17-363/17-663: Programming Language Pragmatics

PROGRAMMING
LANGUAGE
PRAGMATICS

Reading: PLP chapter 10

el
EVIER

Prof. Jonathan Aldrich

Copyright © 2016 Elsevier ELS




Object-Oriented Programming (OOP)

Three key aspects:

* Encapsulation
* An object 1s a grouping of state and behavior, and hides its
implementation choices from the outside world

 Inheritance
* Objects are related, and we can capture shared behavior in a
way that multiple kinds of objects can use it without

defining it themselves This aspect is special:
Unique to objects
o Dynamic dispatch « Present in all OO languages

« The same operation can be implemented in different ways;
each object knows what implementation to use for each e
of its operations o




* An object is a grouping of state and behavior

let setImpl = { A
members : [1, 2, 3],

isMember : function(x) { ,
return this.members.includes(x); behavior
s
add : function(x) {
if (!isMember(x))
this.members.push(x);

¥

}; this refers to

setImpl.add(4); // uses the object the current
setImpl.isMember(4); // returns true object instance |

el
ELSEVIER
|




* We can hide some of the object’s state

interface IntSet leaves

interface IntSet { out the members field.
isMember : (x:number) => boolean| W[ e=lgiezlple[ciglie Eli=l
add : (x:number) => void without affecting clients.

}

let setImpl = { ... }; Assigning to a variable of

let set : IntSet = setImpl; type IntSet hides

everything that’s not in
set.add(4); the interface

set.isMember(4);
set.members

It's a type error to access
members that are not

exposed in the interface

ELSEVIER




Classes

* A class 1s a template for objects. It defines structure
& behavior used by all instances of the class

class IntSetClass {
members : number|];
constructor(m:number[]) {
this.members = m;
}

isMember (x:number):boolean {
return this.members.includes(x);
}

// add(x:number):void { ... }
}

let set2 : IntSetClass = new IntSetClass([1, 2]);
set2.add(5);

set2.isMember(5); // returns true




Dynamic Dispatch

« Every object knows its method implementations (whether
defined 1n the object, or 1n that object’s class)
 When we invoke a method, the code for that object 1s run

class Dog {

talk() { console.log("woof!"); }
}
class Cat {

talk() { console.log("meow!"); }
}

let animals = [new Dog(), new Cat() ];
for (let a of animals)
a.talk(); // prints woof! meow!




Inheritance

» Inheritance lets us reuse code from one class in another

Prototype: a variant where you reuse code from another object (see JavaScript)

class Collection {

¥

constructor(ms) { this.members = ms; }
isMember(x) { return this.members.includes(x); }
add(x) { this.members.push(x); }

addAll(a) { for (let x of a) this.add(x); }

class Set extends Collection {

let
set
set

set.

.add(3);
.addA11([3, 4]);

constructor(ms) { super(ms); }
add(x) { if (!this.isMember(x)) { super.add(x); } }

set = new Set([]);

isMember(4);




Exercise

 Draw the frames on the runtime stack when 4 1s added to the set in

the call set.addAll([3, 4]). Show all methods that are 1n from main()
through push()

class Collection {
constructor(ms) { this.members = ms; }
isMember(x) { return this.members.includes(x); }
add(x) { this.members.push(x); }
addAll(a) { for (let x of a) this.add(x); }
}
class Set extends Collection {
constructor(ms) { super(ms); }
add(x) { if (!this.isMember(x)) { super.add(x); } }
}
let set = new Set([]);
set.add(3);
set.addAll([3, 4]);




Why Objects Matter

« Encapsulation (not specific to objects)
» Separate reasoning about a single module enhances correctness & finding bugs

« Ability to change the internals of a module without affecting others enhances
software evolution

 Inheritance

* Some code patterns are difficult to reuse in any other way

« Typically when you have a reusable part and a customizable part, and they both call each
other

« That said, many uses of inheritance can (and should) be replaced with
composition
 Common guideline: prefer composition to inheritance

e Dynamic dispatch
* Architecturally important — support multiple independent & interoperating
implementations of a common interface _f
« Examples all over the place: mobile phone apps, Linux device drivers,:
graphical user interfaces, MapReduce, web frameworks WP




« Traits are Rust’s equivalent of OO interfaces

struct Sprocket { These types may be defined in a
name: String separate module, and may not

} be easy to chnage

struct Cog {

id: u32 A trait is an interface, possibly

with some reusable method
implementations

}
trait Sortable {

fn get_sort name(&self) -> String;
fn less_than(&self, o: &Jyn Sortable) -> bool {
return self.get sort name() < o.get sort name()

o is dyn, which

allows dynamic
Rust uses for this dispatch

self is the name

ELSEVIER




« Traits are Rust’s equivalent of OO interfaces

struct Sprocket {

name: String ) ) ™
} We implement the trait, providing

struct Cog { Sortab}efuncﬁonaMyhjg\Nay
id: u32 appropriate for the specified type

}
trait Sortable {

fn get_sort name(&self) -> String;
fn less_than(&self, o: &dyn Sor
return self.get_sort_nam

-> bool {
< o.get_sort_name()

impl Sortable for Sprocket {
fn get_sort name(&self) -> String { return self.name.clone() }

}
impl Sortable for Cog {

fn get_sort name(&self) -> String {
return "Cog".to string() + &self.id.to _string()

} ELSEVIER




Using Rust Traits

trait Sortable {
fn get sort _name(&self) -> String;
fn less_than(&self, o: &dyn Sortable) -> bool {
return self.get sort name() < o.get sort name()

}

}
impl Sortable for Sprocket {

fn get sort_name(&self) -> String { return self.name.clone() }

}
impl Sortable for Cog {

fn get sort_name(&self) -> String {
return "Cog".to _string() + &self.id.to_string()

