Ownership in Rust
This material is based heavily on the Rust book, as adapted by Will Crichton et al.

ACEVNIEEN Programming Language Pragmatics, Fifth Edition

LANGUAGE
PRAGMATICS

el Michael L. Scott and Jonathan Aldrich

Copyright © 2024 by Jonathan Aldrich and Michael L. Scott.

Limitations of garbage collection

* Garbage collection (GC) provides safe, convenient
memory management
* |deal for applications programming

* But GC can be limiting for systems programming
* May not be willing to pay GC’s time and space costs
* May need control of memory layout and use

* GC failure modes can be problematic
* Under GC, servers slow down when running out of memory
* Crashing with “out of memory” may be better—can just restart the server

* Manual memory allocation may be needed in these conditions
* Butin most languages, this sacrifices safety

Rust provides safe manual memory management

* Rust is a systems-oriented programming language
* manual memory management
* concurrency and parallelism

* Rust’s ownership type system ensures safety
* from memory leaks and dangling references (today)
* from data races in concurrent programs (later)

Safety in Rust

» Safetyin Rust means a lack of undefined behavior

* Example of undefined behavior (from the Rust book):
fn read(y: bool) {
ify {
println!("y is true!");

}

}

fn main() {
read(x); // oh no! x isn't defined!
let x = true;

}

* |tis undefined behavior to read a variable before it is defined
* Why is undefined behavior bad?

* Well, it might execute just fine
* Butthe program above could read garbage data, making results unpredictable
* Ingeneral, undefined behavior can cause crashes or security vulnerabilities

How Rust ensures safety

* Key goal of Rust: ensure program don’t have undefined behavior

 Combination of static and dynamic checks
* Check as much as possible statically

* Bugs are still possible! But certain kinds of bugs can’t happen.
* Ownership in Rust is a discipline for using memory

* Ownership prevents undefined behavior related to memory
(except in unsafe code)
* Reading uninitialized memory
* Using memory afteritis freed
* Freeing memory twice
* Memory leaks (forgetting to free memory)

Ownership in Rust

* Rust uses a value model of variables, like C/C++

* Any typed data that is currently in use (i.e. live) is a value
e Avalue’s lifetime lasts from when is allocated until it is freed

* Value allocation
 on the stack if lifetime matches a function call and size is known
* onthe heap otherwise

* [nvariant: every value has exactly one owner
* Avariable
* Some other value that is (or contains) a smart pointer

* Values on the heap are reclaimed when they lose their owner

* e.g. because their owning smart pointer goes out of scope, oris
reassigned

Conceptual model of variables of primitive types on the stack

fn main() {

let n = 5;

let y = plus_one(n);
println! ("The value of y is: {y}");

}

fn plus_one(x: 132) -> 132 {

}
Stack Stack Stack
main main main
n 5 n b5 n 5

plus_one y 6

X 5

example from the Rust book (Brown version)

Assigning one variable to another copies the data
iIf the type implements the Copy trait (includes 132)

let a = 5 But thIS: ISVEIY 1et a = [0; 1_000_0001;
let mut b = a; expensive If let b = aj;
b += 1: the data is
large 2>
L1 L2 L3
L1 L2 L3 ctack
Stack Stack Stack ma-in
main main main a boePPAEANAANANL ... 0
a b a b a b
b 5 b 6
Stack
main

a OOOOOOEOOO ...0
b 00000OOOOOO ...0

Boxes allocate memory in the heap

* Now a is of Box (pointer) type

e Assigning b to the value of a
moves the pointer, because
Box does not implement Copy

