
Concurrency in Rust
Jonathan Aldrich

17-363

Concurrency is tricky!

• Race condition: result of program depends on timing of thread
execution

• Deadlocks: two threads are stuck waiting for each other
• Memory leaks: hard to consistently clean up memory shared between

threads

• Rust’s type system prevents many of these errors

Shared Memory Concurrency
let v = 123; // data to be shared (could be of any type)
let m = Mutex::new(v); // v is protected by m
let mw = Arc::new(m); // m is tracked by mw
for _ in 0..2 { // execute twice (for unused values 0 and 1)

let mwc = Arc::clone(&mw);
thread::spawn(move || {

let mut p = mwc.lock().unwrap(); // start critical section
*p += 1;

});
}
thread::sleep(Duration::from_millis(100)); // 1/10th second pause
let p = mw.lock().unwrap(); // start critical section
println!("{}", *p); // probably print 125

Notes

Must use reference counting
because can’t guarantee the
original variable will outlive
references to it.

Must use atomic reference counting
(Arc) because it is shared between
threads. Rc would not work as it
doesn’t implement the Send trait.

Unwrapping lock can fail if lock was
held by a thread that was killed.

Lock is released when p goes out of
scope.

Exercise: What would go wrong here?

use std::thread;
fn main() {

let v = vec![1, 2, 3];
let handle = thread::spawn(|| {

println!("Here's a vector: {:?}", v);
});
handle.join().unwrap();

}

What would go wrong here?

use std::thread;
fn main() {

let v = vec![1, 2, 3];
let handle = thread::spawn(|| {

println!("Here's a vector: {:?}", v);
});
handle.join().unwrap();

}

Answer

The compiler can’t tell how long the
thread will run. It might run past
the end of main()! Since v will be
dropped at the end of main, we
can’t borrow it in the closure.

Making the closure into a move
closure will fix the problem.

Message Passing Concurrency

let (tx, rx) = mpsc::channel(); // new channel
// tx is the sending end; rx is the receiving end

for t in 0..2 { // execute twice (for t = 0 and t = 1)
let txc = tx.clone();
thread::spawn(move || {

txc.send(123 + t).unwrap();
});

}
let v1 = rx.recv().unwrap();
let v2 = rx.recv().unwrap();
println!("{} {}", v1, v2); // prints 123 124 or 124 123

Notes

Sending end can be cloned,
receiving end can’t.

Unwrapping on send() will fail if the
receiver has been dropped.

Likewise, unwrapping on recv() will
fail if the sender has been dropped.

Sending a value transfers
ownership. Values implementing
the Copy trait are implicitly copied.
All values sent must have the same
type.

Can use try_recv() to get a value
only if one is available, without
blocking. Returns error if not
available.

An Async Page Scraper

async fn page_title(url: &str) -> (&str, Option<String>) {

let text = trpl::get(url).await.text().await;

let title = Html::parse(&text)

.select_first("title")

.map(|title| title.inner_html());

(url, title)

}

Notes

An async function returns a
promise; the caller can await it to
get a result.

Asyncs execute lazily; nothing
happens until the returned promise
is await-ed.

Execution proceeds until the first
await. It will suspend (and some
other async function can be run)
until a value is available, then it will
continue.

Calling the Page Scraper

fn main() {
let args: Vec<String> = std::env::args().collect();
trpl::run(async {

let title_fut_1 = page_title(&args[1]);
let title_fut_2 = page_title(&args[2]);
let (url, maybe_title) = match trpl::race(title_fut_1, title_fut_2).await {

Either::Left(left) => left,
Either::Right(right) => right,

};
println!("{url} returned first");

})
}

Notes

You can’t just call an async function
from main, you have to use a
runtime that executes async blocks.
Here we use the Tokio runtime
(packaged up in trpl for the rust
book)

We call 2 async functions and use
race to await both. They will start
executing and the result of the one
that finishes first will be returned.

Waiting for results from 2 tasks
let fut1 = async {

for i in 1..10 {
println!("hi number {i} from the first task!");
trpl::sleep(Duration::from_millis(500)).await;

}
};
let fut2 = async {

for i in 1..5 {
println!("hi number {i} from the second task!");
trpl::sleep(Duration::from_millis(500)).await;

}
};
trpl::join(fut1, fut2).await;

Async and channels
let (tx, mut rx) = trpl::channel();
let tx_fut = async move {

let vals = vec![String::from("hi"), String::from("from"),
String::from("the"), String::from("future"),];

for val in vals {
tx.send(val).unwrap();
trpl::sleep(Duration::from_millis(500)).await;

}
};
let rx_fut = async {

while let Some(value) = rx.recv().await {
eprintln!("received '{value}'");

}
};
trpl::join(tx_fut, rx_fut).await;

Notes

Unlike with the channels we saw
before, we must await when
receiving a message here.

Interleaving long-running operations

let a = async {
println!("'a' started.");
slow("a", 30);
trpl::yield_now().await;
slow("a", 10);
trpl::yield_now().await;
slow("a", 20);
trpl::yield_now().await;
println!("'a' finished.");

};

let b = async {
println!("'b' started.");
slow("b", 75);
trpl::yield_now().await;
slow("b", 10);
trpl::yield_now().await;
slow("b", 15);
trpl::yield_now().await;
slow("b", 35);
trpl::yield_now().await;
println!("'b' finished.");

};

Async vs. Threads

• Generally Threads are a cleaner abstraction
• No yield; no special “async” functions; no explicit await
• Avoids some other pain I didn’t show you, e.g. pinning references to allow

joining dynamically-determined numbers of tasks
• Use threads unless you are sure you need async

• But Async can be higher performance
• Rust’s threads are OS threads. They’re expensive to create and there’s a

limited number of them.
• Using async allows fast creation and execution of many more tasks

