Chapter 7: Type Systems

ACEVNIEEN Programming Language Pragmatics, Fifth Edition

LANGUAGE
PRAGMATICS

Michael L. Scott and Jonathan Aldrich

Copyright © 2025 by Elsevier. Slides written by Jonathan Aldrich and Michael L. Scott. Licensed under CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

What is a type? Three views:

e Denotational: a collection of values from a domain

* e.g.the 32-bit integers (int), or the real numbers representable
as |IEEE single-precision floats (float)

e Structural: a description of a data structure in terms of
fundamental constructs

* e.g. a Pointis arecord made up of fields x and y, both of type int

* Behavioral: the set of operations that can be applied to an object
* e.g. a Stack has operations push(v) and pop()
« Compared to structural, the focus is on operations and their behavior

What are types good for?

* Documentation
* What do | need to pass to this library function?

* Implicit context for compilation
* |s this + aninteger or a floating point operation?

* Checking that meaningless operations do not occur
* e.g. “hello, world” - 5 does not make sense

* Type checking cannot prevent all meaningless operations
* |t catches enough of them to be useful

Type terminology

* Type safety

* The language ensures that only type-appropriate operations
are applied to an object

e Strong vs. weak typing

* The degree to which the language enforces typing invariants and prevents
accidental errors

* More of a spectrum than a hard distinction

e Static vs. dynamic typing
* Whether types are checked at compile time or run time

Type terminology examples

* Java is type safe, strongly and statically typed

« Common Lisp is type safe, strongly and dynamically
typed

 C and C++ are statically and strongly typed, but are not (fully) type
safe

* JavaScript is type safe, weakly and dynamically typed

* JavaScript allows many implicit conversions between types, some of
which are surprising

* [tis therefore weakly typed compared to the above languages

Why might JavaScript be considered weakly typed?

* What do you think the following expressions evaluate to?
[1==1]

llbll+ llall++llall + |Iall;

null == 0O;
null > 0;
null >= 0;

* Try them in a JavaScript interpreter! (e.g. node.js)

Examples are from https://github.com/denysdovhan/wtfjs which has a lot of other interesting ones! 6

https://github.com/denysdovhan/wtfjs

JavaScript example explanations

[1=="1; // true

* I coerces[]to aBoolean. []is truthy so ![]is false.
JavaScript compares values at the same type.
JavaScript converts false to 0, and [] to "" to O.

Ilbll +llal|++llall +|Iall; //IbaNaNal

 +"3" converts "a" to a number. Since a is a letter, not a sequence of digits,
itis converted to NaN (not a number), which converts to "NaN"

null==0; //false
null > O; // false

null>=0; //true

* == treats null specially. Itis converted to undefined for comparison; the
equality is false. The relational operators just convert both sides to
numbers; null is converted to 0.

Classification of types & examples

— Discrete types — (easily) countable, ordered

* integer -1,0,1, 2, ...

 boolean true, false

e char ‘A" '\n’, '©'

e enumeration enum weekday{sun, mon, tue, ...}
e subrange 1..100

— Scalar types - one-dimensional
e (all discrete types)
 rational 22/7
* real 3.14159

Classification of types & examples (continued)

— Composite types — made up of other types

* records {x:int,y:int}
 datatypes/variants/unions union { street: StreetAddr, po: POBoxAddr }
* arrays int[]

* strings String

e sets set(['a), 'b), 'c|, 'd’]), Set<String>

* pointers int *

* lists int list, List<Int>

* files FILE *, File of Char

Orthogonality in type systems

* Orthogonality is a desirable property
* There are no restrictions on the way types can be combined

* Type theory typically studies orthogonal type constructs
* e.g. we provide a grammar for types, they can be constructed in any way

* Most languages restrict orthogonality

* Often for practical reasons, e.g. minimizing syntactic overhead or making
type checking decidable

* Example: ML only allows polymorphism at a let
* Example: Java classes combine records with recursive types

10

Subtyping

* When one type can be safely used as another type

* e.g.in most languages an integer can be used as a real
* The “operational” definition of subtyping

* Other definitions
* Intuitive: A<:BifAisaB
* e.g. aStreetAddress is an Address

e Denotational: A<: B if Adescribes a subset of the values that B describes
* e.g.theintegers are a subset of the reals

* Structural: A<: B if A has all of the structure of B (and maybe more)

* Behavioral: A<: Bif A has all the operations that B does, and they behave
as we’d expect fora B

