
Chapter 3: Names, Scopes, and Binding
Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

Copyright © 2024 by Jonathan Aldrich and Michael L. Scott.

Section 3.1: Names, scopes, and binding time
Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

Copyright © 2024 by Jonathan Aldrich and Michael L. Scott.

Names raise the level of abstraction of programs

• Can refer to variables, functions, etc. using symbolic
identifiers instead of addresses

• Can use a name to refer to a more complicated structure
• A subroutine’s name abstracts the implementation code
• A class’s name abstracts the data representation

• Most program data is referred to by names
• Data on the heap is an exception—it is referred to by pointers

• But, those pointers are stored in variables that are named!

3

Names, scopes, and binding

• Consider this example of a variable binding:

fn binding() {
 //println!("{}", name);
 let x = "Harry Q. Bovik";
 println!("Hello, {}", x);

}

• x is a name
• let x = "Harry Q. Bovik"; is a binding

• associates x with a variable
• assigns the result of evaluating the right hand side to the variable

• The scope of x is where the binding is active
• typically the statements that follow the binding

4

Binding time

• The point at which a binding is created
• A module import name is bound to an implementation at link

time
• A variable is bound to a value at run time

• More generally, the point at which an implementation decision is
made

• Generally, decisions made before run-time are called static,
decisions made at run time are dynamic

5

Decisions and their binding times

• Language design time
• What language constructs and types are available

• Language implementation time
• Representation and precision of primitive values, layout of the stack

• How many bits are in a C int?

• Program writing time
• Programmer’s choice of algorithms, data structures, and names

• Compile time
• Mapping of source code to machine code, layout of data structures

6

Decisions and their binding times (continued)

• Link time
• Binding of a module’s imports to the referenced modules

• Load time
• Exact layout of code in memory

• Run time
• Binding of variables to values

7

Binding time in compilers and interpreters

• Compilers make many decisions at compile time
• This makes the run time more efficient, because these

decisions are already made

• Interpreters delay many decisions until run time
• Allows code to be more flexible, automatically supporting polymorphism

• The type of data stored in each variable does not have to be determined in the
source code, and can vary at run time

8

Section 3.2:
Object lifetimes and storage management

Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

Copyright © 2024 by Jonathan Aldrich and Michael L. Scott.

Object and binding lifetimes

• Lifetime of an object (e.g. a variable)
• From when space is allocated to when it is reclaimed

• Lifetime of a binding (e.g. the variable’s name)
• From when it is associated with the entity to when the association ends

Q: What if the lifetime of a binding is different from the lifetime of
the entity being bound?

10

Object and binding lifetimes

Q: What if the lifetime of a binding is different from the
lifetime of the entity being bound?

A: If binding outlives the entity, we have a dangling reference
• Dangling references don’t usually exist as names per se, but we can create

them with references

fn return_ptr(x:&i32) -> &i32 {
let local = 5;
return &local;

}
let j = return_ptr(&i);

11

Note: rustc will reject
this program because of
the dangling reference!

Object and binding lifetimes

Q: What if the lifetime of a binding is different from the
lifetime of the entity being bound?

A: If an entity outlives the last binding to it, we have garbage
• Example: in functional programming languages, a data structure may be

bound to many names, and it may not be clear when the last name goes
out of scope

• Garbage collection is used to reclaim the space used by garbage

12

Shadowing

Q: What does this Rust code print?

fn shadows() {
 let x = 5;
 println!("x is {}", x);
 let x = 6;
 println!("x is {}", x);
}

13

Shadowing

Q: What does this Rust code print?

fn shadows() {
 let x = 5;
 println!("x is {}", x);
 let x = 6; // shadows the earlier binding
 println!("x is {}", x); // will print 6
}

14

Deactivation of bindings

• A binding is active whenever it can be used
• Bindings may be (temporarily) deactivated

• when one variable is shadowed by another with the same name
• when calling another function, while that function executes
• for static variables, when the containing function is not running

