
Ownership in Rust
This material is based heavily on the Rust book, as adapted by Will Crichton et al.

Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

Copyright © 2024 by Jonathan Aldrich and Michael L. Scott.

Limitations of garbage collection

• Garbage collection (GC) provides safe, convenient
memory management
• Ideal for applications programming

• But GC can be limiting for systems programming
• May not be willing to pay GC’s time and space costs
• May need control of memory layout and use
• GC failure modes can be problematic

• Under GC, servers slow down when running out of memory
• Crashing with “out of memory” may be better—can just restart the server

• Manual memory allocation may be needed in these conditions
• But in most languages, this sacrifices safety

2

Rust provides safe manual memory management

• Rust is a systems-oriented programming language
• manual memory management
• concurrency and parallelism

• Rust’s ownership type system ensures safety
• from memory leaks and dangling references (today)
• from data races in concurrent programs (later)

3

Safety in Rust

• Safety in Rust means a lack of undefined behavior

• Example of undefined behavior (from the Rust book):
fn read(y: bool) {
 if y {
 println!("y is true!");
 }
}

fn main() {
 read(x); // oh no! x isn't defined!
 let x = true;
}

• It is undefined behavior to read a variable before it is defined

• Why is undefined behavior bad?
• Well, it might execute just fine
• But the program above could read garbage data, making results unpredictable
• In general, undefined behavior can cause crashes or security vulnerabilities

4

How Rust ensures safety

• Key goal of Rust: ensure program don’t have undefined behavior
• Combination of static and dynamic checks
• Check as much as possible statically

• Bugs are still possible! But certain kinds of bugs can’t happen.
• Ownership in Rust is a discipline for using memory
• Ownership prevents undefined behavior related to memory

(except in unsafe code)
• Reading uninitialized memory
• Using memory after it is freed
• Freeing memory twice
• Memory leaks (forgetting to free memory)

5

Ownership in Rust

• Rust uses a value model of variables, like C/C++
• Any typed data that is currently in use (i.e. live) is a value
• A value’s lifetime lasts from when is allocated until it is freed

• Value allocation
• on the stack if lifetime matches a function call and size is known
• on the heap otherwise

• Invariant: every value has exactly one owner
• A variable
• Some other value that is (or contains) a smart pointer

• Values on the heap are reclaimed when they lose their owner
• e.g. because their owning smart pointer goes out of scope, or is

reassigned
6

Conceptual model of variables of primitive types on the stack

example from the Rust book (Brown version)

7

Assigning one variable to another copies the data
if the type implements the Copy trait (includes i32)

But this is very
expensive if
the data is
large →

8

Boxes allocate memory in the heap

• Now a is of Box (pointer) type
• Assigning b to the value of a

moves the pointer, because
Box does not implement Copy

• We say that a owns the data
before the move, and b owns it
afterward

• We cannot use a after the
move

9

Owners deallocate boxes

If a variable owns a box,
when Rust deallocates the
variable’s frame, then Rust
deallocates (“drops”) the
box’s heap memory.

The box holding 5 is
deallocated at the end of
make_and_drop

10

Ownership

Here’s an example
involving string
manipulation

Note that it would
be an error to use
first after the
pointer is moved in
the call to from

11

Cloning

• If we want to continue to use the
first string, we can clone it
before moving the pointer

• The clone method makes a deep
copy of the string (the data on the
heap is copied, not just the
pointer)

12

Ownership quiz

• Does this program compile?
Why or why not?

• If it compiles, what is the result
when it runs?

fn main() {

 let s = String::from("hello");

 let s2;

 let b = false;

 if b {

 s2 = s;

 }

 println!("{}", s);

}

13

Ownership quiz (SOLUTION)

• Does this program compile?
Why or why not?

• Answer: no, it does not
compile, because s might be
moved to s2 inside the if
statement, so s cannot be used
in the println! call.

