
Ownership in Rust
This material is based heavily on the Rust book, as adapted by Will Crichton et al.

Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

Copyright © 2024 by Jonathan Aldrich and Michael L. Scott.

Safety in Rust

• Safety in Rust means a lack of undefined behavior
• Example of undefined behavior (from the Rust book):
fn read(y: bool) {
 if y {
 println!("y is true!");
 }
}

fn main() {
 read(x); // oh no! x isn't defined!
 let x = true;
}

• It is undefined behavior to read a variable before it is defined
• Why is undefined behavior bad?

• Well, it might execute just fine
• But the program above could read garbage data, making results unpredictable
• In general, undefined behavior can cause crashes or security vulnerabilities

How Rust ensures safety

• Key goal of Rust: ensure program don’t have undefined behavior
• Combination of static and dynamic checks
• Check as much as possible statically

• Bugs are still possible! But certain kinds of bugs can’t happen.
• Ownership in Rust is a discipline for using memory
• Ownership prevents undefined behavior related to memory

• Reading uninitialized memory
• Using memory after it is freed
• Freeing memory twice
• Memory leaks (forgetting to free memory)

Conceptual model of variables on the stack

example from the Rust book (Brown version)

Assigning one variable to another copies the data

But this is very
expensive if
the data is
large 

Boxes allocate memory in the heap

• Now a is of Box (pointer) type
• Assigning b to the value of a

moves the pointer
• We say that a owns the data

before the move, and b owns it
afterward

• We cannot use a after the
move

Owners deallocate boxes

If a variable owns a box,
when Rust deallocates the
variable’s frame, then Rust
deallocates the box’s heap
memory.

The box holding 5 is
deallocated at the end of
make_and_drop

Ownership

Here’s an example
involving string
manipulation

Note that it would
be an error to use
first after the
pointer is moved in
the call to from

Cloning

• If we want to continue to use the
first string, we can clone it
before moving the pointer

• The clone method makes a deep
copy of the string (the data on the
heap is copied, not just the
pointer)

Ownership quiz

• Does this program compile?
Why or why not?

• If it compiles, what is the result
when it runs?

fn main() {
 let s = String::from("hello");
 let s2;
 let b = false;
 if b {
 s2 = s;
 }
 println!("{}", s);
}

Ownership quiz (SOLUTION)

• Does this program compile?
Why or why not?

• Answer: no, it does not
compile, because s might be
moved to s2 inside the if
statement, so s cannot be used
in the println! call.

• Rust doesn’t try to figure out
whether if statements will
execute (that’s undecidable in
general)

fn main() {
 let s = String::from("hello");
 let s2;
 let b = false;
 if b {
 s2 = s;
 }
 println!("{}", s);
}

Using pointers after passing them to a function

Moving owned pointers
can be inconvenient

References

• A reference is a non-owning
pointer

• The expression &m1 borrows m1
• g1 and g2 are not deallocated at

the end of greet, because they
are not owned

Dereferencing pointers

The * operator is
used to access the
data a pointer refers
to

Rust inserts some (de)references automatically

(De)referencing quiz

• Consider the following program, showing the
state of memory after the last line:

• If you wanted to copy out the number 0
through y, how many dereferences would you
need to use?

• For example, if the correct expression is *y, then
the answer is 1.

(De)referencing quiz (SOLUTION)

• Consider the following program, showing the
state of memory after the last line:

• If you wanted to copy out the number 0
through y, how many dereferences would you
need to use?

• For example, if the correct expression is *y, then
the answer is 1.

• Answer: 3 (***y)
• One dereference for each pointer in the diagram
• Also: one for each new, one for each &

Rust avoids simultaneous aliasing and mutation

• At L2, the alias num points
to v[2]

• We write to v at L2 and read
from num at L3

• This is a problem because
the Vec’s memory is re-
allocated at L2, so the
pointer used at L3 points to
deallocated memory.
Undefined behavior!

“Puzzled Ferris“
means this code
does not compile

Rust’s borrow checker ensures reference safety

• Ensures that data is never aliased and mutated at the same time
• Tracks the permissions associated with each variable:

• Read (R): data can be copied to another location.
• Write (W): data can be mutated in-place (let mut vars)
• Own (O): data can be moved or dropped.

• Creating a reference can temporarily remove these permissions

Example: how borrow checking works

Notes:
• Different permissions for num

and *num
• manipulating the reference vs.

accessing the data

• Permissions are defined on
paths

• num, *num, v[2], a.field,
*((*a)[0].1)

• Permissions are lost when a
mutually exclusive
permission must be used

• e.g. W on v is needed at
v.push(4) so R on num is lost

A borrow checking error

error[E0502]: cannot borrow `v` as mutable because it is also borrowed as immutable
 --> test.rs:4:1
 |
3 | let num: &i32 = &v[2];
 | - immutable borrow occurs here
4 | v.push(4);
 | ^^^^^^^^^ mutable borrow occurs here
5 | println!("Third element is {}", *num);
 | ---- immutable borrow later used here

We can also borrow mutably with &mut

Permissions are returned when a reference’s lifetime ends

• Control flow can make this interesting!

