
Data flow analysis

• Data flow analysis tracks the flow of information across basic
block boundaries

• Examples:
• Available expressions: which expressions are available in a (virtual)

register?
• Reaching definitions: which assignments to a variable reach a given

program point?
• Constant propagation: what variables hold constant values?
• Sign analysis: is a variable positive, negative, zero, or of unknown sign?
• Range analysis: what is the maximum and minimum value of a variable

at a program point?

1

Example of available expressions

2

start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
return c / 2

Data flow analysis frameworks

• Many instances of data flow analysis can be cast in the following
framework:
1. four sets for each basic block B, called InB, OutB, GenB, and KillB;
2. values for the Gen and Kill sets;
3. an equation relating the sets for any given block B;
4. an equation relating the Out set of a given block to the In sets of its

successors, or relating the In set of the block to the Out sets of its
predecessors; and (often)

5. certain initial conditions

3

Solving data flow analysis equations

• The goal of the analysis is to find a fixed point of the equations: a
consistent set of In and Out sets (usually the smallest or the
largest) that satisfy both the equations and the initial conditions
• Some problems have a single fixed point
• Others may have more than one

• we usually want either the least or the greatest fixed point (smallest or largest sets)

4

Global common subexpression elimination

• In the case of global common subexpression elimination, InB is
the set of expressions (virtual registers) guaranteed to be
available at the beginning of block B
• These available expressions will all have been set by predecessor blocks
• OutB is the set of expressions guaranteed to be available at the end of B
• KillB is the set of expressions killed in B: invalidated by assignment to

one of the variables used to calculate the expression, and not
subsequently recalculated in B

• GenB is the set of expressions calculated in B and not subsequently
killed in B

5

Available expression data flow equations

• The data flow equations for available expression analysis are:

• Our initial condition is In1 = ∅: no expressions are available at the
beginning of execution

6

Solving data flow analysis equations

• Available expression analysis is known as a forward data flow
problem, because information flows forward across branches:
the In set of a block depends on the Out sets of its predecessors
• We will see an example of a backward data flow problem later

• We calculate the desired fixed point of our equations in an
inductive (iterative) fashion

• Our equation for InB uses intersection to insist that an
expression be available on all paths into B
• In our iterative algorithm, this means that InB can only shrink with

subsequent iterations

7

Example of available expressions (revisited)

8

start:
v1 := a1 + 1
v2 := b 1 * 2
v3 := v2 - 3
v4 := c / 2

header:
b3 := ϕ(b1, b2)
v5 := b1 * 2
if v4 < 7 goto end

body:
v6 := b3 * 2
a2 := v6
v7 := a2 + 1
b2 := v7
goto header

end:
v8 := c / 2

Partial redundancy elimination

9

Check your understanding: available expressions

• Apply available expressions
analysis to the control flow graph on
the left

10

start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v1 := a*2
v4 := v1+3
goto endif

endif:
v1 := a*2
v7 := v1+3
return v7

else:
b := v1
v4 := v1+3

Analysis correctness

• Optimizations often rely on analysis information
• Constant propagation: correspondences between

variables and the particular known constant values that
they will hold (or a token to represent that the value is unknown)

• Rough guide to correctness: when you replace symbolic
information in the analysis with concrete information from
particular executions, does the result hold?

• Does the variable hold the claimed constant at run time?
• Becomes a lemma in the proof of soundness for the “client”

optimization

11

Section 17.4.2 part 2:
Live Variable Analysis

Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

Copyright © 2025 by Elsevier. Slides written by Jonathan Aldrich and Michael L. Scott.

Live variable analysis

• We turn our attention to live variable analysis—very important in
any subroutine in which global common subexpression analysis
has eliminated load instructions

• Live variable analysis is a backward flow problem
• It determines which instructions produce values that will be

needed in the future, allowing us to eliminate dead (useless)
instructions
• in our example we consider only values written to memory and with the

elimination of dead stores
• applied to values in virtual registers as well, live variable analysis can

help to identify other dead instructions

13

Defining live variable analysis

• For this instance of data flow analysis
• InB is the set of variables live at the beginning of block B
• OutB is the set of variables live at the end of the block
• GenB is the set of variables read in B without first being written in B
• KillB is the set of variables written in B without having been read first

• The data flow equations are:

14

Example of live variable analysis and dead code elimination

15

start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
return c / 2

Example of live variable analysis and dead code elimination

16

start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
return c / 2

in: { c }
gen: { c }
kill: {}
out: {}

in: { b c }
gen: { b }
kill: { v5 }
out: { b c }

in: { b c }
gen: { b }
kill: { a b6 v7 }
out: { b c }

in: { a b c }
gen: { a b c }
kill: { v1 v2 v3 v4 }
out: { b c }

Check your understanding:
live variable analysis and dead code elimination

17

start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v3 := a*2
v4 := v1+3
goto endif

endif:
v6 := a*2
v7 := v6+3
return v7

else:
b := v1
v5 := v1+3

	Data flow analysis
	Example of available expressions
	Data flow analysis frameworks
	Solving data flow analysis equations
	Global common subexpression elimination
	Available expression data flow equations
	Solving data flow analysis equations
	Example of available expressions (revisited)
	Partial redundancy elimination
	Check your understanding: available expressions
	Analysis correctness
	Section 17.4.2 part 2:�Live Variable Analysis
	Live variable analysis
	Defining live variable analysis
	Example of live variable analysis and dead code elimination
	Example of live variable analysis and dead code elimination
	Check your understanding:�live variable analysis and dead code elimination

