
Funtional Programming and
Error Handling

Jonathan Aldrich
17-363

Functional programming coverage draws heaily from blog post by Amay B:
https://medium.com/coderhack-com/functional-programming-using-rust-3776c10cfc6

Functional Programming

• Benefits
• Lack of side effects makes programs easier to understand
• Lack of aliased mutable state makes safe parallelism easier
• Get a lot of expressiveness from a few language features  programs are short
• Simplifies some things for the compiler

• Costs
• Some stateful algorithms are more efficient than purely functional algorithms

• E.g. Union-find; hash tables
• Some abstractions have a run-time cost

• Copying, function calls, pointer use, recursion
• Sometimes state best fits the programmer’s mental model

• I/O is a good example

Functional Programming Support in Rust

• Tuples and enums for algebraic data types (like ASTs!)
• Pattern matching
• Traits for ad-hoc polymorphism, generics for parametric polymorphism
• Functions are first-class values
• Closures
• Map, filter, fold, etc. library functions for iterators
• Minimal runtime (no GC) and good optimizations lowers cost of recursion,

closures by a lot – iterator code is typically as fast as looping
• All mutability is explicit (mut)

First-class Functions

fn add(x: i32, y: i32) -> i32 {
x + y

}

fn call_with_two(func: fn(i32, i32) -> i32, x: i32) -> i32 {
func(x, 2)

}

call_with_two(add, 1); // Returns 3

A function
type in Rust

Functional Operations on Iterators

let vec = vec![1, 2, 3, 4, 5];

let even = vec.iter().filter(|x| x % 2 == 0).collect();
// even is [2, 4]

let doubled = vec.iter().map(|x| x * 2).collect();
// doubled is [2, 4, 6, 8, 10]

A closure in
Rust

Closures capture environments

let x = 10;

let closure = |y : i32| -> i32 {
x + y

};

let answer = closure(2); // answer is 12

We can optionally annotate
parameters and results of

closures

Closures can borrow

• Many borrows are immutable, but not all:
fn main() {

let mut list = vec![1, 2, 3];

println!("Before defining closure: {list:?}");

let mut borrows_mutably = || list.push(7);

// cannot println! from the list here!

borrows_mutably();

println!("After calling closure: {list:?}");

}

Closures can move, too!

use std::thread;

fn main() {

let list = vec![1, 2, 3];

println!("Before defining closure: {list:?}");

thread::spawn(move || println!("From thread: {list:?}"))

.join()

.unwrap();

}

Exercise: What’s wrong with this code?
struct Rectangle { width: u32, height: u32, }
fn main() {

let mut list = [Rectangle { width: 10, height: 1 },
Rectangle { width: 3, height: 5 },
Rectangle { width: 7, height: 12 },];

let mut sort_operations = vec![];
let value = String::from("closure called");
list.sort_by_key(|r| {

sort_operations.push(value);
r.width

});
println!("{list:#?}");

}

Different function traits

• FnOnce
• A closure that may move captured values out of the closure
• Can only be called once, because we can’t move a value out twice

• FnMut
• A closure that might have a mutable borrow, but doesn’t move values out of

the closure

• Fn
• A closure that doesn’t do either of the above things

Using FnOnce

impl<T> Option<T> {
pub fn unwrap_or_else<F>(self, f: F) -> T

where F: FnOnce() -> T
{

match self {
Some(x) => x,
None => f(),

}
}

}

Exercise: What kind of closure should sort_by_key take?
Fn, FnMut, or FnOnce?
struct Rectangle { width: u32, height: u32, }
fn main() {

let mut list = [Rectangle { width: 10, height: 1 },
Rectangle { width: 3, height: 5 },
Rectangle { width: 7, height: 12 },];

let mut sort_operations = vec![];
let value = String::from("closure called");
list.sort_by_key(|r| {

sort_operations.push(value);
r.width

});
println!("{list:#?}");

}

Watch out!
• Tail call optimizations are not guaranteed in Rust

• So deep recursions can result in running out of stack space
• Use iteration for traversing large sequences or data structures

• Inferred closure types are not polymorphic:
// this code has a type error

let example_closure = |x| x;

let s = example_closure(String::from("hello"));

let n = example_closure(5);

• A lot of Rust standard library data structures are mutable
• Borrowing can be a pain with closures – try currying or function

composition

Error Handling

• Recoverable or not?
• This is a basic distinction both in language constructs and in practical use
• Details may depend on application. Example: Out of memory errors

• Usually an unrecoverable error
• Recovering usually uses memory, so what can we do?

