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Program Semantics

• While syntax describes the form of a program, semantics 
describes its meaning

• Dynamic semantics: How the program computes its output
• We’ve studied big-step and small-step operational semantics as a way of 

defining dynamic semantics

• Static semantics: Language rules enforced at compile time
• Example: checking for unbound identifiers (remember HW1?)
• Example: checking that operations are passed the right types (today!)

• true + 5 is not a valid addition expression!
• Checked in the semantic analysis phase of the compiler
• These will be the focus of this lecture



Why type check?

• Finds program errors at compile time
• true + 5
• If we didn’t type check at compile time, then this program would result in 

an error at run time.  It’s better to find it early!
• Moreover, checking for these errors at run time slows the program down.  

If we check at compile time we can avoid these run time checks.

• Ensures that types are correct
• Helpful because types are important documentation for programmers!

• Help generate code
• 3+2 should generate different assembly code than 3.14+2.5



Type checking, at a high level

• A type checker traverses that abstract syntax tree (AST) of a 
program, computing the types of subtrees and flagging errors

• We can describe types with a grammar
• For our calculator language with functions:
• nat is the type of natural numbers
• τ1 → τ2 is the type of a function

• takes arguments of type τ1

• returns a result of type τ2



Type checking numbers and addition

• Consider our calculator language with functions:

• We define a judgment for assigning types to expressions: 
• Now we can define rules for checking numbers and addition:

Note that function arguments 
now have a type annotation!



Type checking variables

• How does a type checker know the type of a variable?
• Type checkers rely on a type environment Γ
• Γ maps each identifier to its type

• We revise our judgment form:
• “In the context of type environment Γ, e has type τ”

• Now we can write typing rules for variables and let:

• The is a hypothetical judgment: e has type τ assuming 
(hypothetically) that the variables in e have the types given in Γ



Revising our previous rules

• Let’s revise the type checking rules for numbers and addition to 
match our new judgment form:

• T-plus needs Γ because e1 and e2 might have variables in them
• T-num doesn’t use Γ, but we have to include it so the judgment 

form is consistent for all rules



Practice with typing rules

• Show a typing derivation for the following program:

You can do this exercise on paper or with a drawing tool.  Leave some space on the sheet for a 
second practice question; you’ll turn in both later in the lecture for in-class participation credit.
Here are our rules so far:



Don’t peek until you did the problem!  Answer next…



Practice with typing rules (SOLUTION)

• Show a typing derivation for the following program:



Practice with typing rules (SOLUTION)

• Show a typing derivation for the following program:



Type checking functions

• The function typing rule checks the body of the function assuming 
that the argument has the annotated type τ2:



Practice writing typing rules

• Write a typing rule for application expressions of the form e1(e2)

• To get in-class participation credit, upload a picture or screenshot of your answers at 
https://forms.gle/HQ19Da9NfgRTP2jVA (or the QR code above) using your Andrew ID as the 
email.

• Here are some rules so far:

https://forms.gle/HQ19Da9NfgRTP2jVA


Don’t peek until you did the problem!  Answer next…



Practice writing typing rules

• Write a typing rule for application expressions of the form e1(e2)

• Solution:

• The T-apply rule checks the following:
• The expression in function position must have a function type
• The expression in argument position must have a type matching the 

function’s argument type
• The overall expression’s type is the function’s return type



Implementing a type checker in Rust
#[derive(PartialEq)]
#[derive(Clone)]
enum Type {
  Int,
  Bool,
}

fn typecheck(e: &Expr, ctx:&HashMap<String, Type>) -> Type {
  match e {
    Expr::Number(_) => Type::Int,
    Expr::Boolean(_) => Type::Bool,
    Expr::Plus(e1, e2) => {
      let ty1 = typecheck(e1, ctx);
      let ty2 = typecheck(e2, ctx);
      if ty1 != Type::Int || ty2 != Type::Int {
        panic!("Type mismatch: expected Int");
      }
            Type::Int
    },
    ...
 }
}



Implementing a type checker in Rust
#[derive(PartialEq)]
#[derive(Clone)]
enum Type {
  Int,
  Bool,
}

fn typecheck(e: &Expr, ctx:&HashMap<String, Type>) -> Type {
  match e {
    ...
    Expr::Id(name) => {
      match ctx.get(name) {
        Some(ty) => ty.clone(),
        None => panic!(...),
      }
    },
    Expr::Let(name, rhs, body) => {
      let mut new_ctx = ctx.clone();
      if KEYWORD_LIST.contains(name) {
        panic!(“variable name is a keyword");
      }
      let ty1 = typecheck(rhs, &new_ctx);
      new_ctx = new_ctx.update(name.clone(), ty1);
      typecheck(body, &new_ctx)
    },
 }
}



Fun Rust Tricks

static KEYWORD_LIST : LazyLock<Vec<String>> =
    std::sync::LazyLock::new(
        || vec!["let", "if",...].into_iter().map(
                |s| s.to_string()
            ).collect()
    );

• How do we make a global constant for KEYWORD_LIST?
• You might think it’s easy, but Rust doesn’t permit global mutable state
• The list is immutable, but have to use state to initialize it and rustc says no

• Some tricks to make this work:
• A LazyLock allows lazy initialization
• Actual stateful manipulation goes in a lamba  (increment lambda is |x| x+1 in Rust)
• The constants have type &str, so we convert the Vec to an iterator, map to String with 
to_string(), and collect into a new Vec
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