* We say that a owns the data
before the move, and b owns it
afterward

e \We cannot use a after the
move

let a = Box::new([0; 1 000 _000]);
let b = aj

Stack Heap

nlairlﬁ{ﬂ@@@{ﬂ@{ﬂ@{ﬂﬁ}@...ﬂ
a e

Stack Heap

mair‘l‘f_,{E)E}BE}BE}BE}BE}B...B
h e

Owners deallocate boxes

If a variable owns a box,)
whgn RL,ust deallocates the let a_num = 4;
variable’s frame, then Rust

make_and_drop() ;

deallocates (“drops”) the

box’s heap memory. }

fn make_and_drop() {

The box holdingSis let a_box = Box::new(5);

deallocated at the end of
make and_drop .
— - L1

Stack Stack Heap

main main 5
a_num 4 a num 4 //fff;ﬂr}

make_and_drop

i

}

a _box e

Stack

main

a_num 4

10

Ownership

Here’s an example
involving string
manipulation

Note that it would
be an error to use
first after the
pointer is moved in
the call to from

fn main() {

let first = String::from("Ferris");

let full = add_suffix(first);
println! ("{full}");
}

fn add_suffix(mut name: String) -> String {

name.push_str(" Jr."):

name

}

Stack Heap

main

__,ffﬂ_—+ Ferris
first e

Stack

main

Heap

i

name @

////,ff-blerri s Jr.
add _suffix

Stack

main

add _suffix

name @

Stack

main

full

Heap

Ferris

Heap

_#j//,#rr* Ferris Jr.
.

11

fn main() {
let first = String::from("Ferris");

Cloning let first_clone = first.clone();

let full = add_suffix(first_clone):

println! ("{full}, originally {first}");
}

e |f we want to continue to use the

fn add_suffix(mut name: String) -> String {

first string, we can clone it name . push_str (" Jr.");
before moving the pointer }

* The clone method makes a deep
copy of the string (the data on the Stack Heap
hegp Is copied, not just the e 1T E
p0|nter) first_clone !f

Stack Heap

main Ferris

first 'fFerris Jr.
full o

12

Ownership quiz

 Does this program compile? fn main() A
Why or why not? let s = String::from("hello");
* |If it compiles, what is the result let s2;
when it runs? let b = false;
if b {
S2 = S;
}

println! ("{}", s);

13

Ownership quiz (SOLUTION)

 Does this program compile? fn main() A

Why or why not? let s = String::from("hello");
e Answer: no, it does not let s2;

compile, because s might be let b = false;

moved to s2 inside the 1f if b {

statement, so s cannot be used

inthe println! call. 52.= S

¥

e Rust doesn’t try to figure out
y 8 printIn! ("{}", s);

whether if statements will
execute (that’s undecidable in }
general)

14

Using pointers after passing them to a function

fn main() {
Moving owned pointers let m1 = String::from("Hello");
can be inconvenient let m2 = String::from("world");

let (ml_again, m2_again) = greet(ml, m2);

let s = format!("{} {}", ml_again, m2_again);
}

fn greet(gl: String, g2: String) -> (String, String) {
println!("{} {}!", g1, g2);

(g1, g2)
}
Stack Heap Stack Heap
main Hello main Hello

ml e world world
m2 i—*“/fﬂr__}

Hello world
ml_again e

m2_again e

15
S]

fn main() {
let m1 = String::from("Hello");
let m2 = String::from("world");

References greet(&ml, &m2); // note the ampersands

let s = format! ("{} {}", ml, m2);

1
d A reference |S a nOn—Ownlng fn greet(gl: &String, g2: &String) { // note the ampersands
po|nter } pr'1ntln!({y {}'", g1, g2);
* The expression &ml borrows ml
« g1 and g2 are not deallocated at > ”eapl : stack ”ea"'n
main He 0 main He 0
the end of greet, because they s v worta nl e — 2
are not owned m2 e m2 e
greet
gl e
g2 @

Stack Heap

main Hello

ml 'fwo rld
m2 e 16

Dereferencing pointers

let mut x: Box<i32> = Box::new(1l);
The X Operator |S let a: 1132 = *x; // *x reads the heap value, so a =1
*X += 13 // *x on the left-side modifies the heap value,
used tO dCCesSS the !/ so X points to the value 2
data d pOInter refers let rl1: &Box<i32> = &x; // rl1l points to x on the stack
to let b: 132 = **rl; // two dereferences get us to the heap value
let r2: &i32 = &*x3 // r2 points to the heap value directly
let c: 1132 = *r2; // so only one dereference is needed to read it
Stack Heap
main 2
X @
a 1
rli e
b 2
r2 @
C yi 17