15

The timeline of an entity (e.g. a variable)

• creation of entities – e.g. at function entry, alloc stmt
• creation of bindings – at variable declaration
• use of variables (via their bindings)
• (temporary) deactivation/shadowing of bindings
• reactivation of bindings
• destruction of bindings – at end of scope
• destruction of entities – at end of scope, free stmt

16

Lifetimes and storage management

• Storage Allocation mechanisms
–Static – fixed location in program memory
–Stack – follows call/return of functions
–Heap – allocated at run time, independent of call structure

• Static allocation for entities that live for the entire program
execution

–code
–globals
–static variables
–explicit constants (including strings, sets, etc.)
–scalars may be stored in the instructions

17

Lifetimes and storage management

• Stack allocation for entities that live for the length
of a function invocation

• parameters
• local variables
• temporaries

• Why a stack?
• allocate space for recursive routines

(not necessary in FORTRAN – no recursion)
• reuse space (in all programming languages)

18

A

B

C

C

C

D

E

Lifetimes and storage management

• Stack allocation for
• parameters
• local variables
• temporaries

• Why a stack?
• allocate space for recursive routines

(not necessary in FORTRAN – no recursion)
• reuse space (in all programming languages)

• Why not a stack?
• In functional languages, local variables may be referenced after the

function returns due to closures, so they may be allocated on the heap

19

Stack-based allocation of space for subroutines

20

Stack-based allocation

• Maintenance of stack is responsibility of calling
sequence and subroutine prologue and epilogue

• Save space by doing more work in the callee’s prologue
and epilogue

• Most procedures have multiple callers

21

Heap-based allocation

• Heap for dynamic allocation
+ supports lifetimes that don’t match the call stack
- requires explicit management or garbage collection
- wasted space due to fragmentation

22

May not be able to place this block due to
fragmentation, even if there is enough
space overall

Stack Organization
Relevant to Homework 1!

23

Let’s compile some code that needs the stack!

• Consider the following snek code: (- 100 50)
• For now, we want a fully modular compilation scheme

• One instruction at a time, little bookkeeping keeps your life simple
• Idea (from Monday): always leave the result in rax for use in the next expression

• Production compilers will do something fancier

• Our plan
• Compile 100
• Compile 50
• Compile the subtraction

24

We have a problem! Where does the value
100 go when we are storing 50 in rax?

We need temporary storage. Let’s use the
stack.

The stack frame

• The stack pointer sp (rsp in
x86-64) refers to the top of
stack

• Decrement to allocate
• push val allocates and writes

sub rsp, 8 // equivalent
mov [rsp], val // code

• Increment to free (often free all
variables at once at the end)

• pop reg reads and deallocates
mov reg, [rsp] // equivalent
add rsp, 8 // code

25

The stack frame

• The frame pointer fp (or base
pointer, rbp in x86-64) points to
the base of the frame

• Access variables via offset
• mov reg, [rbp-n*8]

• Accesses the nth variable
• Using a frame pointer is optional!

If you keep track of where rsp is
(not hard, just bookkeeping) you
can always offset from rsp.
Modern compilers do this, then
they can use rbp for something
else.

26

Let’s compile some code that needs the stack!

• Consider the following snek code: (- 100 50)
• For now, we want a fully modular compilation scheme

• One instruction at a time, little bookkeeping keeps your life simple
• Idea (from Monday): always leave the result in rax for use in the next expression

• Production compilers will do something fancier

• Our plan
• Compile 100
• Push rax to a temporary on the stack
• Compile 50
• Move rax to rbx (since 50 is the second argument)
• Pop the temporary back to rax
• Compile the subtraction

27

Let’s compile some code that needs the stack!

