
Introduction
Programming Language Pragmatics
Prof. Jonathan Aldrich

Copyright © 2025 by Elsevier. Slides written by Jonathan Aldrich and Michael L. Scott. Licensed under CC-BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Language design and implementation go together

– An implementor has to understand the language
– To ensure the implementation is correct

– A language designer has to understand implementation issues
– To ensure the language can be implemented efficiently

– A good programmer has to understand both!
– To write correct, understandable, and efficient programs

2

Why are there so many programming languages?

• Evolution: we’ve learned better ways to do things
• Structured programming over gotos

• Socio-economic factors: proprietary interests, network effects
• Learn Swift to program iPhone apps, Java for Android apps

• Special purposes
• JavaScript is good for web programs, Rust for systems programming

• Hardware focus
• CUDA for GPUs

• Personal preference: diverse ideas about what works well

3

What makes a language successful?

• Easy to learn (BASIC, Python, LOGO, Scheme)
• Expressive power (C++, Common Lisp, Scala, Rust)
• Easy to implement, freely available (BASIC, Forth, Pascal, Java)
• Safety (Java, Rust)
• Standardization (C, Java, C#)
• Open source (C)
• Efficient (fast/small) code (Fortran, C, Rust)
• Backing of a powerful sponsor (C#, Ada, Swift)
• Market lock-in (Cobol, JavaScript)

4

Two viewpoints: the programmer & the computer

• “Computer Programming is the art of explaining to
another human being what you want the computer
to do.” - Donald Knuth

• Programmer’s view
• Language as a way of thinking and expressing algorithms

• Implementer’s view
• An abstraction of a (virtual) machine

• Both conceptual clarity and efficient implementation are
fundamental concerns

5

Programming language people: Donald Knuth

Donald E. Knuth (1938–)
Professor Emeritus,
Stanford University
Known for:
• Design and analysis of algorithms
• The TEX typesetting system
• Literate programming methodology
• The Art of Computer Programming
• ACM Turing Award (1974)

6

Image by Alex Handy
CC BY-SA 2.0

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/

Language Paradigms

7

Declarative languages tend to be higher level

• Closer to programmer, further from
machine

• Focus on what program should do
• Logic/query languages (Prolog, SQL)

• Find values that satisfy constraints
• Dataflow languages (Id, Val)

• Model computation as parallel flow of tokens
• Constraint-based (Excel, CSS)

• Express constraints to be solved/maintained
• Functional languages (Haskell, Scheme)

• Side-effect-free computation of outputs from
inputs using functions, supports unbounded
computation using recursion

8

Imperative languages are more algorithmic

• Less abstract, closer to the machine
• Focus on how program should operate
• Von Neumann languages (C, Fortran)

• Computation as modification of variables,
unbounded work done through loops

• Object-oriented languages (C++, Java)
• Computation is structured and distributed

among objects, each of which has data and
methods

• Scripting languages (Python, JavaScript)
• Emphasize flexibility, ease of programming,

gluing components together
9

Programming language people: John von Neumann

John von Neumann
(1903–1957)
• Mathematician and computer

pioneer
• helped to develop the concept of

stored program computing
• underlies most computer hardware
• both programs and data are

represented as bits in memory
• processor repeatedly fetches,

interprets, and updates that
representation

10

Image from Los Alamos National
Laboratory. Used by permission
(see slide notes)

One program, three language families

11

Discussion: compare languages

• Think about two different programming languages that
you know. For each, name one advantage of using
that language.

12

Why study programming languages?

• Help you choose a language
• What kind of project is Rust good for? JavaScript? Python?

• Learn new languages more easily
• Leverage concepts that cross-cut languages: types, control structures, …

• Make better use of languages and language technology
• Understanding obscure features when you need to
• Choose alternative ways to express things, e.g. based on cost
• Use tools such as debuggers, assemblers, and linters effectively
• Know how to work around features missing from your language
• Languages are everywhere: configuration files, extension languages,

scripting, …

• Learn to reason rigorously
• PL has some of the best intellectual tools! 13

How is this course different?

• Overall: emphasizes the interaction between language design and
implementation

• Vs. 15-410
• More focus on language design and theory; fulfills the Logic & Languages

elective, not the Systems elective

• Vs. 15-312
• “Pragmatic” focus – we study ideas and theory in the context of industrial

languages and their design choices
• Use of an educational proof assistant to make theory both more

approachable and rigorous

14

Course Administration

• Lectures 2x/week
• Active learning exercises in every class
• In person expectation

• If you can’t make it, email me—we’ll get you a video & exercises

• Textbook: Programming Language Pragmatics, 5th edition

• Recitation
• Lab-like, helpful for homework. Bring your laptop!

15

“How do I get an A?”

• 50% Homework –due Friday 11:59pm
• Build a compiler (5 coding assignments, plus a warmup this week)

• Implementation in Rust – good language for compilers & interesting to study

• Reason about languages (4 theory assignments)
• SASyLF educational theorem proving tool

• 20% - 2 midterm exams covering core concepts

• 25% Project
• Extend the compiler in some interesting way, or explore theory

• 5% Participation (assessed via in-class exercises)
• Can miss up to 2 sessions (lecture or recitation) w/o losing credit

16

Communication

• Website
• Schedule, syllabus, slides

• Piazza for announcements, communication
• Use Piazza as much as possible
• Make questions public if possible, so others can benefit!