• Rust doesn’t try to figure out
whether if statements will
execute (that’s undecidable in
general)

fn main() {

 let s = String::from("hello");

 let s2;

 let b = false;

 if b {

 s2 = s;

 }

 println!("{}", s);

}

14

Using pointers after passing them to a function

Moving owned pointers
can be inconvenient

15

References

• A reference is a non-owning
pointer

• The expression &m1 borrows m1
• g1 and g2 are not deallocated at

the end of greet, because they
are not owned

16

Dereferencing pointers

The * operator is
used to access the
data a pointer refers
to

17

Rust inserts (de)references automatically when the .
operator is used

18

(De)referencing quiz

• Consider the following program, showing the
state of memory after the last line:

• If you wanted to copy out the number 0
through y, how many dereferences would you
need to use?
• For example, if the correct expression is *y, then

the answer is 1.

19

(De)referencing quiz (SOLUTION)

• Consider the following program, showing the
state of memory after the last line:

• If you wanted to copy out the number 0
through y, how many dereferences would you
need to use?
• For example, if the correct expression is *y, then

the answer is 1.

• Answer: 3 (***y)
• One dereference for each pointer in the diagram
• Also: one for each new, one for each &

20

Rust prohibits simultaneous aliasing and mutation

• At L2, the alias num points
to v[2]

• We write to v at L2 and read
from num at L3

• This is a problem because
the Vec’s memory is re-
allocated at L2, so the
pointer used at L3 points to
deallocated memory.
Undefined behavior!

“Puzzled Ferris“
means this code
does not compile

21

Rust’s borrow checker ensures reference safety

• Ensures that data is never aliased and mutated at the same time
• Tracks the permissions associated with each variable:

• Read (R): data can be copied to another location.
• Write (W): data can be mutated in-place (let mut vars)

• Invariant: there can be at most one W permission to a piece of data at any time
• Own (O): data can be moved or dropped.

• Creating a reference can temporarily remove these permissions

22

Example: how borrow checking works

Notes:
• Different permissions for num

and *num
• manipulating the reference vs.

accessing the data

• Permissions are defined on
paths
• num, *num, v[2], a.field,
*((*a)[0].1)

• Permissions are lost when a
mutually exclusive
permission must be used
• e.g. W on v is needed at
v.push(4) so R on num is lost

23

A borrow checking error

error[E0502]: cannot borrow `v` as mutable because it is also borrowed as immutable

 --> test.rs:4:1

 |

3 | let num: &i32 = &v[2];

 | - immutable borrow occurs here

4 | v.push(4);

 | ^^^^^^^^^ mutable borrow occurs here

5 | println!("Third element is {}", *num);

 | ---- immutable borrow later used here 24

We can also borrow mutably with &mut

25

Permissions are returned when a reference’s lifetime ends

• Control flow can make this interesting!

26

Borrowing quiz

In the example, explain
why strs loses and
regains write (W)
permissions

27

Borrowing quiz

In the example, explain
why strs loses and
regains write (W)
permissions

ANSWER: get_first
returns an immutable
reference to data
within strs, so strs is
not writable while
first is live

28

Invariant: data must outlive its references

• The drop function explicitly releases a data structure
• Any pointers in the data structure will be freed

• But drop requires an ownership (O) permission and we do not
have that for s while s_ref is live

29

Fixing borrow checking errors

• The following code has a borrow error:
/// Returns a person's name with "Ph.D." added as a title
fn award_phd(name: &String) -> String {
 let mut name = *name;
 name.push_str(", Ph.D.");
 name
}

• What’s the best fix?

A

B

C

D

30

String slices

• A string slice of type &str points to a
range of characters in a string
• &str is the type of string literals in Rust!

• A slice knows its length—access
beyond the length is a run time error

• Slices are references, so taking a slice
changes the permission to the
underlying data
• If s were mut then we couldn’t mutate it

while hello is live

• You can also take slides of arrays
let a = [1, 2, 3, 4, 5];

let slice : &[i32] = &a[1..3];

31

Sometimes Rust can’t tell the lifetime of a reference

// does longest return x or y?