• Consider the following snek code: (- 100 50)
• Our plan

• Compile 100 mov rax, 100
• Push rax to a temporary on the stack push rax
• Compile 50 mov rax, 50
• Move rax to rbx (since 50 is the second argument) mov rbx, rax
• Pop the temporary back to rax pop rax
• Compile the subtraction sub rax, rbx

• For fun: think about how to do this better
• The code above is far from optimal!
• But, it is a simple translation scheme that works for Homework 1

28

In-class exercise

• Use the compilation scheme sketched above to compile
(+ 2 (- 100 50))

29

In-class exercise

• Use the compilation scheme sketched above to compile
(+ 2 (- 100 50))

• Answer:
mov rax, 2

push rax

mov rax, 100

push rax

mov rax, 50

mov rbx, rax

pop rax

sub rax, rbx

mov rbx, rax // alternative: since add is symmetric,

pop rax // can replace these two instructions with pop rbx

add rax, rbx 30

Let’s look at variables

• How to compile: (let (x 10) (let (y 8) (+ x y)))
push rbp // prologue: saves rbp and

mov rbp, rsp // sets up rbp as the frame pointer

mov rax, 10

push rax // x is at [rbp-8]

mov rax, 8

push rax // y is at [rbp-16]

mov rax, [rbp-8]

push rax

mov rax, [rbp-16]

pop rbx // optimized version, uses the symmetry of +

add rax, rbx

add rsp, 16 // epilogue: deallocates variables and

pop rbp // restores the caller’s rbp 31

Section 3.3: Scope rules
Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

Copyright © 2024 by Jonathan Aldrich and Michael L. Scott.

Declarations and definitions

• Declarations
• Introduce a name; give its type (if in a typed language)

int x;

• Definitions
• Fully define an entity

• Specify value for variables, function body for functions

int x = 0;

• Common rules
• Declaration before use
• Definition before use

33

Rationale for ordering rules

• Declaration before use
• Makes it possible to write a one-pass compiler
• When you call a function, you know its signature

• In C, this requires separating declarations from definitions to support recursion

• Definition before use
• Avoids accessing an undefined variable

• Java relaxes both of these for classes, fields, and methods
• But not for local variables

34

Static scoping

• Q: What does this Java code print?
class Outer {
 int x = 1;
 class Inner {
 int x = 2;
 void foo() {
 if (flag) {
 int x = 3;
 }
 System.out.println(“x = ” + x); // what do I print?
} } }

35

Most recent
binding of x in
an enclosing

scope

Static scoping rules

• With static (or lexical) scope rules, a scope is defined in
terms of the lexical structure of the program

• The determination of scopes can be made by the compiler
• Bindings for identifiers are resolved by examining code
• Typically, the most recent binding in an enclosing scope
• Most compiled languages, C and Pascal included, employ static scope

rules

• “Most closely nested” rule from Algol 60
– An identifier is known in the scope in which it is declared and in each

enclosed scope, unless it is re-declared in an enclosed scope
– To resolve a reference to an identifier, we examine the local scope and

statically enclosing scopes until a binding is found

36

	Chapter 3: Names, Scopes, and Binding
	Section 3.1: Names, scopes, and binding time
	Names raise the level of abstraction of programs
	Names, scopes, and binding
	Binding time
	Decisions and their binding times
	Decisions and their binding times (continued)
	Binding time in compilers and interpreters
	Section 3.2:�Object lifetimes and storage management
	Object and binding lifetimes
	Object and binding lifetimes
	Object and binding lifetimes
	Shadowing
	Shadowing
	Deactivation of bindings
	The timeline of an entity (e.g. a variable)
	Lifetimes and storage management
	Lifetimes and storage management
	Lifetimes and storage management
	Stack-based allocation of space for subroutines
	Stack-based allocation
	Heap-based allocation
	Stack Organization
	Let’s compile some code that needs the stack!
	The stack frame
	The stack frame
	Let’s compile some code that needs the stack!
	Let’s compile some code that needs the stack!
	In-class exercise
	In-class exercise
	Let’s look at variables
	Section 3.3: Scope rules
	Declarations and definitions
	Rationale for ordering rules
	Static scoping
	Static scoping rules