• Canvas
• Assignments, grades

• Office hours TBA shortly (or just come by)

17

Read the syllabus!

A high level summary of some policies:

• Late work: 5 free late days
• 10% penalty per day after these are used up
• No credit more then 5 days late
• Special circumstances: contact the instructor

• Collaboration policy
• Your work must be your own
• 100% penalty for cheating
• Read full policy carefully

• No electronics in lecture
• But bring them to recitation!

18

CMU can be pretty intense

• A 12-credit course is expected to take ~12 hours a week.
• We aim to provide a rigorous but tractable course.

• More frequent assignments rather than big monoliths
• Two midterm exams to cover core material as you learn it

• Please keep us apprised of how much time the class is actually taking and
whether it is interfacing badly with other courses.

• We have no way of knowing if you have three midterms in one week.
• Sometimes, we misjudge assignment difficulty.

• If it’s 2 am and you’re panicking…put the homework down, send us an email,
and go to bed

19

Two approaches to language implementation

20

Compilation:

Interpretation:

Programming lang. people: Grace Murray Hopper

Grace Murray Hopper
(1906–1992)
• Mathematics professor, computing

pioneer, rear admiral in the US Navy
• While working on the early Mark II

computer, Hopper’s team discovered
a moth in a relay, leading her to write
‘‘First actual case of bug being found.’’

• Developed the FLOW-MATIC language
based on English words to make
computing more accessible

• Coined the term “compiler” and later
played a key role in the design of
Cobol. 21

Image by James S. Davis
public domain

Interpretation vs. compilation

• Interpretation supports more flexibility, better
diagnostics

• Often excellent source-level debuggers

• Compilation generally leads to better performance
• Decisions made at compile time need not be repeated at run time, saving

effort

22

Linking to libraries – for example, in Fortran

23

Assembly language is often an intermediate step

24

Programming language people: Kathleen Booth

Kathleen Hylda Valerie
Booth (1922–2022)

• Co-founded the Department of
Numerical Automation (now School
of CS & IS) at Birkbeck College,
University of London, in 1957.

• Co-developed the ARC, SEC, and
APE(X)C computing systems

• Invented the first assembly language
for the ARC, and wrote a book on
how to program the APE(X)C.

• Explored neural networks as a way to
understand how animals recognize
patterns. 25

Image by Gibson
Public domain

An overview of compilation

26

Parsing

• Parsing converts a sequence of tokens into a parse tree
that captures the program structure



 :=

 p +

 x *

 y 4

27

+p := x y * 4

Intermediate code generation

• Intermediate code generation
• Generates intermediate code in form(s) that are more

abstract or closer to the machine than parse trees
• Examples: Abstract syntax tree (AST) and/or control-flow graph (CFG)

 ;

 if return

b := x

 
 x +

 x 1

 parse tree / abstract syntax tree control flow graph
28

if b

t := x + 1
x := t

return x

Target code generation

• May generate byte code, assembly code, or machine
code

• Traverse symbol table to assign locations to variables
• Traverse intermediate code to generate output instructions
• May generate a symbol table for use by a debugger

y := x << 2  mov eax, [x]
z := y + 1 shl eax, 2
 mov [y], eax
 add eax, 1
 mov [z], eax

29

Programming language design and implementation

• Language design and implementation are closely linked
• Different languages and paradigms represent different

tradeoffs: closeness to the problem, level of abstraction,
performance, and market forces

• Languages can be implemented with interpreters or compilers
• Tradeoffs between flexibility, diagnostics, and performance
• Compilers fully analyze the source program and transform it substantially

• Studying programming languages can help you become a better
programmer!

30

For next time

• Read PLP chapter 1 (as soon as you can get the book)
• Homework “zero” is out today, due Friday. Useful:

• Rust book chapters 1-6, esp. “Programming a Guessing Game”
https://rust-book.cs.brown.edu/

• x86 quick references
• Stanford https://web.stanford.edu/class/archive/cs/cs107/cs107.1196/guide/x86-64.html

• Brown https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf

31

https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://web.stanford.edu/class/archive/cs/cs107/cs107.1196/guide/x86-64.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1196/guide/x86-64.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1196/guide/x86-64.html
https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf

	Introduction
	Language design and implementation go together
	Why are there so many programming languages?
	What makes a language successful?
	Two viewpoints: the programmer & the computer
	Programming language people: Donald Knuth
	Language Paradigms
	Declarative languages tend to be higher level
	Imperative languages are more algorithmic
	Programming language people: John von Neumann
	One program, three language families
	Discussion: compare languages
	Why study programming languages?
	How is this course different?
	Course Administration
	“How do I get an A?”
	Communication
	Read the syllabus!
	CMU can be pretty intense
	Two approaches to language implementation
	Programming lang. people: Grace Murray Hopper
	Interpretation vs. compilation
	Linking to libraries – for example, in Fortran
	Assembly language is often an intermediate step
	Programming language people: Kathleen Booth
	An overview of compilation
	Parsing
	Intermediate code generation
	Target code generation
	Programming language design and implementation
	For next time

