the local scope and

statically enclosing scopes until a binding is found

4

Dynamic Scope

• (in contrast to static scope)
• No static links – just look up the latest binding of a variable in the

stack
• This may be a variable from unrelated code!
• Makes reasoning based on program text hard

5

Practice with Scope Rules: Static vs. Dynamic

program scopes (input, output);
 var a : integer;
 procedure first;
 begin a := 1; end;
 procedure second;
 var a : integer;
 begin first; end;
begin
 a := 2; second; print(a);
end.
• What is printed under static scoping?

• What is printed under dynamic scoping?

6

Practice with Scope Rules: Static vs. Dynamic

program scopes (input, output);
 var a : integer;
 procedure first;
 begin a := 1; end;
 procedure second;
 var a : integer;
 begin first; end;
begin
 a := 2; second; print(a);
end.
• What is printed under static scoping?

• 1
• What is printed under dynamic scoping?

• 2

7

Static Links

• Access non-local variables via static links
• Each frame points to the frame of the (correct instance of) the routine

inside which it was declared
• In the absence of passing functions as parameters, correct means

closest to the top of the stack
• You access a variable in a scope k levels out by following k static links and

then using the known offset within the frame thus found

8

Static Chains

9

Q: If we are in subroutine C, what
does an access to a variable v
defined in subroutine A look like?

Static Chains

10

Q: If we are in subroutine C, what
does an access to a variable v
defined in subroutine A look like?

A: fp.link.link.v

or in assembly:

mov rax [rsp + link_offset]
mov rax [rax + link_offset]
mov rax [rax + v_offset]

Lifetime and Storage Management

• Maintenance of stack is responsibility of calling sequence and
subroutine prologue and epilogue
• Save space by putting as much as possible in the callee’s prologue and

epilogue, rather than in the calling sequence (i.e. in the caller)…why?
• Because most procedures have multiple callers
• Moving a line of “administrative code” to the callee saves a line in every caller

Reminder: Organization of the Stack

12

Calling Sequences

• Maintenance of stack is responsibility of calling sequence and
subroutine prolog and epilog

• space is saved by putting as much in the prolog and epilog as possible
• time may be saved by putting stuff in the caller instead, where more

information may be known
• e.g., there may be fewer registers IN USE at the point of call than are used

SOMEWHERE in the callee

• Common strategy is to divide registers into caller-saves and
callee-saves sets

• caller uses the "callee-saves" registers first
• "caller-saves" registers if necessary

• Local variables and arguments are assigned fixed OFFSETS from
the stack pointer or frame pointer at compile time

13

Organization of a Stack Frame

14

Calling Convention: System V AMD64 ABI

• De facto standard on Unix systems (including Linux & macOS)
• used for extern C calls from Rust on this platform
• reference: https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf

• Callee-saved registers: rbp, rbx, r12-r15
• rsp points to the end of the latest allocated stack frame
• rsp+8 must be 16-byte aligned at a call
• you can use 128 bytes beyond (lower than) rsp and interrupts won’t touch

them
• the first 64-bit arguments are passed in registers, in order: rdi, rsi, rdx, rcx, r8,

r9
• additional arguments (or arguments too big for a register) are passed on the stack in

reverse (right-to-left) order
• a 64-bit (or less) result is returned in rax

• if return value is larger, space is allocated on the stack, and address is passed in rdi as a
hidden first argument

15

Calling Convention: System V AMD64 ABI

• call val
• push rip - pushes (see below) rip (instruction pointer) register onto stack
• jmp val - jumps to the provided address (literal or register)

• ret
• pop rip - pops (see below) rip (instruction pointer) from the stack and

continues execution
• push val

• sub rsp, 8 - decrements the stack pointer (by 8 if pushing a 64-bit register)
• mov [rsp], val - writes to the space just allocated