// unclear -- and it matters if they have different lifetimes

fn longest(x: &str, y: &str) -> &str {

 if x.len() > y.len() { x } else { y }

}

fn main() {

 let string1 = String::from("abcd");

 let string2 = "xyz";

 let result = longest(string1.as_str(), string2);

 println!("The longest string is {result}");

}

32

Lifetime annotations can help

&i32 // a reference

&'a i32 // a reference with an explicit lifetime

&'a mut i32 // a mutable reference with an explicit lifetime

• We don’t need to write lifetime annotations everywhere—just
when we need to compare the lifetimes of different references
(e.g. in a function signature)

33

Using lifetime annotations

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {

 if x.len() > y.len() { x } else { y }

}

• This signature tells Rust that for some lifetime 'a, the arguments must live at
least as long as ‘a.

• Also, the value returned by longest will live at least as long as 'a.

34

We can put lifetime annotations in structs

struct ImportantExcerpt<'a> { part: &'a str, }

fn main() {

 let novel = String::from("Call me Ishmael. Some years ago...");

 let first_sentence = novel.split('.').next().unwrap();

 let i = ImportantExcerpt { part: first_sentence, };

}

• The lifetime parameter of ImportantExcerpt tracks how long
the part reference lives.

• Rust checks that i isn’t used after novel goes out of scope

35

Lifetime annotations can often be elided

• If you don’t provide them, Rust acts as if they were specified
according to the following rules
• Every lifetime in the input type gets its own lifetime parameter
fn foo(x: &i32, y: &i32) → foo<'a, 'b>(x: &'a i32, y: &'b i32)

• If there is exactly one lifetime parameter, that lifetime is assigned to all
output lifetime parameters

fn foo(x: &i32) -> &i32 → fn foo<'a>(x: &'a i32) -> &'a i32

• [Methods only]: If there are multiple input lifetime parameters, but one of
them is &self or &mut self, that lifetime is used for all output lifetime
parameters

36

The 'static lifetime

• The 'static lifetime is for things that live for the entire execution
of the program
• Example: string literals

• Only use it if you know the underlying data lives indefinitely!

37

More about Drop

• When a value goes out of scope, we say it is dropped
• If the value’s type implements the Drop trait,

the drop function is called

• Every heap allocated value is owned by exactly one box
• Initially the box that allocates it
• Ownership is transferred if one variable is assigned to another

• the old box variable cannot be used

• Every box value is dropped exactly once
• its drop function deallocates the heap data it owns

• Because of unique ownership
• there cannot be any memory leaks
• there cannot be any dangling pointers

38

We can define binary trees with Box

• We use a struct to define a tree node with a key
and left and right subtrees

• Rust does not have null pointers, so we use options
• An Option is either Some (storing a value) or None (no value, like null)
• In this case, the option holds a Box<TNode> since the subtree is allocated

separately

struct TNode {
 key: i32,
 left: Tree,
 right: Tree,
}
type Tree = Option<Box<TNode>>;

39

Now we define insert
struct TNode {
 key: i32,
 left: Tree,
 right: Tree,
}
type Tree = Option<Box<TNode>>;
fn insert(tree: &mut Tree, key: i32) {
 match tree {
 None => {
 *tree = Some(Box::new(TNode { key, left: None, right: None }))
 },
 Some(t) => {
 if key < t.key {
 insert(&mut t.left, key)
 } else {
 insert(&mut t.right, key)
 }
 },
 }
} 40

fn main() {
 let mut tree = None;
 insert(&mut tree, 5);
 insert(&mut tree, 3);
 insert(&mut tree, 4);
 insert(&mut tree, 10);
 // the whole tree is deallocated here
}

The Rc library allows sharing

• A value in the heap can only be pointed to by
one box at a time
• this is what enables us to avoid leaks and dangling references
• but we can only create data structures like trees that have no sharing

• To create graphs, we need sharing in the heap
• The Rc library provides reference-counted shared pointers

• The reference count is incremented and decremented when Rc pointers
are created and dropped

• When an Rc pointer is dropped and the reference count goes down to
zero, the heap value is dropped and the storage is reclaimed

41

We can define graphs with Rc

struct GNode {
 key: i32,
 edges: Vec<Edge>,
}

type Edge = Rc<RefCell<GNode>>;

• Vec is an expandable array type with bound checking
• Recall that Rust doesn’t allow shared values to be mutable

