Chapter 9: Subroutines and Control Abstraction

ISV RIEE Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

PRAGMATICS

Copyright © 2024 by Jonathan Aldrich and Michael L. Scott.

Static Scoping

* What does this Java code print?
class Outer {
int x = 1;
class Inner {
int x = 2;
void foo() {
if (flag) {
int x = 3;

}
System.out.println(“x = ” + x); // what do I print?
}oor o}

* With static (or lexical) scope rules, a scope is defined in terms of the
lexical structure of the program
* The determination of scopes can be made by the compiler
* Bindings for identifiers are resolved by examining code
* Typically, the most recent binding in an enclosing scope
 Most compiled languages, C and Pascal included, employ static scope rules 2

Static Scoping

* What does this Java code print?

class Outer {
int x = 1;
class Inner {
int x = 2;
void foo() {
if (flag) {
int x = 3;

}

System.out.println(“x = ” + x); // what do I print? NARENVE g4
Py o}

* With static (or lexical) scope rules, a scope is defined in terms of the
lexical structure of the program
* The determination of scopes can be made by the compiler
* Bindings for identifiers are resolved by examining code
* Typically, the most recent binding in an enclosing scope
 Most compiled languages, C and Pascal included, employ static scope rules @

Scope Rules

* Most closely nested rule
* Origin: block-structured languages like Algol 60, Pascal

* Anidentifier is known in the scope in which itis declared and in each
enclosed scope, unlessitis re-declared in an enclosed scope

* Toresolve a reference to an identifier, we examine the local scope and
statically enclosing scopes until a binding is found

Dynamic Scope

* (in contrast to static scope)

* No static links — just look up the latest binding of a variable in the
stack
* This may be a variable from unrelated code!
* Makes reasoning based on program text hard

Practice with Scope Rules: Static vs. Dynamic

program scopes (input, output);
var a : integer;
procedure first;
begin a := 1; end;
procedure second;
var a : integer;
begin first; end;
begin
a := 2; second; print(a);
end.

* What is printed under static scoping?

* What s printed under dynamic scoping?

Practice with Scope Rules: Static vs. Dynamic

program scopes (input, output);
var a : integer;
procedure first;
begin a := 1; end;
procedure second;
var a : integer;
begin first; end;
begin
a := 2; second; print(a);
end.
* What s printed under static scoping?
e 1
* What s printed under dynamic scoping?
e 2

Static Links

* Access non-local variables via static links
* Each frame points to the frame of the (correct instance of) the routine
inside which it was declared
* In the absence of passing functions as parameters, correct means
closest to the top of the stack

* You access a variable in a scope k levels out by following k static links and
then using the known offset within the frame thus found

Static Chains

A

B
C tp—> C — Q: If we are in subroutine C, what
L does an access to a variable v
] 0 defined in subroutine A look like?
B -

- J—

A

Figl.ll’E 3.5 Static chains. Subroutines A, B, C, D, and E are nested as shown on the left. [f the
sequence of nested calls at run time is A, E, B, D, and C, then the static links in the stack will
look as shown on the right The code for subroutine C can find local objects at known offsets
from the frame pointer It can find local objects of the surrounding scope, B, by dereferencing its
static chain once and then applying an offset. It can find local objects in B's surrounding scope,
A, by dereferencing its static chain twice and then applying an offset.

ROGRAMMIN
LANGUAGE
PRAGMATI

Static Chains

o

: tp—> — Q: If we are in subroutine C, what
L does an access to a variable v
D

defined in subroutine A look like?

T A: fp.link.link.v

- R or in assembly:

mov rax [rsp + link_offset]
A mov rax [rax + link_offset]
- mov rax [rax + v_offset]

Figl.ll’E 3.5 Static chains. Subroutines A, B, C, D, and E are nested as shown on the left. [f the
sequence of nested calls at run time is A, E, B, D, and C, then the static links in the stack will
look as shown on the right The code for subroutine C can find local objects at known offsets
from the frame pointer It can find local objects of the surrounding scope, B, by dereferencing its
static chain once and then applying an offset. It can find local objects in B's surrounding scope,

A, by dereferencing its static chain twice and then applying an offset. 10

Lifetime and Storage Management

* Maintenance of stack is responsibility of calling sequence and
subroutine prologue and epilogue

* Save space by putting as much as possible in the callee’s prologue and
epilogue, rather than in the calling sequence (i.e. in the caller)...why?
* Because most procedures have multiple callers
* Moving a line of “administrative code” to the callee saves a line in every caller

G

ROGRAMMIN
LANGUAGE
PRAGMATICS

Reminder: Organization of the Stack

sp —>

procedure C

) ' e A) D: E

Subroutine D e rguments

7 to called procedure B
fp ,” routines if...then Belse C
procedure A
N\ Temporaries B

—— main program

Subroutine C A

Local
variables
Direction of stack
growth (usually ' N Miscellaneous
lower addresses) Subroutine B \\\ bookkeeping
. <«— fp (when subroutine
. 2 C is runnin
Subroutine B .| Return address g)
Subroutine A
12

Calling Sequences

* Maintenance of stack is responsibility of calling sequence and
subroutine prolog and epilog
* space is saved by putting as much in the prolog and epilog as possible

* time may be saved by putting stuff in the caller instead, where more
information may be known

* e.g., there may be fewer registers IN USE at the point of call than are used
SOMEWHERE in the callee

* Common strategy is to divide registers into caller-saves and
callee-saves sets

* caller uses the "callee-saves" registers first
* "caller-saves" registers if necessary

* Local variables and arguments are assighed fixed OFFSETS from
the stack pointer or frame pointer at compile time

13

PROGRAMMING
LANGUAGE
PRAGMATICS

Organization of a Stack Frame

Sp —> =
Arguments
to called
AN\ routines
Temporaries

Local # Current frame

Direction of stack growth :
variables

(lower addresses)

Saved regs.,
static link

Saved fp
fp —>

Return address

N

(Arguments

Previ alli
from caller) revious (calling)

frame

Figure 92 A typical stack frame. Though we draw it growing upward on the page, the stack
actually grows downward toward lower addresses on most machines. Arguments are accessed
at positive offsets from the fp. Local variables and temporaries are accessed at negative offsets
from the fp. Arguments to be passed to called routines are assembled at the top of the frame,
using positive offsets from the sp.

