Introduction

ALV Programming Language Pragmatics

LANGUAGE
PRAGMATICS

Prof. Jonathan Aldrich

Copyright © 2025 by Elsevier. Slides written by Jonathan Aldrich and Michael L. Scott. Licensed under CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Language design and implementation go together

—An implementor has to understand the language
— To ensure the implementation is correct

—A language designer has to understand implementation issues
— To ensure the language can be implemented efficiently

—A good programmer has to understand both!
— To write correct, understandable, and efficient programs

Why are there so many programming languages®?

* Evolution: we’ve learned better ways to do things
* Structured programming over gotos

* Socio-economic factors: proprietary interests, network effects
* Learn Swift to program iPhone apps, Java for Android apps

* Special purposes
* JavaScript is good for web programs, Rust for systems programming

* Hardware focus
* CUDA for GPUs

* Personal preference: diverse ideas about what works well

What makes a language successful?

* Easy to learn (BASIC, Python, LOGO, Scheme)

* Expressive power (C++, Common Lisp, Scala, Rust)

 Easy to implement, freely available (BASIC, Forth, Pascal, Java)
* Safety (Java, Rust)

* Standardization (C, Java, C#)

* Open source (C)

* Efficient (fast/small) code (Fortran, C, Rust)

* Backing of a powerful sponsor (C#, Ada, Swift)

* Market lock-in (Cobol, JavaScript)

Two viewpoints: the programmer & the computer

* “Computer Programming is the art of explaining to
another human being what you want the computer
to do.” - Donald Knuth

* Programmer’s view
* Language as a way of thinking and expressing algorithms

* Implementer’s view
* An abstraction of a (virtual) machine

* Both conceptual clarity and efficient implementation are
fundamental concerns

Programming language people: Donald Knuth

Image by Alex Handy
CCBY-SA 2.0

Donald E. Knuth (1938-)

Professor Emeritus,
Stanford University

Known for:

* Design and analysis of algorithms

* The TEX typesetting system

* Literate programming methodology
* The Art of Computer Programming
* ACM Turing Award (1974)

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/

Language Paradigms

Declarative Languages Imperative Languages

logic/query
Prolog, SQL

functional scripting

ML, Lisp,
Haskell, Scheme

ﬁ Ruby

Java, Smalltalk, Eiffel
object-oriented

PHP Perl

von Neumann

dataflow

Id, Val

C, Ada,
Fortran

Python

constraint-based
Excel, CSS

FigHI*E |.I Classification of programming languages. MNote that the categones are fuzzy, and
open to debate. Many languages fall into more than one category. Many authors do not consider
functional programming to be declarative.

Declarative languages tend to be higher level

* Closer to programmer, further from

machine
* Focus on what program should do
e Logic/query languages (Prolog, SQL) T
* Find values that satisfy constraints ML Lis,

Haskell, Scheme

* Dataflow languages (Id, Val)

* Model computation as parallel flow of tokens /Gusincbac
Figu re |.| Classification of programming languages. Note that the categories are fuzzy, and

Excel, CSS
* Constraint-based (Excel, CSS)
* Express constraints to be solved/maintained i segamms o s o

* Functional languages (Haskell, Scheme)

* Side-effect-free computation of outputs from
inputs using functions, supports unbounded
computation using recursion

Java, Smalltalk, Eiffel
object-oriented

Imperative languages are more algorithmic

* Less abstract, closer to the machine
* Focus on how program should operate

* Von Neumann languages (C, Fortran) Declarative Languages Imperative Languages
« Computation as modification of variables,
unbounded work done through loops

* Object-oriented languages (C++, Java) =

* Computation is structured and distributed
among ObjeCtS’ eaCh Of WhiCh haS data and Figure |.I Classification of programming languages. Note that the categories are fuzzy, and

open to debate. Many languages fall into more than one category. Many authors do not consider

m et h O d S functional programming to be declarative.