11

Subtyping rules

* Subsumption - a subtype can be treated as a supertype:

I'Fe:mm 11 <m

: T-subsume
I'e:m
 \We can capture some of
* Subtyping is reflexive Java’s other subtyping
and transitive: rules as follows:
— S-reflexive int < long S-int-long
TMT<Ty To<T . - -
L= 2< 2 =3 S_transitive long < float S-long-float
T < T3

float < double -Jloat-double

12

In-class exercise: typing derivations with subtyping

* Construct a derivation that types the expression 1+ 2.5

* You can use the following rules in your derivation:

I'Fe:mm 1 <m

S-int-lon
TFe:m T-subsume int < long 8
— S-reflexive Tong < float S-long-float
1T <To To<T . - _
=22 —2=09 S-transitive float < double S-float-double

T < T3

I'+e; :double I'F e9:double
I'Fe; 4+ e : double

T-add-double

(press pause for more time)

13

In-class exercise: solution

* Construct a derivation that types the expression 1+ 2.5

Answer: (one rule name is left out for brevity)

________________ S-long-float -------------------- S-float-double
long <= float float <= double

-- S-transitive
int <=long long <=double

------------- T-const ----------------------—-----—————-—- S-transitive

e |-1:int int <= double

--- T-subsume ---------——-—--———-- T-const

e [-1:double e |-2.5:double

--- T-add-double
e |-1+2.5:double

14

Section 7.2: Type Checking

ACEVNIEEN Programming Language Pragmatics, Fifth Edition

LANGUAGE
PRAGMATICS

Michael L. Scott and Jonathan Aldrich

Copyright © 2025 by Elsevier. Slides written by Jonathan Aldrich and Michael L. Scott. Licensed under CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Aspects of type checking

* Type compatibility: when can a value of type A be used
In a context that expects type B?
e Similar to our first definition of subtyping

* But type compatibility sometimes differs from the natural subtyping
relation

* e.g. C also allows long values to be implicitly truncated when assigned to an int
variable

* The designers of C felt this was convenient, but it can cause errors

* To help programmers avoid these errors, Java type compatibility does not allow this,
though programmers who want this behavior can do it with an explicit conversion.

* Type equivalence: when two types are the same

* Type inference: what is the type of an expression, given the types
of the operands?

16

Structural vs. name equivalence: motivation

* Are these equivalent?
struct person {

string name;

string address;
}
struct school {

string name;

string address;
}
e Some languages let you choose. E.g. in Ada:
type Score is integer; // structural equivalence

// can assign between Score and integer

type Fahrenheit is new integer; // name equivalence

type Celsius is new integer; // can’t assign Fahrenheit to Celsius 17

Structural vs. name equivalence

* Name equivalence is based on declarations
* Advantage: captures the programmer’s intent
* Typical in imperative & OO languages

* Structural equivalence is based on a structural correspondence
between the parts of those declarations
* Advantage: more flexible
* Disadvantage: can “accidentally” equate types

e Common in functional languages
* butthey usually also have ways to support nominal equivalence

18

Structural equivalence

* Structural equivalence depends on simple comparison
of type descriptions, substituting out all names

* expand all the way to built-in types

* The original types are equivalent if the expanded type descriptions
are the same

19

Coercions

* When an expression of one type is used in a context
where a different type is expected, one normally gets
a type error

 But what about:
var a . integer; b, c : real;

c:=a+b;

* Many languages allow things like this, and coerce an expression to
be of the proper type

* Coercion can be based on just the types of operands, or can take
Into account the expected type from the surrounding context

20

Coercionsin C

 C has lots of coercions, with fairly simple rules:
— all £floats in expressions become doubles
— short, int, and char become int in expressions

— if necessary, precision is removed when assigning into LHS

21

Conversions and coercions

* If you need to convert between types, but the language
does not implement a coercion, you can putina
conversion

long time1 = System.currentTimeMillis();

long time2 = System.currentTimeMillis();

int difference = (int) (time2 - time1); // requires a conversion (or cast) in Java

* Terminology

* Type conversions (explicit, written by the programmer)
* In C and derived languages, the word 'cast’ is often used for conversions

* Type coercions (implicit, inserted by the compiler)

22

Elaboration: inserting coercions

e Coercion and conversions are added in an elaboration
pass within the compiler
* Elaboration makes implicit things explicit