• But clever code can be used to recover
• Hold a block of memory in reserve, free it immediately on getting the exception
• Use this “breathing room” to run code that frees memory in an application specific way

• Basic approaches
• Exceptions
• Return values
• Panic

Exception Handling

• What is an exception?
– a hardware-detected run-time error or unusual condition

detected by software

• Examples
– arithmetic overflow
– end-of-file on input
– wrong type for input data
– user-defined conditions, not necessarily errors

Exception Semantics

• An exception propagates up the function-call stack until the top-level
scope is reached or until the exception is caught

• Exception handling with try/catch/finally
• try: a block of code where an exception might be triggered
• catch: one or more blocks of code, each associated with an exception type

• The code is run if the corresponding exception is triggered
• finally: code that always runs

• Typically cleans up resources

Try-catch example

• Prints:
Top
Caught index out of bounds

try {
System.out.println("Top");
int[] a = new int[10];
a[42] = 42;
System.out.println("Bottom");

} catch (IndexOutOfBoundsException e) {
System.out.println("Caught index out of

bounds");
}

Try-catch example, part 2
• Prints:

Top
Caught index out of bounds

public static void test() {
try {

System.out.println("Top");
int[] a = new int[10];
a[42] = 42;
System.out.println("Bottom");

} catch (NegativeArraySizeException e) {
System.out.println("Caught negative array size");

}
}

public static void main(String[] args) {
try {

test();
} catch (IndexOutOfBoundsException e) {

System.out.println"("Caught index out of bounds");
}

}

Finally example
• Prints:

Top
Caught index out of bounds
Finally got here

try {
System.out.println("Top");
int[] a = new int[10];
a[42] = 42;
System.out.println("Bottom");

} catch (IndexOutOfBoundsException e) {
System.out.println("Caught index out of bounds");

} finally {
System.out.println("Finally got here");

}

Finally example, part 2
• Prints:

Top
Bottom
Finally got here

try {
System.out.println("Top");
int[] a = new int[10];
a[2] = 42;
System.out.println("Bottom");

} catch (IndexOutOfBoundsException e) {
System.out.println("Caught index out of bounds");

} finally {
System.out.println("Finally got here");

}

The exception hierarchy in Java

Throwable

Exception

RuntimeException IOException

EOFException

FileNotFoundException

NullPointerException

IndexOutOfBoundsException

ClassNotFoundException
… …

. . .

Object

Checked and unchecked exceptions in Java

• Unchecked exception: any subclass of
RuntimeException

▪ Indicates an error which is highly unlikely and/or typically
unrecoverable

• Checked exception: any subclass of Exception
that is not a subclass of RuntimeException

▪ Indicates an error that every caller should be aware of and
explicitly decide to handle or pass on

• Methods must declare any checked exceptions they
throw

Benefits of exceptions

• Provide high-level summary of error and stack trace
▪ Compare: core dumped in C

• Can’t forget to handle common failure modes
▪ Compare: using a flag or special return value

• Can optionally recover from failure
▪ Compare: calling System.exit()

• Improve code structure
▪ Separate routine operations from error-handling

• Reuses error-checking and handling code
▪ One catch handles errors from multiple sources

• Allow consistent clean-up in both normal and
exceptional operation

Rust doesn’t use exceptions. Why not?

