
Copyright © 2016 Elsevier and Jonathan Aldrich

Data Flow Analysis

17-363/17-663: Programming Language Pragmatics

Reading: PLP chapter 17

Prof. Jonathan Aldrich



• Data flow analysis tracks the flow of information 
across basic block boundaries

• Examples:
– Reaching definitions: which assignments to a variable 

reach a given program point?
– Available expressions: which expressions are available 

in a (virtual) register?
– Constant propagation: what variables hold constant 

values?
– Sign analysis: is a variable positive, negative, zero, or 

of unknown sign?
– Range analysis: what is the maximum and minimum 

value of a variable at a program point?

Data Flow Analysis



• Many instances of data flow analysis can be cast 
in the following framework: 
1. four sets for each basic block B, called InB, OutB, GenB, 

and KillB; 
2. values for the Gen and Kill sets; 
3. an equation relating the sets for any given block B; 
4. an equation relating the Out set of a given block to the 

In sets of its successors, or relating the In set of the 
block to the Out sets of its predecessors; and (often) 

5. certain initial conditions

Data Flow Analysis Frameworks



• The goal of the analysis is to find a fixed point of 
the equations: a consistent set of In and Out sets 
(usually the smallest or the largest) that satisfy 
both the equations and the initial conditions
– Some problems have a single fixed point

– Others may have more than one
• we usually want either the least or the greatest fixed point 

(smallest or largest sets)

Global Redundancy and 
Data Flow Analysis



• In the case of global common subexpression 
elimination, InB is the set of expressions (virtual 
registers) guaranteed to be available at the 
beginning of block B
– These available expressions will all have been set by 

predecessor blocks
– OutB is the set of expressions guaranteed to be available 

at the end of B
– KillB is the set of expressions killed in B: invalidated by 

assignment to one of the variables used to calculate the 
expression, and not subsequently recalculated in B

– GenB is the set of expressions calculated in B and not 
subsequently killed in B

Global Redundancy and 
Data Flow Analysis



• The data flow equations for available 
expression analysis are:

Global Redundancy and 
Data Flow Analysis

• Our initial condition is In1 = : no expressions are 
available at the beginning of execution



• Available expression analysis is known as a 
forward data flow problem, because information 
flows forward across branches: the In set of a 
block depends on the Out sets of its predecessors
– We will see an example of a backward data flow 

problem later 

• We calculate the desired fixed point of our 
equations in an inductive (iterative) fashion

• Our equation for InB uses intersection to insist that 
an expression be available on all paths into B
– In our iterative algorithm, this means that InB can only 

shrink with subsequent iterations

Global Redundancy and 
Data Flow Analysis



Example of Available Expressions 
Analysis

start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
v8 := c / 2



Exercise: Apply available expressions 
analysis to this program

start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v1 := a*2
v4 := v1+3
goto endif

endif:
v1 := a*2
v7 := v1+3
return v7

else:
b := v1
v4 := v1+3



• We turn our attention to live variable analysis -very 
important in any subroutine in which global 
common subexpression analysis has eliminated 
load instructions

• Live variable analysis is a backward flow problem
• It determines which instructions produce values 

that will be needed in the future, allowing us to 
eliminate dead (useless) instructions
– in our example we consider only values written to 

memory and with the elimination of dead stores
– applied to values in virtual registers as well, live variable 

analysis can help to identify other dead instructions

Live Variable Analysis



• For this instance of data flow analysis
– InB is the set of variables live at the beginning of block B
– OutB is the set of variables live at the end of the block
– GenB is the set of variables read in B without first being 

written in B
– KillB is the set of variables written in B without having 

been read first

• The data flow equations are:

Live Variable Analysis



Example of Live Variable Analysis and 
Dead Code Elimination

start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
return c / 2



Exercise: Apply live variable analysis and 
dead code elimination to this program

start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v3 := a*2
v4 := v1+3
goto endif

endif:
v6 := a*2
v7 := v6+3
return v7

else:
b := v1
v5 := v1+3