• But we want to change graph nodes, e.g. while building the graph

• RefCell implements unique, mutable borrowing
• The contents can be borrowed temporarily
• A run-time check verifies there are no other borrowers

42

Now we can create a graph

struct GNode {
 key: i32,
 edges: Vec<Edge>,
}

type Edge = Rc<RefCell<GNode>>;

fn new_node(key: i32) -> Edge {
 Rc::new(RefCell::new(
 GNode { key,
 edges : Vec::new()
 }))
}

43

fn main() {
 let node1: Edge = new_node(1);
 let node2: Edge = new_node(2);
 let node3: Edge = new_node(3);
 let node4: Edge = new_node(4);
 node1.borrow_mut().edges.push(node2.clone());
 node1.borrow_mut().edges.push(node3.clone());
 node2.borrow_mut().edges.push(node4.clone());
 node3.borrow_mut().edges.push(node4.clone());
}

Cyclic graphs won’t be collected

struct GNode {
 key: i32,
 edges: Vec<Edge>,
}

type Edge = Rc<RefCell<GNode>>;

fn new_node(key: i32) -> Edge {
 Rc::new(RefCell::new(
 GNode { key,
 edges : Vec::new()
 }))
}

44

fn main() {
 let node1: Edge = new_node(1);
 let node2: Edge = new_node(2);
 let node3: Edge = new_node(3);
 let node4: Edge = new_node(4);
 node1.borrow_mut().edges.push(node2.clone());
 node1.borrow_mut().edges.push(node3.clone());
 node2.borrow_mut().edges.push(node4.clone());
 node3.borrow_mut().edges.push(node4.clone());
 node4.borrow_mut().edges.push(node1.clone());
}

Rust provides safe manual memory management

• It does so by enforcing 3 invariants
• every value has exactly one owner
• there can be at most one W permission to a piece of data at any time
• data must outlive its references

45

	Slide 1: Ownership in Rust This material is based heavily on the Rust book, as adapted by Will Crichton et al.
	Slide 2: Limitations of garbage collection
	Slide 3: Rust provides safe manual memory management
	Slide 4: Safety in Rust
	Slide 5: How Rust ensures safety
	Slide 6: Ownership in Rust
	Slide 7: Conceptual model of variables of primitive types on the stack
	Slide 8: Assigning one variable to another copies the data if the type implements the Copy trait (includes i32)
	Slide 9: Boxes allocate memory in the heap
	Slide 10: Owners deallocate boxes
	Slide 11: Ownership
	Slide 12: Cloning
	Slide 13: Ownership quiz
	Slide 14: Ownership quiz (SOLUTION)
	Slide 15: Using pointers after passing them to a function
	Slide 16: References
	Slide 17: Dereferencing pointers
	Slide 18: Rust inserts (de)references automatically when the . operator is used
	Slide 19: (De)referencing quiz
	Slide 20: (De)referencing quiz (SOLUTION)
	Slide 21: Rust prohibits simultaneous aliasing and mutation
	Slide 22: Rust’s borrow checker ensures reference safety
	Slide 23: Example: how borrow checking works
	Slide 24: A borrow checking error
	Slide 25: We can also borrow mutably with &mut
	Slide 26: Permissions are returned when a reference’s lifetime ends
	Slide 27: Borrowing quiz
	Slide 28: Borrowing quiz
	Slide 29: Invariant: data must outlive its references
	Slide 30: Fixing borrow checking errors
	Slide 31: String slices
	Slide 32: Sometimes Rust can’t tell the lifetime of a reference
	Slide 33: Lifetime annotations can help
	Slide 34: Using lifetime annotations
	Slide 35: We can put lifetime annotations in structs
	Slide 36: Lifetime annotations can often be elided
	Slide 37: The 'static lifetime
	Slide 38: More about Drop
	Slide 39: We can define binary trees with Box
	Slide 40: Now we define insert
	Slide 41: The Rc library allows sharing
	Slide 42: We can define graphs with Rc
	Slide 43: Now we can create a graph
	Slide 44: Cyclic graphs won’t be collected
	Slide 45: Rust provides safe manual memory management

