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Limitations of garbage collection

* Garbage collection (GC) provides safe, convenient
memory management
* |deal for applications programming

* But GC can be limiting for systems programming
* May not be willing to pay GC’s time and space costs
* May need control of memory layout and use

* GC failure modes can be problematic
* Under GC, servers slow down when running out of memory
* Crashing with “out of memory” may be better—can just restart the server

* Manual memory allocation may be needed in these conditions
* Butin most languages, this sacrifices safety



Rust provides safe manual memory management

* Rust is a systems-oriented programming language
* manual memory management
* concurrency and parallelism

* Rust’s ownership type system ensures safety
* from memory leaks and dangling references (today)
* from data races in concurrent programs (later)



Safety in Rust

» Safetyin Rust means a lack of undefined behavior

* Example of undefined behavior (from the Rust book):
fn read(y: bool) {
ify {
println!("y is true!");

}

}

fn main() {
read(x); // oh no! x isn't defined!
let x = true;

}

* |tis undefined behavior to read a variable before it is defined
* Why is undefined behavior bad?

* Well, it might execute just fine
* Butthe program above could read garbage data, making results unpredictable
* Ingeneral, undefined behavior can cause crashes or security vulnerabilities




How Rust ensures safety

* Key goal of Rust: ensure program don’t have undefined behavior

 Combination of static and dynamic checks
* Check as much as possible statically

* Bugs are still possible! But certain kinds of bugs can’t happen.
* Ownership in Rust is a discipline for using memory

* Ownership prevents undefined behavior related to memory
(except in unsafe code)
* Reading uninitialized memory
* Using memory afteritis freed
* Freeing memory twice
* Memory leaks (forgetting to free memory)




Ownership in Rust

* Rust uses a value model of variables, like C/C++

* Any typed data that is currently in use (i.e. live) is a value
e Avalue’s lifetime lasts from when is allocated until it is freed

* Value allocation
 on the stack if lifetime matches a function call and size is known
* onthe heap otherwise

* [nvariant: every value has exactly one owner
* Avariable
* Some other value that is (or contains) a smart pointer

* Values on the heap are reclaimed when they lose their owner

* e.g. because their owning smart pointer goes out of scope, oris
reassigned




Conceptual model of variables of primitive types on the stack

fn main() {

let n = 5;

let y = plus_one(n);
println! ("The value of y is: {y}");

}

fn plus_one(x: 132) -> 132 {

}
Stack Stack Stack
main main main
n 5 n b5 n 5

plus_one y 6

X 5

example from the Rust book (Brown version)



Assigning one variable to another copies the data
iIf the type implements the Copy trait (includes 132)

let a = 5 But thIS: ISVEIY  1et a = [0; 1_000_0001;
let mut b = a; expensive If let b = aj;
b += 1: the data is
large 2>
L1 L2 L3
L1 L2 L3 ctack
Stack Stack Stack ma-in
main main main a boePPAEANAANANL ... 0
a b a b a b
b 5 b 6
Stack
main

a OOOOOOEOOO ...0
b 00000OOOOOO ...0



Boxes allocate memory in the heap

* Now a is of Box (pointer) type

e Assigning b to the value of a
moves the pointer, because
Box does not implement Copy

* We say that a owns the data
before the move, and b owns it
afterward

e \We cannot use a after the
move

let a = Box::new([0; 1 000 _000]);
let b = aj

Stack Heap
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Owners deallocate boxes

If a variable owns a box, )
whgn RL,ust deallocates the let a_num = 4;
variable’s frame, then Rust

make_and_drop() ;

deallocates (“drops”) the

box’s heap memory. }

fn make_and_drop() {

The box holdingSis let a_box = Box::new(5);

deallocated at the end of
make and_drop .
— - L1

Stack Stack Heap

main main 5
a_num 4 a num 4 //fff;ﬂr}

make_and_drop

i

}

a _box e

Stack

main

a_num 4

10



Ownership

Here’s an example
involving string
manipulation

Note that it would
be an error to use
first after the
pointer is moved in
the call to from

fn main() {

let first = String::from("Ferris");

let full = add_suffix(first);
println! ("{full}");
}

fn add_suffix(mut name: String) -> String {

name.push_str(" Jr."):

name

}

Stack Heap

main

__,ffﬂ_—+ Ferris
first e

Stack

main

Heap

i

name @

////,ff-blerri s Jr.
add _suffix

Stack

main

add _suffix

name @

Stack

main

full

Heap

Ferris

Heap

_#j//,#rr* Ferris Jr.
.
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fn main() {
let first = String::from("Ferris");