* Scripting languages (Python, JavaScript)

* Emphasize flexibility, ease of programming,
gluing components together

functional

ML, Lisp,
Haskell, Scheme

Java, Smalltalk, Eiffel
object-oriented

John von Neumann
(1903-1957)

* Mathematician and computer
pioneer

* helped to develop the concept of
stored program computing
* underlies most computer hardware

* both programs and data are
represented as bits in memory

* processor repeatedly fetches,
interprets, and updates that
representation

Image from Los Alamos National
Laboratory. Used by permission
(see slide notes)

10

One program, three language families

int ged(int. a; int b) { // C
while (a !'= b) {
if (a > b) a = a - b;
else b = b - a;

}
return a;
L,
let rec gcd a b = (* OCaml *)
if a = b then a
else if a > b then gcd b (a - b)
else gcd a (b - a)
gcd(A,B,G) :- A =B, G = A. % Prolog

gcd(A,B,G) :- A > B, C is A-B, gcd(C,B,G).
gcd(A,B,G) :- B > A, C is B-A, gcd(C,A,G).

11

Discussion: compare languages

* Think about two different programming languages that
you know. For each, name one advantage of using
that language.

12

Why study programming languages?

* Help you choose a language
 What kind of project is Rust good for? JavaScript? Python?

* Learn new languages more easily
* Leverage concepts that cross-cut languages: types, control structures, ...

* Make better use of languages and language technology
* Understanding obscure features when you need to
* Choose alternative ways to express things, e.g. based on cost
* Use tools such as debuggers, assemblers, and linters effectively
* Know how to work around features missing from your language
* Languages are everywhere: configuration files, extension languages,
scripting, ...
* Learn to reason rigorously
* PL has some of the best intellectual tools! "

How is this course different?

* Overall: emphasizes the interaction between language design and
iImplementation

* VVs. 15-410

* More focus on language design and theory; fulfills the Logic & Languages
elective, not the Systems elective

*Vs.15-312

* “Pragmatic” focus — we study ideas and theory in the context of industrial
languages and their design choices

 Use of an educational proof assistant to make theory both more
approachable and rigorous

14

Course Administration

e Lectures 2x/week

e Active learning exercises in every class

* |[n person expectation

* If you can’t make it, email me—we’ll get you a video & exercises

« Textbook: Programming Language Pragmatics, 5" edition

e Recitation
e Lab-like, helpful for homework. Bring your laptop!

15

“How do | get an A?”

50% Homework —due Friday 11:59pm

e Build a compiler (5 coding assignments, plus a warmup this week)

* Implementation in Rust — good language for compilers & interesting to study
« Reason about languages (4 theory assignments)

 SASyLF educational theorem proving tool

20% - 2 midterm exams covering core concepts

25% Project

e Extend the compilerin some interesting way, or explore theory

5% Participation (assessed via in-class exercises)

« Can miss up to 2 sessions (lecture or recitation) w/o losing credit

16

Communication

e Website

 Schedule, syllabus, slides

* Piazza for announcements, communication

 Use Piazza as much as possible

 Make questions public if possible, so others can benefit!

e Canvas

* Assignments, grades

e Office hours TBA shortly (or just come by)

17

Read the syllabus!

A high level summary of some policies:

* Late work: 5 free late days
* 10% penalty per day after these are used up
* No credit more then 5 days late
* Special circumstances: contact the instructor

* Collaboration policy
* Your work must be your own
* 100% penalty for cheating
* Read full policy carefully

* No electronics in lecture
* But bring them to recitation!

18

CMU can be pretty intense

* A12-credit course is expected to take ~12 hours a week.

* We aim to provide a rigorous but tractable course.
* More frequent assighments rather than big monoliths
* Two midterm exams to cover core material as you learn it

* Please keep us apprised of how much time the class is actually taking and
whether it is interfacing badly with other courses.
* We have no way of knowing if you have three midterms in one week.
* Sometimes, we misjudge assignment difficulty.

* |Ifit’s 2 am and you’re panicking...put the homework down, send us an email,
and go to bed

19

Two approaches to language implementation

Source program

l

—— Compil
Compilation: < e >
Input —:H: Target program :u—:- Output

Source program

Interpretation: (Interpreter >—>Output
p /

Input

20

Programming lang. people: Grace Murray Hopper

‘ PRI w

(W

R

Image by James S. Davis
public domain

Grace Murray Hopper
(1906-1992)

* Mathematics professor, computing
pioneer, rear admiral in the US Navy

* While working on the early Mark I
computer, Hopper’s team discovered
a moth in a relay, leading her to write
“First actual case of bug being found.”