Rust inserts (de)references automatically when the .
operator is used

let x: Box<i32> = Box::new(-1);
let x_absl = 1i32::abs(*x); // explicit dereference
let x_abs2 = x.abs(); // implicit dereference

assert_eq! (x_absl, x_abs2);

let r: &Box<i32> = &x;

let r_absl = i32::abs(**r); // explicit dereference (twice)
let r_abs2 = r.abs(); J/ dmplicit dereference (twice)
assert _eq! (r_absl, r_abs2);

let s = String::from("Hello");

let s_lenl = str::len(&s); // explicit reference
let s_len2 = s.len(): // dmplicit reference
assert_eq!(s_lenl, s_len2);

18

(De)referencing quiz

* Consider the following program, showing the
state of memory after the last line:

* |f you wanted to copy out the number 0
through y, how many dereferences would you
need to use?

* For example, if the correct expression is *y, then
the answeris 1.

let x = Box::inew(0);

let yv = Box:i:inew(&x):;
Stack Heap
main 0
X '%-
y ®

19

(De)referencing quiz (SOLUTION)

let x
* Consider the following program, showing the tety

state of memory after the last line:

Box:inew(0)

Box:inew(&x);

Stack Heap
* |f you wanted to copy out the number 0 main 0
through y, how many dereferences would you X -g.
need to use? y ®

* For example, if the correct expression is *y, then
the answeris 1.

* Answer: 3 (***y)
* One dereference for each pointer in the diagram
* Also: one for each new, one for each &

20

Rust prohibits simultaneous aliasing and mutation

* At L2, the alias num points
tov[2]

* We writeto v at L2 and read
from num at L3

* Thisis a problem because
the Vec’s memory is re-
allocated at L2, so the
pointer used at L3 points to
deallocated memory.
Undefined behavior!

let mut v: Vec<i32> = vec![1, 2, 3];
let num: &i32 = &v[2];

v.push(4);

println!("Third element is {}", *num); B

Stack Stack

main f—>123 main f—>1234
Y ® Y []
num ® num &

“Puzzled Ferris“
means this code
does not compile

num (&) 21

Heap Heap

B undefined behavior: pointer used
after its pointee is freed

Stack

main f—>1234
®

\'

Heap

Rust’s borrow checker ensures reference safety

e Ensures that data is never aliased and mutated at the same time

* Tracks the permissions associated with each variable:
* Read ('): data can be copied to another location.

 Write (W): data can be mutated in-place (let mut vars)
* |nvariant: there can be at most one W permission to a piece of data at any time

* Own (O): data can be moved or dropped.

* Creating a reference can temporarily remove these permissions

22

Example: how borrow checking works

Notes: let mut v: Vec<i32> = vec![1, 2, 3];
« v 1 4R +W +0
* Different permissions fornum _ &v[2]:
and *num E v SRWSI
« manipulating the reference vs. num 1 +R - +O
accessing the data knum I +R - -
. PR : println! ("Third element 1is {}", *num);
Permissions are defined on «— v o9 R+W 40
paths num 14 - @
* num, *num, v[2], a.field, knum 1 & - -
*((*a)[e].1) v.push(4);
* Permissions are lost when a L IRWE

mutually exclusive
permission must be used

* e.g. Wonvisneeded at
v.push(4) so F onnumis lost

23

A borrow checking error

let mut v: Vec<i32> = vec![1, 2, 3]}
(&

v ¥ +R+W +O ?
let num: &i32 = &Rv[2]; W o -g
« Vv 2

num % +R - +0

*num 1t +8 - -

vﬁw.push(4);

println! ("Third element is {}", *num):

error[E@502]: cannot borrow v as mutable because it is also borrowed as immutable
--> test.rs:4:1

3 | let num: &i32 = &v[2];

- immutable borrow occurs here

4 | v.push(4);

ANANANNAN mutable borrow occurs here

5 | println!("Third element is {}", *num);

---- immutable borrow later used here 24

We can also borrow mutably with &mut

let mut v: Vec<i32> = vec![1, 2, 3];