• pop reg
• mov reg [rsp]
• add rsp, 8

16

Binding of Referencing Environments

• A referencing environment of a statement at run time is the set of
active bindings

• A referencing environment corresponds to a collection of scopes
that are examined (in order) to find a binding

17

First Class Functions

• Consider the following OCaml code:
let plus_n n = fun k -> n + k;;
let plus_3 = plus_n 3;;
let apply_to_2 f = f 2;;

apply_to_2 plus3 => 5

• Let’s look at how this executes
(on the blackboard)

18

Lambda
expression

Closures

• A closure is a pair of a function and a referencing environment

plus_3

• Created when a function is passed, returned, or stored
• Necessary to implement static scoping correctly

• Otherwise the variable referenced might not be around anymore! Variable
lifetime exceeds binding lifetime.

• Languages with dynamic scoping don’t need them
• Just use the caller’s environment!

• Also called “shallow binding” – closures implement “deep binding”
• But Lisp supports closure creation if programmer asks

19

fun k -> n + k

n=3

Closures

• A closure is a pair of a function and a referencing environment

plus_3

• Several implementations
• Allocate all referencing environments on the heap, copy a pointer into the

closure
• This is what most functional language implementations do—with optimizations

when no closure will be created

• Allocate referencing environments on the stack, copy the bindings that
are used into the closure

• This can work well if there are few captured variables
and the data is immutable and small in size 20

fun k -> n + k

n=3

Let’s compile the following code using closures

let x = 3 in
let f = fn y => x + y in
f(2)

21

What code is generated, both for
main and for the lambda body?

Let’s compile the following code using closures

let x = 3 in
let f = fn y => x + y in
f(2)

ANSWER (lambda code)
lambda1:
 mov rax, [rsp+8] ; load env addr
 mov rax, [rax] ; load x from closure
 mov rbx, [rsp+16] ; load y
 add rax, rbx ; x+y
 ret ; return

22

ANSWER (main)
push 3 ; local var on stack
push 16 ; arg to malloc
call malloc ; allocate 16 bytes
sub rsp 8 ; pop argument off stack
mov [rax], lambda1 ; addr of lamba code
mov rbx, [rsp] ; x
mov [rax+8], rbx
push 2 ; arg to f
mov rbx, rax+8 ; closure environment ptr
push rbx ; implicit closure arg
mov rax, [rax] ; load address of function
call rax ; indirect call
sub rsp, 16 ; pop arguments off stack

Implementing closures
• Allocating a closure to a function with code at address addr, with n closed-over variables
rax = allocate space of size (n+1)*8
mov [rax], addr
for (i = 1..n)
 mov [rax+i*8], var_i
// pointer to closure is in rax now

• Calling a closure c
mov rdi, c
// add other arguments…
mov rax, [rdi] // load the function pointer
call rax

• Accessing the ith closed-over variable inside the closure
mov rax, [rdi+i*8]

23

Tail Recursion

• Recursive call whose result is directly returned
• Can implement with a jump instead of a call

• Stack frame of called function takes the place of the caller

int gcd (int a, int b) {
 /* assume a, b > 0 */
 if (a == b) return a;
 else if (a > b) return gcd (a - b,b);
 else return gcd (a, b – a);
}

24

	Chapter 9: Subroutines and Control Abstraction
	Static Scoping
	Static Scoping
	Scope Rules
	Dynamic Scope
	Practice with Scope Rules: Static vs. Dynamic
	Practice with Scope Rules: Static vs. Dynamic
	Static Links
	Static Chains
	Static Chains
	Lifetime and Storage Management
	Reminder: Organization of the Stack
	Calling Sequences
	Organization of a Stack Frame
	Calling Convention: System V AMD64 ABI
	Calling Convention: System V AMD64 ABI
	Binding of Referencing Environments
	First Class Functions
	Closures
	Closures
	Let’s compile the following code using closures
	Let’s compile the following code using closures
	Implementing closures
	Tail Recursion