Cloning let first_clone = first.clone();

let full = add_suffix(first_clone):

println! ("{full}, originally {first}");
}

e |f we want to continue to use the

fn add_suffix(mut name: String) -> String {

first string, we can clone it name . push_str (" Jr.");
before moving the pointer }

* The clone method makes a deep
copy of the string (the data on the Stack Heap
hegp Is copied, not just the e 1T E
p0|nter) first_clone !f

Stack Heap

main Ferris

first 'fFerris Jr.
full o
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Ownership quiz

 Does this program compile? fn main() A
Why or why not? let s = String::from("hello");
* |If it compiles, what is the result let s2;
when it runs? let b = false;
if b {
S2 = S;
}

println! ("{}", s);

13



Ownership quiz (SOLUTION)

 Does this program compile? fn main() A

Why or why not? let s = String::from("hello");
e Answer: no, it does not let s2;

compile, because s might be let b = false;

moved to s2 inside the 1f if b {

statement, so s cannot be used

inthe println! call. 52.= S

¥

e Rust doesn’t try to figure out
y 8 printIn! ("{}", s);

whether if statements will
execute (that’s undecidable in }
general)
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Using pointers after passing them to a function

fn main() {
Moving owned pointers let m1 = String::from("Hello");
can be inconvenient let m2 = String::from("world");

let (ml_again, m2_again) = greet(ml, m2);

let s = format!("{} {}", ml_again, m2_again);
}

fn greet(gl: String, g2: String) -> (String, String) {
println!("{} {}!", g1, g2);

(g1, g2)
}
Stack Heap Stack Heap
main Hello main Hello

ml e world world
m2 i—*“/fﬂr__}

Hello world
ml_again e

m2_again e
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fn main() {
let m1 = String::from("Hello");
let m2 = String::from("world");

References greet(&ml, &m2); // note the ampersands

let s = format! ("{} {}", ml, m2);

1
d A reference |S a nOn—Ownlng fn greet(gl: &String, g2: &String) { // note the ampersands
po|nter } pr'1ntln!( {y {}'", g1, g2);
* The expression &ml borrows ml
« g1 and g2 are not deallocated at > ”eapl : stack ”ea"'n
main He 0 main He 0
the end of greet, because they s v worta nl e — 2
are not owned m2 e m2 e
greet
gl e
g2 @

Stack Heap

main Hello

ml 'fwo rld
m2 e 16



Dereferencing pointers

let mut x: Box<i32> = Box::new(1l);
The X Operator |S let a: 1132 = *x; // *x reads the heap value, so a =1
*X += 13 // *x on the left-side modifies the heap value,
used tO dCCesSS the !/ so X points to the value 2
data d pOInter refers let rl1: &Box<i32> = &x; // rl1l points to x on the stack
to let b: 132 = **rl; // two dereferences get us to the heap value
let r2: &i32 = &*x3 // r2 points to the heap value directly
let c: 1132 = *r2; // so only one dereference is needed to read it
Stack Heap
main 2
X @
a 1
rli e
b 2
r2 @
C yi 17



Rust inserts (de)references automatically when the .
operator is used

let x: Box<i32> = Box::new(-1);
let x_absl = 1i32::abs(*x); // explicit dereference
let x_abs2 = x.abs(); // implicit dereference

assert_eq! (x_absl, x_abs2);

let r: &Box<i32> = &x;

let r_absl = i32::abs(**r); // explicit dereference (twice)
let r_abs2 = r.abs(); J/ dmplicit dereference (twice)
assert _eq! (r_absl, r_abs2);

let s = String::from("Hello");

let s_lenl = str::len(&s); // explicit reference
let s_len2 = s.len(): // dmplicit reference
assert_eq!(s_lenl, s_len2);
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(De)referencing quiz

* Consider the following program, showing the
state of memory after the last line:

* |f you wanted to copy out the number 0
through y, how many dereferences would you
need to use?

* For example, if the correct expression is *y, then
the answeris 1.

let x = Box::inew(0);

let yv = Box:i:inew(&x):;
Stack Heap
main 0
X '%-
y ®
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(De)referencing quiz (SOLUTION)

let x
* Consider the following program, showing the  tety

state of memory after the last line:

Box:inew(0)

Box:inew(&x);

Stack Heap
* |f you wanted to copy out the number 0 main 0
through y, how many dereferences would you X -g.
need to use? y ®

* For example, if the correct expression is *y, then
the answeris 1.

