Data flow analysis

 Data flow analysis tracks the flow of information across basic
block boundaries

* Examples:

Available expressions: which expressions are available in a (virtual)
register?

Reaching definitions: which assignments to a variable reach a given
program point?

Constant propagation: what variables hold constant values?

Sign analysis: is a variable positive, negative, zero, or of unknown sign?

Range analysis: what is the maximum and minimum value of a variable
at a program point?




Example of available expressions

start:
vli:=a+1
v2:=b*2
v3:=v2-3
vd:=c/2

v

header:
vHi:i=b*2 —>
if v4 <7 goto end

A

end:
returnc/ 2

body:
v6:=b*2
a:.:=vb
v/:=a+1
b:=v7

goto header




Data flow analysis frameworks

Many instances of data flow analysis can be cast in the following
framework:

1.
. values for the Gen and Kill sets;
. an equation relating the sets for any given block B;

A wWN

four sets for each basic block B, called /Ing, Outg, Geng, and Killg;

an equation relating the Out set of a given block to the In sets of its
successors, or relating the /n set of the block to the Out sets of its
predecessors; and (often)

. certain initial conditions




Solving data flow analysis equations

* The goal of the analysis is to find a fixed point of the equations: a
consistent set of In and Out sets (usually the smallest or the
largest) that satisfy both the equations and the initial conditions
* Some problems have a single fixed point
* Others may have more than one

* we usually want either the least or the greatest fixed point (smallest or largest sets)



Global common subexpression elimination

* Inthe case of global common subexpression elimination, Ingis
the set of expressions (virtual registers) guaranteed to be
available at the beginning of block B

These available expressions will all have been set by predecessor blocks
Outg is the set of expressions guaranteed to be available at the end of B

Killg is the set of expressions killed in B: invalidated by assignment to
one of the variables used to calculate the expression, and not
subsequently recalculated in B

Gengis the set of expressions calculated in B and not subsequently
killed in B




Available expression data flow equations

* The data flow equations for available expression analysis are:
Outp = GenpU (Inp ~ Killp)
Ing = ﬂ Out 5

predecessors A of B

* Our initial condition is In, = J: no expressions are available at the
beginning of execution



Solving data flow analysis equations

* Available expression analysis is known as a forward data flow
problem, because information flows forward across branches:
the In set of a block depends on the Out sets of its predecessors

* We will see an example of a backward data flow problem later

* We calculate the desired fixed point of our equations in an
iInductive (iterative) fashion

* Ourequation for /Ing uses intersection to insist that an
expression be available on all paths into B

* Inour iterative algorithm, this means that /ng can only shrink with
subsequent iterations



Example of available expressions (revisited)

Start:
vii=a,+1
v2:=b,*2
v3:=v2-3
vd:=c/2

\ 4

header:
b, :=¢(b,, b,) end:

vb:=b, *2 v8:=c/2
if v4 <7 goto end

A

\ 4

body:

V6 := Dby * 2
a, :=Vv6
v/:i=a,+1
b, :=Vv7
goto header o




Partial redundancy elimination

A vl =wv2 +v3 A
vl =vZ +v3 vd = vh x vB 3= v1 vd o= vh x vG
a=vl a.=vd V7 = w1 a=vd
! | ]
\ /O -’ 4
vy = wvd
vl =8 ]
¥
B
A
A vl i=vZ +v3
vl i=v2 + v3 ]
x" ¥
\ i \ ' vl =v2 +v3
B |
vl = v2 + v3 ¥
B

ngre |7.8 Splitting an edge of a control flow graph to eliminate a redundant load (top) or a partially redundant compu-
tation (bottom). 9



Check your understanding: available expressions

start:
vl :=a*2
v2 := b-1

if v1 <v2 goto else

— /\

a:.=v2
vl :=a*2
v4 :=v1+3

else:
b:=v1
v4 :=v1+3

goto endif\/

endif:
vl:=a*2
v/ :=v1+3
return v/

* Apply available expressions

analysis to the control flow graph on

the left

10




Analysis correctness

* Optimizations often rely on analysis information

* Constant propagation: correspondences between
variables and the particular known constant values that
they will hold (or a token to represent that the value is unknown)

* Rough guide to correctness: when you replace symbolic
Information in the analysis with concrete information from
particular executions, does the result hold?

* Does the variable hold the claimed constant at run time?

e Becomes alemma in the proof of soundness for the “client”
optimization

11




Section 17.4.2 part 2:
Live Variable Analysis

ISR Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

PRAGMATICS

Copyright © 2025 by Elsevier. Slides written by Jonathan Aldrich and Michael L. Scott.



Live variable analysis

* We turn our attention to live variable analysis—very important in
any subroutine in which global common subexpression analysis

nas eliminated load instructions
* Livevariable analysis is a backward flow problem

* [|tdetermines which instructions produce values that will be
needed in the future, allowing us to eliminate dead (useless)
Instructions
* inourexample we consider only values written to memory and with the

elimination of dead stores
 appliedtovalues in virtual registers as well, live variable analysis can

help to identify other dead instructions

13



Defining live variable analysis

* Forthisinstance of data flow analysis
* Ingisthe set of variables live at the beginning of block B
* OQOutgisthe setof variables live at the end of the block
* Gengis the set of variables read in B without first being written in B
* Killgis the set of variables written in B without having been read first

* The data flow equations are:

Ing = GenpU (Outp ~ Killp)
Outp = U Ing

successors (' of B

14



Example of live variable analysis and dead code elimination

start:
vli:=a+1
v2:=b*2
v3:=v2-3
vd:=c/2

v

header:
vo:=b*2 —
if v4 <7 goto end

'y

end:
returnc/ 2

body:
v6:=b*2
a:=vb
v/:=a+1
b:=v7

goto header

15



Examp

e of live variable analysis and dead code elimination

in:{abc}
gen:{abc}
kill: { v1 v2v3v4}
out:{bc}

in:{bc}
gen:{b}
kill: { v5}
out:{bc}

in:{bc}
gen:{b}
kill: {a b6Vv7}
out:{bc}

start:
vli:i=a+1
v2:=b*2
v3:=v2-3
vd:=c/2
\ 4
header:
vbi=b*2

if v4 <7 goto end

end:

7 Y

\4

body:
v6:=b*2
a:=vb
v/:=a+1
b:=v7

goto header

returnc/ 2

in:{c}
gen:{c}
kill: {}
out: {}

16




Check your understanding:
live variable analysis and dead code elimination

Start:

vl:=a*2

v2 :=b-1

if vl <v2 goto else

— /\

a:=v2 else:
v3:=a*2 b:=v1
v4 :=v1+3 vh :=v1+3

goto endiv

endif:

V6 :=a*2
v/ :=v6+3
returnv/

17



	Data flow analysis
	Example of available expressions
	Data flow analysis frameworks
	Solving data flow analysis equations
	Global common subexpression elimination
	Available expression data flow equations
	Solving data flow analysis equations
	Example of available expressions (revisited)
	Partial redundancy elimination
	Check your understanding: available expressions
	Analysis correctness
	Section 17.4.2 part 2:�Live Variable Analysis
	Live variable analysis
	Defining live variable analysis
	Example of live variable analysis and dead code elimination
	Example of live variable analysis and dead code elimination
	Check your understanding:�live variable analysis and dead code elimination