* Developed the FLOW-MATIC language
based on English words to make
computing more accessible

* Coined the term “compiler” and later
played a key role in the design of
Cobol. 21

Interpretation vs. compilation

* Interpretation supports more flexibility, better
diagnostics
* Often excellent source-level debuggers

* Compilation generally leads to better performance

* Decisions made at compile time need not be repeated at run time, saving
effort

22

Linking to libraries — for example, in Fortran

Fortran program

l
< Compiler)
l

Incomplete machine language Library routines

l
(e)
i

Machine language program

23

Assembly language is often an intermediate step

Source program

l

(" compie)
!

Assembly language

l

(Assembler)

Machine language

24

Programming language people: Kathleen Booth

Image by Gibson
Public domain

Kathleen Hylda Valerie
Booth (1922-2022)

* Co-founded the Department of
Numerical Automation (now School

of CS & IS) at Birkbeck College,
University of London, in 1957.

* Co-developed the ARC, SEC, and
APE(X)C computing systems

* Invented the first assembly language
for the ARC, and wrote a book on
how to program the APE(X)C.

* Explored neural networks as a way to
understand how animals recognize
patterns. 25

An overview of compilation

Character stream

/

Token stream

Parse tree

/
\
/
\
/

Abstract syntax tree or

other intermediate form \
Modified «—

intermediate form \
Target language «—

(e.g., assembler) \
Modified [_—

target language

Scanner (lexical analysis)

-
.
-

Parser (syntax analysis)

-
" Semantic analysis and
\intermediate code generation

LI W) S

4 Machine-independent
\code improvement (optional)

/

N/

Target code generation

.

4 Machine-specific
_code improvement (optional)

N P N 4

Symbol table

Front
end

Back
| Bac

end

26

Parsing

* Parsing converts a sequence of tokens into a parse tree
that captures the program structure

P = Ix| |+ |y |* 4

7N
7\,

VAN

% 4

27

Intermediate code generation

* Intermediate code generation

* Generates intermediate code in form(s) that are more
abstract or closer to the machine than parse trees

 Examples: Abstract syntax tree (AST) and/or control-flow graph (CFG)

. r////// \\\\\\ t 1= x + 1
1f

return

b/ \:: i x 1=t
/\+ S if b
X/\l

parse tree / abstract syntax tree control flow graph

return X

\ 4

X

28

Target code generation

* May generate byte code, assembly code, or machine
code

* Traverse symbol table to assign locations to variables
* Traverse intermediate code to generate output instructions
* May generate a symbol table for use by a debugger

y 1= X << 2 -2 mov eax, [X]

zZ =y + 1 shl eax, 2
mov [y], eax
add eax, 1
mov [z], eax

29

Programming language design and implementation

* Language designh and implementation are closely linked

* Different languages and paradigms represent different
tradeoffs: closeness to the problem, level of abstraction,
performance, and market forces

* Languages can be implemented with interpreters or compilers
* Tradeoffs between flexibility, diagnostics, and performance
 Compilers fully analyze the source program and transform it substantially

* Studying programming languages can help you become a better
programmer!

30

For next time

* Read PLP chapter 1 (as soon as you can get the book)

« Homework “zero” is out today, due Friday. Useful:

* Rust book chapters 1-6, esp. “Programming a Guessing Game”
https://rust-book.cs.brown.edu/

* x86 quick references
» Stanford https://web.stanford.edu/class/archive/cs/cs107/cs107.11 96/guide/x86-64.html

* Brown https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf

31

https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://web.stanford.edu/class/archive/cs/cs107/cs107.1196/guide/x86-64.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1196/guide/x86-64.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1196/guide/x86-64.html
https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf

	Introduction
	Language design and implementation go together
	Why are there so many programming languages?
	What makes a language successful?
	Two viewpoints: the programmer & the computer
	Programming language people: Donald Knuth
	Language Paradigms
	Declarative languages tend to be higher level
	Imperative languages are more algorithmic
	Programming language people: John von Neumann
	One program, three language families
	Discussion: compare languages
	Why study programming languages?
	How is this course different?
	Course Administration
	“How do I get an A?”
	Communication
	Read the syllabus!
	CMU can be pretty intense
	Two approaches to language implementation
	Programming lang. people: Grace Murray Hopper
	Interpretation vs. compilation
	Linking to libraries – for example, in Fortran
	Assembly language is often an intermediate step
	Programming language people: Kathleen Booth
	An overview of compilation
	Parsing
	Intermediate code generation
	Target code generation
	Programming language design and implementation
	For next time