« v 1 +R +W +0
let num: &mut 132 = &mut gv[2];
£ v >S>A WO
num 1 +R - +O

*num Y +R +W -

e XNuUM += 13
println! ("Third element is {}", *num);“

v o R +W +0

num 3 A - @
snum 3 A W -
println! ("Vector 1is now {:7}", ev);
« v iAWY

25

Permissions are returned when a reference’s lifetime ends

fn ascii_capitalize(v: &mut Vec<char>) {
3

let ¢ = &ov[0];

) *V+ W—
L
if ce .is_ascii_lowercase() {
let up = ce .to_ascii_uppercase();
« *v O R+W -
. & @
v[@] = eup;
»
} else {
« *v O R+W -
. & @

println! ("Already capitalized: {:7}", ev);

3]

}
* Control flow can make this interesting!

26

Borrowing quiz

In the example, explain
why strs loses and
regains write (W)

permissions

fn get first(v: &Vec<String>) -> &str {
& v 1 +R-+0
*v 1 +R - =
&eov[O]
« v 1 HK-9
kv 1 - -
3
fn main() {
let mut strs = vec!]|
String::from("A"), String::from("B")
13
« strs * R +W +O
let first = get_first(&estrs);
« strs 9 w o

first 21+ +R - +0O

*first + +R - =

if firste.len() > 0 {
«

strs D R +W +0
first 1 K - @
xfirst 3 K - -

strs 4 .push(String::from("C"));
«

strs 1AW G

€« strs I/Wﬁ
27

Borrowing quiz

In the example, explain
why strs loses and
regains write (W)
permissions

ANSWER: get first
returns an immutable
reference to data
within strs, so strsis
not writable while
firstislive

fn get first(v: &Vec<String>) -> &str {
L

fn

- v 1 +R-+0
*v 1 +R - =
&eov[O]
« v 1 K-Q
kv 1 - -
main() {

let mut strs = vec!]|
String::from("A"), String::from("B")
13

«

strs 1t +R +W +O

let first = get_first(&estrs);
44

strs 2> w o
first 2t +R - +0
*Tirst 2 +R - =

if firste.len() > 0 {
«

strs D R +W +0
first 1 K - @
xfirst 3 K - -

strs 4 .push(String::from("C"));
L4

strs 1AW G

€« strs I/Wﬁ
28

Invariant: data must outlive its references

let s = String::from("Hello world");
»

let s_ref = &eos; ?
: s9R-0

dl'Dp(©S);
println! ("{}", s_ref);

* The drop function explicitly releases a data structure
* Any pointers in the data structure will be freed

* But drop requires an ownership (O) permission and we do not
have that for s while s_ref is live

29

Fixing borrow checking errors

* The following code has a borrow error:
/// Returns a person's name with "Ph.D." added as a title
fn award phd(name: &String) -> String {

let mut name = *name;

name.push str(", Ph.D.");

Nname
}
* What’s the best fix?
fn award_phd(name: &String) —-> String { fn award_phd(name: &mut String) {
A let mut name = name.clone(); C name.push_str (", Ph.D.");
name.push_str (", Ph.D."); ¥
name
1 fn award_phd(name: &String) -> String {
let mut name = &*name;
fn award _phd(mut name: String) -> String { D name.push_str (", Ph.D.");
B name.push_str (", Ph.D."); . name

name
30

String slices

e A string slice of type &str pointsto a
range of characters in a string

* &stristhe type of string literals in Rust!

* Aslice knows its length—access
beyond the length is a run time error

* Slices are references, so taking a slice
changes the permission to the
underlying data

* |f s were mut then we couldn’t mutate it
while hellois live

* You can also take slides of arrays
let a = [19 2, 3, 4, 5];
let slice : &[i132] = &a[l..3];

let s = String::from("hello world");

let hello: &str = &s[0..5];
let world: &str = &s[6..11];
let s2: &String = &s; !!
Stack Heap
main —rjffﬂ——+_heal1_ol_W£Jr1_d
S ®
hello e
world e
s2 ®

31

Sometimes Rust can’t tell the lifetime of a reference

// does longest return x or y?
// unclear -- and it matters if they have different lifetimes
fn longest(x: &str, y: &str) -> &str {
it x.len() > y.len() { x } else { vy }
}

fn main() {
let stringl = String::from("abcd");
let string2 = "xyz";
let result = longest(stringl.as_str(), string2);
println! ("The longest string is {result}");

32

Lifetime annotations can help

&i132 // a reference
&'a 132 // a reference with an explicit lifetime
&'a mut 132 // a mutable reference with an explicit lifetime

* We don’t need to write lifetime annotations everywhere—just
when we need to compare the lifetimes of different references

(e.g. in a function signature)

33

Using lifetime annotations

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
it x.len() > y.len() { x } else { vy }

* This signature tells Rust that for some lifetime ' a, the arguments must live at
least as long as ‘ a.

