
Chapter 4: Program Semantics
Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

Copyright © 2024 by Jonathan Aldrich and Michael L. Scott

Program Semantics

• While syntax describes the form of a program, semantics
describes its meaning

• Dynamic semantics: How the program computes its output
• We’ve studied big-step and small-step operational semantics as a way of

defining dynamic semantics

• Static semantics: Language rules enforced at compile time
• Example: checking for unbound identifiers (remember HW1?)
• Example: checking that operations are passed the right types (today!)

• true + 5 is not a valid addition expression!
• Checked in the semantic analysis phase of the compiler
• These will be the focus of this lecture

Why type check?

• Finds program errors at compile time
• true + 5
• If we didn’t type check at compile time, then this program would result in

an error at run time. It’s better to find it early!
• Moreover, checking for these errors at run time slows the program down.

If we check at compile time we can avoid these run time checks.

• Ensures that types are correct
• Helpful because types are important documentation for programmers!

• Help generate code
• 3+2 should generate different assembly code than 3.14+2.5

Type checking, at a high level

• A type checker traverses that abstract syntax tree (AST) of a
program, computing the types of subtrees and flagging errors

• We can describe types with a grammar
• For our calculator language with functions:
• nat is the type of natural numbers
• τ1 → τ2 is the type of a function

• takes arguments of type τ1

• returns a result of type τ2

Type checking numbers and addition

• Consider our calculator language with functions:

• We define a judgment for assigning types to expressions:
• Now we can define rules for checking numbers and addition:

Note that function arguments
now have a type annotation!

Type checking variables

• How does a type checker know the type of a variable?
• Type checkers rely on a type environment Γ
• Γ maps each identifier to its type

• We revise our judgment form:
• “In the context of type environment Γ, e has type τ”

• Now we can write typing rules for variables and let:

• The is a hypothetical judgment: e has type τ assuming
(hypothetically) that the variables in e have the types given in Γ

Revising our previous rules

• Let’s revise the type checking rules for numbers and addition to
match our new judgment form:

• T-plus needs Γ because e1 and e2 might have variables in them
• T-num doesn’t use Γ, but we have to include it so the judgment

form is consistent for all rules

Practice with typing rules

• Show a typing derivation for the following program:

You can do this exercise on paper or with a drawing tool. Leave some space on the sheet for a
second practice question; you’ll turn in both later in the lecture for in-class participation credit.
Here are our rules so far:

Don’t peek until you did the problem! Answer next…

Practice with typing rules (SOLUTION)

• Show a typing derivation for the following program:

Practice with typing rules (SOLUTION)

• Show a typing derivation for the following program:

Type checking functions

• The function typing rule checks the body of the function assuming
that the argument has the annotated type τ2:

Practice writing typing rules

• Write a typing rule for application expressions of the form e1(e2)

• To get in-class participation credit, upload a picture or screenshot of your answers at
https://forms.gle/HQ19Da9NfgRTP2jVA (or the QR code above) using your Andrew ID as the
email.

• Here are some rules so far:

https://forms.gle/HQ19Da9NfgRTP2jVA

Don’t peek until you did the problem! Answer next…

Practice writing typing rules

• Write a typing rule for application expressions of the form e1(e2)

• Solution:

• The T-apply rule checks the following:
• The expression in function position must have a function type
• The expression in argument position must have a type matching the

function’s argument type
• The overall expression’s type is the function’s return type

Implementing a type checker in Rust
#[derive(PartialEq)]
#[derive(Clone)]
enum Type {
 Int,
 Bool,
}

fn typecheck(e: &Expr, ctx:&HashMap<String, Type>) -> Type {
 match e {
 Expr::Number(_) => Type::Int,
 Expr::Boolean(_) => Type::Bool,
 Expr::Plus(e1, e2) => {
 let ty1 = typecheck(e1, ctx);
 let ty2 = typecheck(e2, ctx);
 if ty1 != Type::Int || ty2 != Type::Int {
 panic!("Type mismatch: expected Int");
 }
 Type::Int
 },
 ...
 }
}

Implementing a type checker in Rust
#[derive(PartialEq)]
#[derive(Clone)]
enum Type {
 Int,
 Bool,
}

fn typecheck(e: &Expr, ctx:&HashMap<String, Type>) -> Type {
 match e {
 ...
 Expr::Id(name) => {
 match ctx.get(name) {
 Some(ty) => ty.clone(),
 None => panic!(...),
 }
 },
 Expr::Let(name, rhs, body) => {
 let mut new_ctx = ctx.clone();
 if KEYWORD_LIST.contains(name) {
 panic!(“variable name is a keyword");
 }
 let ty1 = typecheck(rhs, &new_ctx);
 new_ctx = new_ctx.update(name.clone(), ty1);
 typecheck(body, &new_ctx)
 },
 }
}

Fun Rust Tricks

static KEYWORD_LIST : LazyLock<Vec<String>> =
 std::sync::LazyLock::new(
 || vec!["let", "if",...].into_iter().map(
 |s| s.to_string()
).collect()
);

• How do we make a global constant for KEYWORD_LIST?
• You might think it’s easy, but Rust doesn’t permit global mutable state
• The list is immutable, but have to use state to initialize it and rustc says no

• Some tricks to make this work:
• A LazyLock allows lazy initialization
• Actual stateful manipulation goes in a lamba (increment lambda is |x| x+1 in Rust)
• The constants have type &str, so we convert the Vec to an iterator, map to String with
to_string(), and collect into a new Vec

	Chapter 4: Program Semantics
	Program Semantics
	Why type check?
	Type checking, at a high level
	Type checking numbers and addition
	Type checking variables
	Revising our previous rules
	Practice with typing rules
	Don’t peek until you did the problem! Answer next…
	Practice with typing rules (SOLUTION)
	Practice with typing rules (SOLUTION)
	Type checking functions
	Practice writing typing rules
	Don’t peek until you did the problem! Answer next…
	Practice writing typing rules
	Implementing a type checker in Rust
	Implementing a type checker in Rust
	Fun Rust Tricks