14

Calling Convention: System V AMD64 ABI

De facto standard on Unix systems (including Linux & macQOS)

* used for extern C calls from Rust on this platform
* reference: https://github.com/hjl-tools/x86-psABIl/wiki/x86-64-psABI-1.0.pdf

Callee-saved registers: rbp, rbx, r12-r15
* rsp points to the end of the latest allocated stack frame
rsp+8 must be 16-byte alighed at a call

. yr(])u can use 128 bytes beyond (lower than) rsp and interrupts won’t touch
them

tge first 64-bit arguments are passed in registers, in order: rdi, rsi, rdx, rcx, r8,
r

* additional arguments (or arguments too big for a register) are passed on the stackin
reverse (right-to-left) order
a 64-bit (or less) result is returned in rax

* if return value is larger, space is allocated on the stack, and address is passed inrdias a
hidden first argument

15

Calling Convention: System V AMD64 ABI

* call val
* pushrip - pushes (see below) rip (instruction pointer) register onto stack
* jimp val -jumps tothe provided address (literal or register)

° ret

* poprip -pops (see below) rip (instruction pointer) from the stack and
continues execution

* push val
* sub rsp, 8 - decrements the stack pointer (by 8 if pushing a 64-bit register)
* mov [rsp], val - writes to the space just allocated

* popreg
* mov reg [rsp]
* add rsp, 8

16

Binding of Referencing Environments

* Areferencing environment of a statement at run time is the set of
active bindings

* Areferencing environment corresponds to a collection of scopes
that are examined (in order) to find a binding

17

First Class Functions

* Consider the following OCaml code:

let plus n n = fun k -> n + k;;
let plus_3 = plus_n 3;; Lambda
let apply to 2 £ = f 2;; expression

apply to 2 plus3 => 5

e Let’s look at how this executes
(on the blackboard)

18

Closures

* A closure is a pair of a function and a referencing environment

fun k

->n + k

plus 3 >

n=3

e Created when a function

Is passed, returned, or stored

* Necessary to implement static scoping correctly

* Otherwise the variable referenced might not be around anymore! Variable
lifetime exceeds binding lifetime.

* Languages with dynamic scoping don’t need them

* Just use the caller’s environment!
* Also called “shallow binding” — closures implement “deep binding”

* But Lisp supports closure creation if programmer asks

19

Closures

* A closure is a pair of a function and a referencing environment

fun k -> n + k

plus 3 >

n=3

* Several implementations

* Allocate all referencing environments on the heap, copy a pointer into the
closure

* This is what most functional language implementations do—with optimizations
when no closure will be created

* Allocate referencing environments on the stack, copy the bindings that
are used into the closure

* This can work well if there are few captured variables
and the data is immutable and small in size 20

Let’s compile the following code using closures

letx=31n What code is generated, both for
letf=fny=>x+yin main and for the lambda body?

f(2)

21

Let’s compile the following code using closures

letx=3In
letf=fny=>x+yin
f(2)

ANSWER (lambda code)
lambda1:

mov rax, [rsp+8] , load env addr
Mmov rax, [rax] , load x from closure
mov rbx, [rsp+16] , loady
add rax, rbx S Xty

ret ; return

ANSWER (main)

push 3 , local var on stack

push 16 , arg to malloc

call malloc , allocate 16 bytes
subrsp 8 , pop argument off stack
mov [rax], lambda1 ; addr of lamba code
mov rbx, [rsp] ;X

mov [rax+8], rbx

push 2 sargtof

mov rbx, rax+8 , closure environment ptr
push rbx , implicit closure arg

mov rax, [rax] , load address of function
call rax s indirect call

sub rsp, 16 , pop arguments off stack

22

Implementing closures

* Allocating a closure to a function with code at address addr, with n closed-over variables
rax = allocate space of size (n+1)*8
mov [rax], addr
for(i=1..n)
mov [rax+i*8], var_i
// pointer to closure is in rax now

* Callingaclosurec

mov rdi, c

// add other arguments...

mov rax, [rdi] // load the function pointer
call rax

* Accessingthe ith closed-over variable inside the closure
mov rax, [rdi+i*8]

23

Tail Recursion

* Recursive call whose result is directly returned

* Can implement with a jump instead of a call
* Stack frame of called function takes the place of the caller

int gcd (int a, int b) {
/* assume a, b > 0 */
if (a == b) return a;
else if (a > b) return gcd (a - b,b);
else return gcd (a, b - a);

24

	Chapter 9: Subroutines and Control Abstraction
	Static Scoping
	Static Scoping
	Scope Rules
	Dynamic Scope
	Practice with Scope Rules: Static vs. Dynamic
	Practice with Scope Rules: Static vs. Dynamic
	Static Links
	Static Chains
	Static Chains
	Lifetime and Storage Management
	Reminder: Organization of the Stack
	Calling Sequences
	Organization of a Stack Frame
	Calling Convention: System V AMD64 ABI
	Calling Convention: System V AMD64 ABI
	Binding of Referencing Environments
	First Class Functions
	Closures
	Closures
	Let’s compile the following code using closures
	Let’s compile the following code using closures
	Implementing closures
	Tail Recursion

