
Data flow analysis

• Data flow analysis tracks the flow of information across basic 
block boundaries

• Examples:
• Available expressions: which expressions are available in a (virtual) 

register?
• Reaching definitions: which assignments to a variable reach a given 

program point?
• Constant propagation: what variables hold constant values?
• Sign analysis: is a variable positive, negative, zero, or of unknown sign?
• Range analysis: what is the maximum and minimum value of a variable 

at a program point?
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Example of available expressions
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start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
return c / 2



Data flow analysis frameworks

• Many instances of data flow analysis can be cast in the following 
framework: 
1. four sets for each basic block B, called InB, OutB, GenB, and KillB; 
2. values for the Gen and Kill sets; 
3. an equation relating the sets for any given block B; 
4. an equation relating the Out set of a given block to the In sets of its 

successors, or relating the In set of the block to the Out sets of its 
predecessors; and (often) 

5. certain initial conditions
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Solving data flow analysis equations

• The goal of the analysis is to find a fixed point of the equations: a 
consistent set of In and Out sets (usually the smallest or the 
largest) that satisfy both the equations and the initial conditions
• Some problems have a single fixed point
• Others may have more than one

• we usually want either the least or the greatest fixed point (smallest or largest sets)
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Global common subexpression elimination

• In the case of global common subexpression elimination, InB is 
the set of expressions (virtual registers) guaranteed to be 
available at the beginning of block B
• These available expressions will all have been set by predecessor blocks
• OutB is the set of expressions guaranteed to be available at the end of B
• KillB is the set of expressions killed in B: invalidated by assignment to 

one of the variables used to calculate the expression, and not 
subsequently recalculated in B

• GenB is the set of expressions calculated in B and not subsequently 
killed in B

5



Available expression data flow equations

• The data flow equations for available expression analysis are:

• Our initial condition is In1 = ∅: no expressions are available at the 
beginning of execution
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Solving data flow analysis equations

• Available expression analysis is known as a forward data flow 
problem, because information flows forward across branches: 
the In set of a block depends on the Out sets of its predecessors
• We will see an example of a backward data flow problem later 

• We calculate the desired fixed point of our equations in an 
inductive (iterative) fashion

• Our equation for InB uses intersection to insist that an 
expression be available on all paths into B
• In our iterative algorithm, this means that InB can only shrink with 

subsequent iterations
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Example of available expressions (revisited)
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start:
v1 := a1 + 1
v2 := b 1 * 2
v3 := v2 - 3
v4 := c / 2

header:
b3 := ϕ(b1, b2)
v5 := b1 * 2
if v4 < 7 goto end

body:
v6 := b3 * 2
a2 := v6
v7 := a2 + 1
b2 := v7
goto header

end:
v8 := c / 2



Partial redundancy elimination
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Check your understanding: available expressions

• Apply available expressions 
analysis to the control flow graph on 
the left
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start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v1 := a*2
v4 := v1+3
goto endif

endif:
v1 := a*2
v7 := v1+3
return v7

else:
b := v1
v4 := v1+3



Analysis correctness

• Optimizations often rely on analysis information
• Constant propagation: correspondences between

variables and the particular known constant values that
they will hold (or a token to represent that the value is unknown)

• Rough guide to correctness: when you replace symbolic 
information in the analysis with concrete information from 
particular executions, does the result hold?

• Does the variable hold the claimed constant at run time?
• Becomes a lemma in the proof of soundness for the “client” 

optimization
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Live variable analysis

• We turn our attention to live variable analysis—very important in 
any subroutine in which global common subexpression analysis 
has eliminated load instructions

• Live variable analysis is a backward flow problem
• It determines which instructions produce values that will be 

needed in the future, allowing us to eliminate dead (useless) 
instructions
• in our example we consider only values written to memory and with the 

elimination of dead stores
• applied to values in virtual registers as well, live variable analysis can 

help to identify other dead instructions
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Defining live variable analysis

• For this instance of data flow analysis
• InB is the set of variables live at the beginning of block B
• OutB is the set of variables live at the end of the block
• GenB is the set of variables read in B without first being written in B
• KillB is the set of variables written in B without having been read first

• The data flow equations are:
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Example of live variable analysis and dead code elimination
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start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
return c / 2



Example of live variable analysis and dead code elimination
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start:
v1 := a + 1
v2 := b * 2
v3 := v2 - 3
v4 := c / 2

header:
v5 := b * 2
if v4 < 7 goto end

body:
v6 := b * 2
a := v6
v7 := a + 1
b := v7
goto header

end:
return c / 2

in: { c }
gen: { c }
kill: {}
out: {}

in: { b c }
gen: { b }
kill: { v5 }
out: { b c }

in: { b c }
gen: { b }
kill: { a b6 v7 }
out: { b c }

in: { a b c }
gen: { a b c }
kill: { v1 v2 v3 v4 }
out: { b c }



Check your understanding:
live variable analysis and dead code elimination
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start:
v1 := a*2
v2 := b-1
if v1 < v2 goto else

then:
a := v2
v3 := a*2
v4 := v1+3
goto endif

endif:
v6 := a*2
v7 := v6+3
return v7

else:
b := v1
v5 := v1+3
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