* Coercions are inserted when I'Fe:int
subsumption is used but the types [I'e~ float(e): real
have different representations

coerce-real

['Fe:real

T F (int)e ~ trunc(e) : int convert-int

e Conversions are inserted where
the user adds casts

23

Code generation for conversions and coercions

* No code is generated if types have the same
representation and the provided type is a subtype
of the expected type

* e.g.converting anintto alonginJava

* Acheckis generated when the provided type is not a subtype of
the expected type
* e.g. converting an integer to a subrange 1..10

* Some language (unsafely) skip this check, e.g. conversions from long to
intin C or Java

* Conversion code is generated if the types have different
representations

* e.g.converting an int to a float

24

Check your understanding: structural vs. name equivalence

* Discuss the comparative advantages of structural
and name equivalence for types

* (press pause for more time)

25

Check your understanding: structural vs. name equivalence

* Discuss the comparative advantages of structural
and name equivalence for types

* Answer: Name equivalence can make distinctions between
different types even if they have the same representation in order
to capture the programmer’s intent.

Structural equivalence provides flexibility by equating types with

the same structure, but when that is not intended, the type system
will miss coding errors that name equivalence would catch.

26

Section 7.3-7.4:
Polymorphism and type inference

ACEVNIEEN Programming Language Pragmatics, Fifth Edition

LANGUAGE
PRAGMATICS

Michael L. Scott and Jonathan Aldrich

Copyright © 2025 by Elsevier. Slides written by Jonathan Aldrich and Michael L. Scott. Licensed under CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Polymorphism / generic types

 Polymorphism allows one function to work with
multiple types

« Example: Polymorphism in Java

static <T> bool isMember(T value, T[] array) {

Integer[] a1l = { 1, 2, 3 };

String[] a2 = { “hello”, “world” };

bool result = isMember(5, al); // returns false
bool result2 = isMember(“hello”, a2); // returns true
bool error = isMember(5, a2); // type error

28

Generics also support polymorphic data structures

template<class item, int max_items = 100>
class queue {
item items[max_items];

public:

bool enqueue(const item& it) {

bool dequeue(item* it) {

}s

queue<process> ready_ list;

queue<int, 50> int_queue; // 50 elements 1instead of the default 1600 o

A model of generic types

* |dentify function in an idealized language with generics:

let identity = function<T>(x:T):T { // identity has type VT . T =2 T
return Xx;

}
in print(identity<int>(5)); // prints 5

* We can extend an expression language to define and call functions
of generic type:

e — ... | function<T>(x:7):7 { return e; } | e<7>(e)

* We extend the types to include a “forall” type, binding a generic type
parameter T that can be used in the argument and result types:

T — int | ... |VT. 7 =1 | T

30

A typing rule for polymorphic function definitions

When type checking the function body
expression e,, we assume T is a type The function body must

variable and the argument x, has type t,. typecheck at type 1, The type T, must be well
: _

formed, meaning it only
uses type variables that
are in scope

[, T:type - 1 wf

[' F function<T>(x;: 711) : 7o { return e; }: VT .11 — 1

[, T:type, xi:11 = €2 : T

t-generic-fn

Here is the function we are type checking The function’s type expresses that for all

type parameters T, the function takes an
argument of type t, and returns type 1,

31

A typing rule for calling polymorphic functions

This premise gets the type of
the function by typechecking
the expression e,

The type argument must
be well-formed

The type of the argument expression must match
the function parameter’s type, after substituting
type argument t for the type variable T.

[Fe:VT.11 — 1 T |—TWf I |—€11[T/T]T1
[Fex<t>(e): [1/T]n

t-instantiate-fn

e, is a function that we are calling with type
argument t. Note that most languages caninfert
automatically, so the programmer doesn’t have to
write it; we show it explicitly here for clarity.

The type of the function callis the return type of the

function, with the type argument t substituted for
the type variable T.

Implementing generics

* |In C++ and Ada, the entire generic function is copied,
substituting the type argument for the type variable

* This duplicates code and can create large binaries, but can be fast as the
code can be optimized with the particular type argument in mind

* Typechecking is delayed until the copy is made—this adds flexibility but
means ill-typed functions produce errors only when they are called

* Java reuses the same code for all calls to the generic function
* Data generic type is handled indirectly through pointers
* The function can be typechecked separately from calls to it

e C# combines these

* Typechecking is separate; code is shared for reference types, but copies
are made for every instantiation with primitive types

33

Generic parameter constraints

* Sometimes a function needs to make assumptions
about the generic type

* This Java sort function assumes the type argument s
Comparable:

public static <T extends Comparable<T>> void sort(T[] A) {

if (A[il.comparelo(A[j]) >=0) ...