* Answer: 3 (***y)
* One dereference for each pointer in the diagram
* Also: one for each new, one for each &

20



Rust prohibits simultaneous aliasing and mutation

* At L2, the alias num points
tov[2]

* We writeto v at L2 and read
from num at L3

* Thisis a problem because
the Vec’s memory is re-
allocated at L2, so the
pointer used at L3 points to
deallocated memory.
Undefined behavior!

let mut v: Vec<i32> = vec![1, 2, 3];
let num: &i32 = &v[2];

v.push(4);

println!("Third element is {}", *num); B

Stack Stack

main f—>123 main f—>1234
Y ® Y [ ]
num ® num &

“Puzzled Ferris“
means this code
does not compile

num (&) 21

Heap Heap

B undefined behavior: pointer used
after its pointee is freed

Stack

main f—>1234
®

\'

Heap



Rust’s borrow checker ensures reference safety

e Ensures that data is never aliased and mutated at the same time

* Tracks the permissions associated with each variable:
* Read ('): data can be copied to another location.

 Write (W): data can be mutated in-place (let mut vars)
* |nvariant: there can be at most one W permission to a piece of data at any time

* Own (O): data can be moved or dropped.

* Creating a reference can temporarily remove these permissions

22




Example: how borrow checking works

Notes: let mut v: Vec<i32> = vec![1, 2, 3];
« v 1 4R +W +0
* Different permissions fornum . . ... _ &v[2]:
and *num E v SRWSI
« manipulating the reference vs. num 1 +R - +O
accessing the data knum I +R - -
. PR : println! ("Third element 1is {}", *num);
Permissions are defined on «— v o9 R+W 40
paths num 14 - @
* num, *num, v[2], a.field, knum 1 & - -
*((*a)[e].1) v.push(4);
* Permissions are lost when a L IRWE

mutually exclusive
permission must be used

* e.g. Wonvisneeded at
v.push(4) so F onnumis lost

23



A borrow checking error

let mut v: Vec<i32> = vec![1, 2, 3]}
(&

v ¥ +R+W +O ?
let num: &i32 = &Rv[2]; W o -g
« Vv 2

num % +R - +0

*num 1t +8 - -

vﬁw.push(4);

println! ("Third element is {}", *num):

error[E@502]: cannot borrow v as mutable because it is also borrowed as immutable
--> test.rs:4:1

3 | let num: &i32 = &v[2];

- immutable borrow occurs here

4 | v.push(4);

ANANANNAN mutable borrow occurs here

5 | println!("Third element is {}", *num);

---- immutable borrow later used here 24




We can also borrow mutably with &mut

let mut v: Vec<i32> = vec![1, 2, 3];

« v 1 +R +W +0
let num: &mut 132 = &mut gv[2];
£ v >S>A WO
num 1 +R - +O

*num Y +R +W -

e XNuUM += 13
println! ("Third element is {}", *num);“

v o R +W +0

num 3 A - @
snum 3 A W -
println! ("Vector 1is now {:7}", ev);
« v iAWY

25




Permissions are returned when a reference’s lifetime ends

fn ascii_capitalize(v: &mut Vec<char>) {
3

let ¢ = &ov[0];

) *V+ W—
L
if ce .is_ascii_lowercase() {
let up = ce .to_ascii_uppercase();
« *v O R+W -
. & @
v[@] = eup;
»
} else {
« *v O R+W -
. & @

println! ("Already capitalized: {:7}", ev);

3]

}
* Control flow can make this interesting!

26



Borrowing quiz

In the example, explain
why strs loses and
regains write (W)

permissions

fn get first(v: &Vec<String>) -> &str {
& v 1 +R-+0
*v 1 +R - =
&eov[O]
« v 1 HK-9
kv 1 - -
3
fn main() {
let mut strs = vec!]|
String::from("A"), String::from("B")
13
« strs * R +W +O
let first = get_first(&estrs);
« strs 9 w o

first 21+ +R - +0O

*first + +R - =

if firste.len() > 0 {
«

strs D R +W +0
first 1 K - @
xfirst 3 K - -

strs 4 .push(String::from("C"));
«

strs 1AW G

€« strs I/Wﬁ
27



Borrowing quiz

In the example, explain
why strs loses and
regains write (W)
permissions

ANSWER: get first
returns an immutable
reference to data
within strs, so strsis
not writable while
firstislive