Borrowing quiz

In the example, explain
why strs loses and
regains write (W)
permissions

Borrowing quiz

In the example, explain
why strs loses and
regains write (W)
permissions

ANSWER: get_first
returns an immutable
reference to data
within strs, so strs is
not writable while
first is live

Data must outlive its references

• The drop function explicitly frees a pointer
• But drop requires an ownership (O) permission and we do not

have that for s while s_ref is live

Fixing borrow checking errors

• The following code has a borrow error:
/// Returns a person's name with "Ph.D." added as a title
fn award_phd(name: &String) -> String {
 let mut name = *name;
 name.push_str(", Ph.D.");
 name
}

• What’s the best fix?

A

B

C

D

String slices

• A string slice of type &str points to a
range of characters in a string

• &str is the type of string literals in Rust!

• A slice knows its length—access
beyond the length is a run time error

• Slices are references, so taking a slice
changes the permission to the
underlying data

• If s were mut then we couldn’t mutate it
while hello is live

• You can also take slides of arrays
let a = [1, 2, 3, 4, 5];

let slice : &[i32] = &a[1..3];

Sometimes Rust can’t tell the lifetime of a reference
// does longest return x or y?
// unclear -- and it matters if they have different lifetimes
fn longest(x: &str, y: &str) -> &str {
 if x.len() > y.len() { x } else { y }
}

fn main() {
 let string1 = String::from("abcd");
 let string2 = "xyz";
 let result = longest(string1.as_str(), string2);
 println!("The longest string is {result}");
}

Lifetime annotations can help

&i32 // a reference
&'a i32 // a reference with an explicit lifetime
&'a mut i32 // a mutable reference with an explicit lifetime

• We don’t need to write lifetime annotations anywhere—just when
we need to compare the lifetimes of different references (e.g. in a
function signature)

Using lifetime annotations

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
 if x.len() > y.len() { x } else { y }
}

• This signature tells Rust that for some lifetime 'a, the arguments must live at
least as long as ‘a.

• Also, the value returned by longest will live at least as long as 'a.

We can put lifetime annotations in structs

struct ImportantExcerpt<'a> { part: &'a str, }
fn main() {
 let novel = String::from("Call me Ishmael. Some years ago...");
 let first_sentence = novel.split('.').next().unwrap();
 let i = ImportantExcerpt { part: first_sentence, };
}

• The lifetime parameter of ImportantExcerpt tracks how long
the part reference lives.

• Rust checks that i isn’t used after novel goes out of scope

Lifetime annotations can often be elided

• If you don’t provide them, Rust acts as if they were specified
according to the following rules

• Every lifetime in the input type gets its own lifetime parameter
fn foo(x: &i32, y: &i32)  foo<'a, 'b>(x: &'a i32, y: &'b i32)

• If there is exactly one lifetime parameter, that lifetime is assigned to all
output lifetime parameters

fn foo(x: &i32) -> &i32  fn foo<'a>(x: &'a i32) -> &'a i32

• [Methods only]: If there are multiple input lifetime parameters, but one of
them is &self or &mut self, that lifetime is used for all output lifetime
parameters

The 'static lifetime

• The 'static lifetime is for things that live for the entire execution
of the program

• Example: string literals

• Only use it if you know the underlying data lives indefinitely!

	Ownership in Rust�This material is based heavily on the Rust book, as adapted by Will Crichton et al.
	Safety in Rust
	How Rust ensures safety
	Conceptual model of variables on the stack
	Assigning one variable to another copies the data
	Boxes allocate memory in the heap
	Owners deallocate boxes
	Ownership
	Cloning
	Ownership quiz
	Ownership quiz (SOLUTION)
	Using pointers after passing them to a function
	References
	Dereferencing pointers
	Rust inserts some (de)references automatically
	(De)referencing quiz
	(De)referencing quiz (SOLUTION)
	Rust avoids simultaneous aliasing and mutation
	Rust’s borrow checker ensures reference safety
	Example: how borrow checking works
	A borrow checking error
	We can also borrow mutably with &mut
	Permissions are returned when a reference’s lifetime ends
	Borrowing quiz
	Borrowing quiz
	Data must outlive its references
	Fixing borrow checking errors
	String slices
	Sometimes Rust can’t tell the lifetime of a reference
	Lifetime annotations can help
	Using lifetime annotations
	We can put lifetime annotations in structs
	Lifetime annotations can often be elided
	The 'static lifetime