Integer[] myArray = new Integer[50];

sort(myArray); //the typechecker verifies that type Integer implements Comparable
34

Local type inference

* |In C++ (and many other languages):
auto x = 3.5+1;

* X Will have type double since the right-hand side expression has
that type

35

Global type inference

* In functional languages like ML or Haskell, the compiler
can infer the types of functions

* Let’s explore the intuition behind type inference using a simple
Fibonacci function:

1 -- fib :: int -> 1int

2 let fib n =

3 let rec helper nl1 n2 i =

4 if i = n then n2

5 else helper f2 (n1 + n2) (i + 1) in
6 helper 0 1 0;;

36

Global type inference - intuition behind the algorithm

1
2

3
4
5
6

-- fib :: int -> 1int
let fib n =
let rec helper nl n2 1 =
if 1 = n then n2
else helper n2 (n1 + n2) (i + 1) in
helper 0 1 0;;

I :int, becauseitis addedto 1 atline b
n:int, becauseitis comparedtoiatline4

all three args at line 6 are int consts, son1:intand n2:int
* also, the 3rd argument is consistent with the known int type of i
* the types of the arguments to the recursive call at line 5 are similarly consistent

since helper returns n2 (known to be int) at line 4, its return type must be int
* and the result of the call at line 6 will be int

since fib immediately returns this result as its own result, the return type of fib is int

37

Check your understanding: generic type implementation

* Compare the implementations of generic functions
in C++ and Java, and describe tradeoffs between them

* (press pause for more time)

38

Check your understanding: generic type implementation

* Compare the implementations of generic functions
in C++ and Java, and describe tradeoffs between them

* Answer: C++ creates a copy of a generic function for every different type the
function is called with. This adds flexibility to the type system and can enable
code optimizations, but it can also cause code bloat, and type errors may not
be caught until a function is instantiated.

Java avoids copying generic function code, giving up some flexibility and
optimization opportunities, but keeping the code short and catching type
errors in generic functions when they are written instead of at instantiation
time.

39

Type Systems

* Types provide compiler-checked documentation,
ald compilation, and catch errors

* Subtyping determines how values can flow between types
* Nominal vs. structural type equivalence is a tradeoff

* Coercions and conversions move values between types
* checking and transforming the values as needed

* Generic types provide flexibility along with safety

* For more in-depth content
* Like & subscribe to my channel
* Get a copy of our book!

40

	Slide 1: Chapter 7: Type Systems
	Slide 2: What is a type? Three views:
	Slide 3: What are types good for?
	Slide 4: Type terminology
	Slide 5: Type terminology examples
	Slide 6: Why might JavaScript be considered weakly typed?
	Slide 7: JavaScript example explanations
	Slide 8: Classification of types & examples
	Slide 9: Classification of types & examples (continued)
	Slide 10: Orthogonality in type systems
	Slide 11: Subtyping
	Slide 12: Subtyping rules
	Slide 13: In-class exercise: typing derivations with subtyping
	Slide 14: In-class exercise: solution
	Slide 15: Section 7.2: Type Checking
	Slide 16: Aspects of type checking
	Slide 17: Structural vs. name equivalence: motivation
	Slide 18: Structural vs. name equivalence
	Slide 19: Structural equivalence
	Slide 20: Coercions
	Slide 21: Coercions in C
	Slide 22: Conversions and coercions
	Slide 23: Elaboration: inserting coercions
	Slide 24: Code generation for conversions and coercions
	Slide 25: Check your understanding: structural vs. name equivalence
	Slide 26: Check your understanding: structural vs. name equivalence
	Slide 27: Section 7.3-7.4: Polymorphism and type inference
	Slide 28: Polymorphism / generic types
	Slide 29: Generics also support polymorphic data structures
	Slide 30: A model of generic types
	Slide 31: A typing rule for polymorphic function definitions
	Slide 32: A typing rule for calling polymorphic functions
	Slide 33: Implementing generics
	Slide 34: Generic parameter constraints
	Slide 35: Local type inference
	Slide 36: Global type inference
	Slide 37: Global type inference – intuition behind the algorithm
	Slide 38: Check your understanding: generic type implementation
	Slide 39: Check your understanding: generic type implementation
	Slide 40: Type Systems