* Also, the value returned by Longest will live at least as long as ' a.

34

We can put lifetime annotations in structs

struct ImportantExcerpt<'a> { part: &'a str, }
fn main() {

let novel = String::from("Call me Ishmael. Some years ago...");
let first_sentence = novel.split('."').next().unwrap();

let 1 = ImportantExcerpt { part: first_sentence, };

}

* The lifetime parameter of ImportantExcerpt tracks how long
the part reference lives.

* Rust checks that 1 isn’t used after novel goes out of scope

35

Lifetime annotations can often be elided

* If you don’t provide them, Rust acts as if they were specified
according to the following rules

* Every lifetime in the input type gets its own lifetime parameter

fn foo(x: &i32, y: &i32) > foo<'a, 'b>(x: &'a 1132, y: &'b 1i32)

* |f there is exactly one lifetime parameter, that lifetime is assigned to all
output lifetime parameters

fn foo(x: &i32) -> &i32 =2 fn foo<'a>(x: &'a i32) -> &'a 132

* [Methods only]: If there are multiple input lifetime parameters, but one of

themis &self or &mut self, that lifetime is used for all output lifetime
parameters

36

The 'static lifetime

* The 'static lifetimeis for things that live for the entire execution
of the program

 Example: string literals

* Only use it if you know the underlying data lives indefinitely!

37

More about Drop

* When a value goes out of scope, we say it is dropped
* |If the value’s type implements the Drop trait,
the drop function is called
* Every heap allocated value is owned by exactly one box

* Initially the box that allocates it

 Ownership is transferred if one variable is assigned to another
* the old box variable cannot be used

* Every box value is dropped exactly once
* its drop function deallocates the heap data it owns

* Because of uniqgue ownership
* there cannot be any memory leaks
* there cannot be any dangling pointers

38

We can define binary trees with Box

* We use a struct to define a tree node with a key
and left and right subtrees

* Rust does not have null pointers, so we use options

* AnOption is either Some (storing a value) or None (no value, like null)

* In this case, the option holds a Box<TNode> since the subtree is allocated
separately

struct TNode {
key: 132,
left: Tree,
right: Tree,
}

type Tree = Option<Box<TNode>>;

39

Now we define 1nsert

struct TNode {

key: 132,
left: Tree,
right: Tree,

¥

type Tree = Option<Box<TNode>>;
fn insert(tree: &mut Tree, key: i32) {
match tree {

None => {

*tree = Some(Box::new(TNode { key, left: None, right: None }))
}s
Some(t) => { fn main() {

if key < t.key {
insert(&mut t.left, key)
} else {
insert(&mut t.right, key)

let mut tree = None;
insert(&mut tree, 5);
insert(&mut tree, 3);
insert(&mut tree, 4);
} insert(&mut tree, 10);
} }s // the whole tree 1s deallocated here
) } 40

The Rc library allows sharing

* Avalue in the heap can only be pointed to by
one box at a time

* this is what enables us to avoid leaks and dangling references
* but we can only create data structures like trees that have no sharing

* To create graphs, we need sharing in the heap

* The Rc library provides reference-counted shared pointers

* The reference count is incremented and decremented when Rc pointers
are created and dropped

* When an Rc pointer is dropped and the reference count goes down to
zero, the heap value is dropped and the storage is reclaimed

41

We can define graphs with Rc

struct GNode {

key: 132,

edges: Vec<Edge>,
}

type Edge = Rc<RefCell<GNode>>;

* Vec is an expandable array type with bound checking
* Recall that Rust doesn’t allow shared values to be mutable
* But we want to change graph nodes, e.g. while building the graph