fn get first(v: &Vec<String>) -> &str {
L

fn

- v 1 +R-+0
*v 1 +R - =
&eov[O]
« v 1 K-Q
kv 1 - -
main() {

let mut strs = vec!]|
String::from("A"), String::from("B")
13

«

strs 1t +R +W +O

let first = get_first(&estrs);
44

strs 2> w o
first 2t +R - +0
*Tirst 2 +R - =

if firste.len() > 0 {
«

strs D R +W +0
first 1 K - @
xfirst 3 K - -

strs 4 .push(String::from("C"));
L4

strs 1AW G

€« strs I/Wﬁ
28



Invariant: data must outlive its references

let s = String::from("Hello world");
»

let s_ref = &eos; ?
: s9R-0

dl'Dp(©S);
println! ("{}", s_ref);

* The drop function explicitly releases a data structure
* Any pointers in the data structure will be freed

* But drop requires an ownership (O) permission and we do not
have that for s while s_ref is live

29



Fixing borrow checking errors

* The following code has a borrow error:
/// Returns a person's name with "Ph.D." added as a title
fn award phd(name: &String) -> String {

let mut name = *name;

name.push str(", Ph.D.");

Nname
}
* What’s the best fix?
fn award_phd(name: &String) —-> String { fn award_phd(name: &mut String) {
A let mut name = name.clone(); C name.push_str (", Ph.D.");
name.push_str (", Ph.D."); ¥
name
1 fn award_phd(name: &String) -> String {
let mut name = &*name;
fn award _phd(mut name: String) -> String { D name.push_str (", Ph.D.");
B name.push_str (", Ph.D."); . name

name
30



String slices

e A string slice of type &str pointsto a
range of characters in a string

* &stristhe type of string literals in Rust!

* Aslice knows its length—access
beyond the length is a run time error

* Slices are references, so taking a slice
changes the permission to the
underlying data

* |f s were mut then we couldn’t mutate it
while hellois live

* You can also take slides of arrays
let a = [19 2, 3, 4, 5];
let slice : &[i132] = &a[l..3];

let s = String::from("hello world");

let hello: &str = &s[0..5];
let world: &str = &s[6..11];
let s2: &String = &s; !!
Stack Heap
main —rjffﬂ——+_heal1_ol_W£Jr1_d
S ®
hello e
world e
s2 ®
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Sometimes Rust can’t tell the lifetime of a reference

// does longest return x or y?
// unclear -- and it matters if they have different lifetimes
fn longest(x: &str, y: &str) -> &str {
it x.len() > y.len() { x } else { vy }
}

fn main() {
let stringl = String::from("abcd");
let string2 = "xyz";
let result = longest(stringl.as_str(), string2);
println! ("The longest string is {result}");

32



Lifetime annotations can help

&i132 // a reference
&'a 132 // a reference with an explicit lifetime
&'a mut 132 // a mutable reference with an explicit lifetime

* We don’t need to write lifetime annotations everywhere—just
when we need to compare the lifetimes of different references

(e.g. in a function signature)

33



Using lifetime annotations

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
it x.len() > y.len() { x } else { vy }

* This signature tells Rust that for some lifetime ' a, the arguments must live at
least as long as ‘ a.

* Also, the value returned by Longest will live at least as long as ' a.
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We can put lifetime annotations in structs

struct ImportantExcerpt<'a> { part: &'a str, }
fn main() {

let novel = String::from("Call me Ishmael. Some years ago...");
let first_sentence = novel.split('."').next().unwrap();

let 1 = ImportantExcerpt { part: first_sentence, };

}

* The lifetime parameter of ImportantExcerpt tracks how long
the part reference lives.