}
}
fn main() {
let wl = Cog { id: 3 };
let s1 = Sprocket { name: "Spacely".to string() };

let wl name = wl.get _sort name();

let s1 name = sl.get _sort name();

println!("{} < {}? {}", wl _name, sl name, wl name < sl name);
// in sorted order? yes; prints "true"




trait Sortable {
fn get_sort name(&self) -> String;

dyn enables dynamic dispatch
Implemented with a “fat pointer”:
a pointer to the value and a
pointer to the trait impl

fn less_than(&self, o: &Jyn Sortable) -> bool {
return self.get sort name() < o.get sort name()
}

impl means dispatch is static.
Must know at the call site which
implementation is used
fn less_than(&self, o: &impl Sortable) -> bool {
return self.get sort name() < o.get sort name()

imp1l is actually syntactic suger

for a parameterized type.
(equivalent to above code)

fn less_than<T: Sortable>(&self, o: &T) -> bool {
return self.get sort name() < o.get sort name()
}

ELSEVIER




Initialization and Finalization

* We defined the lifetime of an object to be
the interval during which 1t occupies space
and can hold data

— Most object-oriented languages provide some
sort of special mechanism to initialize an object
automatically at the beginning of 1ts lifetime

 When written 1n the form of a subroutine, this
mechanism 1s known as a constructor

* A constructor does not allocate space

— A few languages provide a similar destructor

the end of its lifetime




Initialization and Finalization
Issues

choosing a constructor
references and values

— If variables are references, then every object must be
created explicitly - appropriate constructor 1s called

— If variables are values, then object creation can happen
implicitly as a result of elaboration
execution order

— When an object of a derived class 1s created in C++, the
constructors for any base classes will be executed before
the constructor for the derived class

garbage collection




Dynamic Method Binding

« Data members of classes are implemented
just like structures (records)

— With (single) inheritance, derived classes have
extra fields at the end

— A pointer to the parent and a pointer to the child
contain the same address - the child just knows
that the struct goes farther than the parent does




Dynamic Method Binding

* Non-virtual functions require no space at run
time; the compiler just calls the appropriate
version, based on type of variable

— Member functions are passed an extra, hidden, initial
parameter: this (called current in Eiffel and self in

Smalltalk)
e C++ philosophy is to avoid run-time overhead
whenever possible(Sort of the legacy from C)

— Languages like Smalltalk have (much) more run-time
support

[ PHIR




Dynamic Method Binding

» Virtual functions are the only thing that requires
any trickiness (Figure 10.3)

— They are implemented by creating a dispatch table
(vtable) for the class and putting a pointer to that table in
the data of the object

— Objects of a derived class have a different dispatch table

* In the dispatch table, functions defined in the parent come
first, though some of the pointers point to overridden
versions

* You could put the whole dispatch table in the object itself,
saving a little time, but potentially wasting a LOT of space




class foo {

int a; F foo’s vtable

double b; »| foo::k ——

char c; a foo::1 — 41— )
public: rr— code pointers

virtual void k( ... b ———

virtual int 1( ... 3:'

virtual void m();

virtual double n(
+F;
Figure 10.3 Implementation of virtual methods. The representation of object F begins with the address of the vtable for

class foo. (All objects of this class will point to the same vtable.) The vtable itself consists of an array of addresses, one for the
code of each virtual method of the class. The remainder of F consists of the representations of its fields.

1 I_‘ a
ELSEVIER




class bar : public foo { B bar’s vtable
int w; >  foo::k——>
public:

a foo::1 —4+—

void m() override; bar::m ——»

virtual double s( ... b code pointers
foo::in —4—

T [ —

} B; W bar::t >

virtual char *t( ...

Figure 10.4 Implementation of single inheritance. As in Figure 10.3, the representation of object B begins with the address of
Its class's vtable. The first four entries in the table represent the same members as they do for foo, except that one—m—has
been overridden and now contains the address of the code for a different subroutine. Additional fields of bar follow the ones
inherited from foo in the representation of B; additional virtual methods follow the ones inherited from foo in the vtable of
class bar.

ELSEVIER




Dynamic Method Binding

* Note that if you can query the type of an
object, then you need to be able to get from
the object to run-time type info

— The standard implementation technique is to
put a pointer to the type info at the beginning of
the vtable

— Of course you only have a vtable in C++ 1f your

class has virtual functions

e That's why you can't do a dynamic_cast on a pointer
whose static type doesn't have virtual functions




Mix-In Inheritance

* (Classes can inherit from only one “real”
parent

* Can “mix 1n” any number of interfaces,
simulating multiple inheritance

 Interfaces appear in Java, C#, Go, Ruby,

etc.

— contain only abstract methods, no method
bodies or fields

* Has become dominant approach,
superseding true multiple inheritance




augmented_widget

object vtable
widget view > > augmented_
widget part
¢ |widget fields
b
sortable_object view > > —a
< name sortable_
. . object part
graphable_object view > —_
storable_object view —> —
-b
graphable_
object part

—C

storable_
object part

Figure [0.7 Implementation of mix-in inheritance. Objects of class augmented_widget con-
tain four vtable addresses, one for the class itself (as in Figure 10.3), and three for the imple-
mented interfaces. The view of the object that is passed to interface routines points directly
at the relevant vtable pointer. The vtable then begins with a “this correction” offset, used to
regenerate a pointer to the object itself.

—._, ",'.,_._‘ o S
ELSEVIER




« We can use the static and dynamic semantics techniques we have
learned to model objects

Source: Atshushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: a minimal core calculus for Java and GJ.
OOPSLA 1999.

| e '!Ik“_‘iu e
ELSEVIER
e