 RefCell implements unique, mutable borrowing
* The contents can be borrowed temporarily
* Arun-time check verifies there are no other borrowers

42

Now we can create a graph

nodel
struct GNode {
key: i32,
edges: Vec<Edge>, node?2 node3
} \ /
type Edge = Rc<RefCell<GNode>>; node4
fn new_node(key: i32) -> Edge { fn main() {
Rc: :new(RefCell: :new(let nodel: Edge = new_node(1);
GNode { key, let node2: Edge = new_node(2);
edges : Vec::new() let node3: Edge = new_node(3);
) let node4: Edge = new_node(4);
} nodel.borrow_mut().edges.push(node2.clone());

nodel.borrow_mut().edges.push(node3.clone());
node2.borrow _mut().edges.push(noded4.clone());
node3.borrow mut().edges.push(node4.clone());

43

Cyclic graphs won’t be collected

struct GNode {

key: i32,

edges: Vec<Edge>,
}

type Edge = Rc<RefCell<GNode>>;

fn new _node(key: i32) -> Edge {

Rc::new(RefCell: :new(
GNode { key,
edges : Vec::new()
1))

nodel
node?2 node3
node4d
fn main() {
let nodel: Edge =
let node2: Edge =
let node3: Edge =
let node4: Edge =

nodel.borrow mut().
nodel.borrow mut().
node2.borrow _mut()
node3.borrow _mut()
node4d.borrow _mut()

new_node(1);
new_node(2);
new_node(3);
new_node(4);
edges.
edges.
.edges.
.edges.
.edges

push(node2.
push(node3.
push(node4.
push(node4.
.push(nodel.

clone());
clone());
clone());
clone());
clone());

44

Rust provides safe manual memory management

* |t does so by enforcing 3 invariants

* every value has exactly one owner
* there can be at most one W permission to a piece of data at any time
* data must outlive its references

45

	Slide 1: Ownership in Rust This material is based heavily on the Rust book, as adapted by Will Crichton et al.
	Slide 2: Limitations of garbage collection
	Slide 3: Rust provides safe manual memory management
	Slide 4: Safety in Rust
	Slide 5: How Rust ensures safety
	Slide 6: Ownership in Rust
	Slide 7: Conceptual model of variables of primitive types on the stack
	Slide 8: Assigning one variable to another copies the data if the type implements the Copy trait (includes i32)
	Slide 9: Boxes allocate memory in the heap
	Slide 10: Owners deallocate boxes
	Slide 11: Ownership
	Slide 12: Cloning
	Slide 13: Ownership quiz
	Slide 14: Ownership quiz (SOLUTION)
	Slide 15: Using pointers after passing them to a function
	Slide 16: References
	Slide 17: Dereferencing pointers
	Slide 18: Rust inserts (de)references automatically when the . operator is used
	Slide 19: (De)referencing quiz
	Slide 20: (De)referencing quiz (SOLUTION)
	Slide 21: Rust prohibits simultaneous aliasing and mutation
	Slide 22: Rust’s borrow checker ensures reference safety
	Slide 23: Example: how borrow checking works
	Slide 24: A borrow checking error
	Slide 25: We can also borrow mutably with &mut
	Slide 26: Permissions are returned when a reference’s lifetime ends
	Slide 27: Borrowing quiz
	Slide 28: Borrowing quiz
	Slide 29: Invariant: data must outlive its references
	Slide 30: Fixing borrow checking errors
	Slide 31: String slices
	Slide 32: Sometimes Rust can’t tell the lifetime of a reference
	Slide 33: Lifetime annotations can help
	Slide 34: Using lifetime annotations
	Slide 35: We can put lifetime annotations in structs
	Slide 36: Lifetime annotations can often be elided
	Slide 37: The 'static lifetime
	Slide 38: More about Drop
	Slide 39: We can define binary trees with Box
	Slide 40: Now we define insert
	Slide 41: The Rc library allows sharing
	Slide 42: We can define graphs with Rc
	Slide 43: Now we can create a graph
	Slide 44: Cyclic graphs won’t be collected
	Slide 45: Rust provides safe manual memory management