* Rust checks that 1 isn’t used after novel goes out of scope
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Lifetime annotations can often be elided

* If you don’t provide them, Rust acts as if they were specified
according to the following rules

* Every lifetime in the input type gets its own lifetime parameter

fn foo(x: &i32, y: &i32) > foo<'a, 'b>(x: &'a 1132, y: &'b 1i32)

* |f there is exactly one lifetime parameter, that lifetime is assigned to all
output lifetime parameters

fn foo(x: &i32) -> &i32 =2 fn foo<'a>(x: &'a i32) -> &'a 132

* [Methods only]: If there are multiple input lifetime parameters, but one of

themis &self or &mut self, that lifetime is used for all output lifetime
parameters
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The 'static lifetime

* The 'static lifetimeis for things that live for the entire execution
of the program

 Example: string literals

* Only use it if you know the underlying data lives indefinitely!
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More about Drop

* When a value goes out of scope, we say it is dropped
* |If the value’s type implements the Drop trait,
the drop function is called
* Every heap allocated value is owned by exactly one box

* Initially the box that allocates it

 Ownership is transferred if one variable is assigned to another
* the old box variable cannot be used

* Every box value is dropped exactly once
* its drop function deallocates the heap data it owns

* Because of uniqgue ownership
* there cannot be any memory leaks
* there cannot be any dangling pointers
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We can define binary trees with Box

* We use a struct to define a tree node with a key
and left and right subtrees

* Rust does not have null pointers, so we use options

* AnOption is either Some (storing a value) or None (no value, like null)

* In this case, the option holds a Box<TNode> since the subtree is allocated
separately

struct TNode {
key: 132,
left: Tree,
right: Tree,
}

type Tree = Option<Box<TNode>>;

39



Now we define 1nsert

struct TNode {

key: 132,
left: Tree,
right: Tree,

¥

type Tree = Option<Box<TNode>>;
fn insert(tree: &mut Tree, key: i32) {
match tree {

None => {

*tree = Some(Box::new(TNode { key, left: None, right: None }))
}s
Some(t) => { fn main() {

if key < t.key {
insert(&mut t.left, key)
} else {
insert(&mut t.right, key)

let mut tree = None;
insert(&mut tree, 5);
insert(&mut tree, 3);
insert(&mut tree, 4);
} insert(&mut tree, 10);
} }s // the whole tree 1s deallocated here
) } 40




The Rc library allows sharing

* Avalue in the heap can only be pointed to by
one box at a time

* this is what enables us to avoid leaks and dangling references
* but we can only create data structures like trees that have no sharing

* To create graphs, we need sharing in the heap

* The Rc library provides reference-counted shared pointers

* The reference count is incremented and decremented when Rc pointers
are created and dropped

* When an Rc pointer is dropped and the reference count goes down to
zero, the heap value is dropped and the storage is reclaimed
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We can define graphs with Rc

struct GNode {

key: 132,

edges: Vec<Edge>,
}

type Edge = Rc<RefCell<GNode>>;

* Vec is an expandable array type with bound checking
* Recall that Rust doesn’t allow shared values to be mutable
* But we want to change graph nodes, e.g. while building the graph

 RefCell implements unique, mutable borrowing
* The contents can be borrowed temporarily
* Arun-time check verifies there are no other borrowers
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Now we can create a graph

nodel
struct GNode {
key: i32,
edges: Vec<Edge>, node?2 node3
} \ /
type Edge = Rc<RefCell<GNode>>; node4
fn new_node(key: i32) -> Edge { fn main() {
Rc: :new(RefCell: :new( let nodel: Edge = new_node(1);
GNode { key, let node2: Edge = new_node(2);
edges : Vec::new() let node3: Edge = new_node(3);
) let node4: Edge = new_node(4);
} nodel.borrow_mut().edges.push(node2.clone());

nodel.borrow_mut().edges.push(node3.clone());
node2.borrow _mut().edges.push(noded4.clone());
node3.borrow mut().edges.push(node4.clone());
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Cyclic graphs won’t be collected

struct GNode {

key: i32,

edges: Vec<Edge>,
}

type Edge = Rc<RefCell<GNode>>;

fn new _node(key: i32) -> Edge {

Rc::new(RefCell: :new(
GNode { key,
edges : Vec::new()
1))

nodel
node?2 node3
node4d
fn main() {
let nodel: Edge =
let node2: Edge =
let node3: Edge =
let node4: Edge =

nodel.borrow mut().
nodel.borrow mut().
node2.borrow _mut()
node3.borrow _mut()
node4d.borrow _mut()

new_node(1);
new_node(2);
new_node(3);
new_node(4);
edges.
edges.
.edges.
.edges.
.edges

push(node2.
push(node3.
push(node4.
push(node4.
.push(nodel.

clone());
clone());
clone());
clone());
clone());
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Rust provides safe manual memory management

* |t does so by enforcing 3 invariants

* every value has exactly one owner
* there can be at most one W permission to a piece of data at any time
* data must outlive its references
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