• Exceptions are expensive
• Implementations tend to be slow and have unpredictable performance

• Exceptions aren’t explicit
• The Rust “way” is to be explicit about things—including errors

• Rust’s error handling mechanism nevertheless supports most of the
benefits of exceptions

Unrecoverable errors

• Simply use the panic! macro:
panic!(“an error occurred");
• Prints the given error message
• Optionally prints the stack
• Unwinds the stack and drops data, cleaning up as it goes

• There is an option just to abort directly though
• Ends the program

• Example: index out of bound errors cause panics
• You can technically catch a panic (see catch_unwind) but it’s rare

Recoverable errors with Result

enum Result<T, E> { Ok(T), Err(E), }
• The Result type represents the result of an operation or an error
• T is the type of the result, if there is one
• E is the type of the error – e.g. an enum or string

• Example:
use std::fs::File;
fn main() {

let greeting_file_result = File::open("hello.txt");
let greeting_file = match greeting_file_result {

Ok(file) => file,
Err(error) => panic!("Problem opening the file: {error:?}"),

};
}

Rust: Matching on Errors
use std::fs::File;
use std::io::ErrorKind;
fn main() {

let greeting_file_result = File::open("hello.txt");
let greeting_file = match greeting_file_result {

Ok(file) => file,
Err(error) => match error.kind() {

ErrorKind::NotFound => match File::create("hello.txt") {
Ok(fc) => fc,
Err(e) => panic!("Problem creating the file: {e:?}"),

},
other_error => { panic!("Problem opening the file: {other_error:?}"); }

},
};

}

Rust: Matching on Errors
use std::fs::File;
use std::io::ErrorKind;
fn main() {

let greeting_file_result = File::open("hello.txt");
let greeting_file = match greeting_file_result {

Ok(file) => file,
Err(error) => match error.kind() {

ErrorKind::NotFound => match File::create("hello.txt") {
Ok(fc) => fc,
Err(e) => panic!("Problem creating the file: {e:?}"),

},
other_error => { panic!("Problem opening the file: {other_error:?}"); }

},
};

}

Rust: Shorter error matching
use std::fs::File;
use std::io::ErrorKind;
fn main() {

let greeting_file_result = File::open("hello.txt");
let greeting_file = File::open("hello.txt").unwrap_or_else(|error| {

if error.kind() == ErrorKind::NotFound {
File::create("hello.txt").unwrap_or_else(|error| {

panic!("Problem creating the file: {error:?}");
})

} else {
panic!("Problem opening the file: {error:?}"); }

});
}

Makes the
default case

implicit

Shortcut for panic on error

use std::fs::File;

fn main() {

let greeting_file = File::open("hello.txt")

.expect("hello.txt should be included in this project");

}
Panics with the given message if there is
an error result.

Alternative: .unwrap() panics with a
generic message (not recommended for
production code)

Rust Error Propagation
use std::fs::File;
use std::io::{self, Read};
fn read_username_from_file() -> Result<String, io::Error> {

let username_file_result = File::open("hello.txt");
let mut username_file = match username_file_result {

Ok(file) => file,
Err(e) => return Err(e),

};
let mut username = String::new();
match username_file.read_to_string(&mut username) {

Ok(_) => Ok(username),
Err(e) => Err(e),

}
}

We just propagate the error to the
caller. It works because the error type is
the same in both Results

Rust Error Propagation Shortcut
use std::fs::File;

use std::io::{self, Read};

fn read_username_from_file() -> Result<String, io::Error> {

let mut username_file = File::open("hello.txt")?;

let mut username = String::new();

username_file.read_to_string(&mut username)?;

Ok(username)

}
? means match and evaluate to the
result, or propagate the error – same as
code on previous slide

When to use panic!

• Examples, prototype code, and tests
• Keeps examples and prototyping code simple and clean
• panic! is how you signal that a test failed

• Assertions / bugs in program
• You know something shouldn’t be possible, so call panic! if it happens

• When your code could end in a bad state due to an error, and
• The error is unexpected (as opposed to, say, opening a file that doesn’t exist),
• Or you can’t really check for that bad state constantly afterwards

• Otherwise, use Result

Analysis: Rust vs. Java Error Handling
• Rust more cleanly separates recoverable from unrecoverable
• Rust is more explicit

• Every error is documented, except for unrecoverable panics
• Propagation is explicit – at minimum documented with a ?

• Rust can be slightly more efficient
• Exceptions are rare, but even support for them costs something

• Java can achieve marginally more reuse
• Exception hierarchies
• Catch exceptions from several throw points w/o wrapping in a function

• Succintness is debatable
• Java avoids the ? for propagation
• But Rust benefits from functional idioms in handling errors succinctly

