17-363/17-663

: Programming Language Pragmatics

PROGRAMMING
LANGUAGE
PRAGMATICS

Reading: PLP chapter 7

Copyright © 2016 Elsevier

Jonathan Aldrich

A “ ¢
i %

" G5 e
&G0

ELS

EVIER

Data Types

 What is a type? 3 views:

* Denotational: a collection of values from a domain
* e¢.g. the 32-bit integers (int), or the real numbers representable as
[EEE single-precision floats (float)

« Structural: a description of a data structure in terms of

fundamental constructs
* e.g.apoitis arecord made up of fields x and y, both of type int

— Behavioral: the set of operations that can be applied to an
object
— e.g. a Stack has operations push(v) and pop()
— Similar to structural, but the structure 1s a set of methods, not fields

Data Types
* What are types good for?

— Documentation
— What do I need to pass to this library function?

— Implicit context for compilation
— Is this + an integer add or a floating point add?

— Checking - meaningless operations do not occur
e ¢.g. “hello, world” - 5 doesnot make sense

* Type checking cannot prevent all meaningless
operations

» It catches enough of them to be useful

Terminology

* Type safety
* The language ensures that only type-appropriate
operations are applied to an object

* Strong vs. weak typing
* The degree to which the language enforces
typing invariants and prevents accidental errors

 Static vs. dynamic typing
* Whether types are checked at compile time or

Type Systems

« Examples
— Java is type safe, strongly and statically typed

— Common Lisp 1s type safe, strongly and dynamically
typed

— C and C++ are statically and strongly typed, but are
not (fully) type safe

— JavaScript is type safe and dynamically typed, but
allows many implicit conversions between types, some
of which are surprising. It would be considered more
weakly typed than the above languages.

* What does 1t mean to be weakly typed?

"b" _I_ "a" _I__I_"a" _l_ "a".
b
null == 0;

null > 0;
null >= 0;

—.__ 4'!-“:..‘ 4
ELSEVIER

JavaScript Explanations

[]==11;
* b
! coerces [] to a Boolean. [] 1s truthy so we get false. We need to
compare values at the same type. JavaScript converts false to 0, and

[]to " to 0.

"b" _I_ Haﬂ _I_ _I_" " _I_ H
« +"a" converts "a" to a number Since a 1s a letter, not a sequence of
digits, 1t 1s converted to NaN (not a number).

null == 0;

null > 0;

null >= 0;

« == treats null specially. It 1s converted to undefined for comparison;

the equality 1s false. The relational operators just convert both sides
to numbers; null 1s converted to 0. 3

Type Examples and Terminology

— Discrete types — countable
* Integer
* boolean
e char
e enumeration
* subrange

— Scalar types - one-dimensional
 All discrete types
* real

» Composite types:
— records

— datatypes/unions

— arrays

e strings
— sets
— pointers
— lists
— files

" LC\-:,‘;*:
ELSEVIER

Orthogonality in Type Systems

* Orthogonality is a desirable property

There are no restrictions on the way types can be
combined

* Type theory typically studies orthogonal type

constructs

e.g. we provide a grammar for types, they can be
constructed 1in any way

* Most languages restrict orthogonality

Often for practical reasons, e.g. minimizing syntactic
overhead or making type checking decidable
Example: ML only allows polymorphism at a let

a2 EE S Bk
T o Ttei
ot ¢ o

AP A

Example: Java classes combine records with recursive §5u)
types s N

Subtyping

* When one type can be safely used as another type

e ¢.g.1n most languages an integer can be used as a real
* The “operational” definition of subtyping

e Other definitions
e Intuitive: A<:BifAi1saB
e ¢.g.a StreetAddress 1s an Address
 Denotational: A <: B 1f A describes a subset of the

values that B describes
« ¢.g. the integers are a subset of the reals

e Structural: A <: B 1if A has all of the structure of B (and
maybe more)

 Behavioral: A <: B if A has all the operations that B
does, and they behave as we’d expect for a B

« Subsumption - a subtype can be treated as a supertype:

'Fe:1i 71 <% T-sub
e 3% -subsume

* Subtyping 1s reflexive We can capture some of
and transitive: Java’s subtyping rules as
follows:

S-reflexive
T LT ﬂ

_ S-int-long
1Ty T2 < T3 ing = long

T < T3

S-transitive

Tong < £loat = ongfloat

S-float-double

i *
LT} R
. e By o

., Ty o]

float < double

« Show a derivation that types the expression 1 + 2.5

I'Fe:mm 11 <M
TFe:n T-subsume int < long

S-int-long

S-reflexive S-long-float

T<T long < float

Ti % T3 T8 % T .. - -
L= 712 = 7?3_ > S-transitive float < double SRR

I'He; :double I'F e9:double
I'+e; +e9: double

T-add-double

e Vo inl
ELSEVIER

« Show a derivation that types the expression 1 + 2.5

Answer: (one rule name is left out for brevity)

---------------- S-long-float -------------------- S-float-double
long <= float float <= double
-- S-transitive
int <=long long<=double
------------- T-const -----------------mommoeeoeee———- S-transitive
o |-1:int int <= double
--- T-subsume ---------—-———-——-- T-const
e |-1:double e |- 2.5:double
--- T-add-double
e |-1+2.5:double

e s B
ELSEVIER

Type Checking

e A TYPE SYSTEM has rules for

— type compatibility (when can a value of type A
be used 1n a context that expects type B?)
— Similar to the first definition of subtyping

— But sometimes languages break this for convenience,
e.g. allowing reals to be implicitly converted to
integers, or integers to be implicitly truncated

— Type equivalence: when two types are mutually
compatible
— type inference (what 1s the type of an -
expression, given the types of the operands?) ¢ *

Structural vs. Name Equivalence

* Are these equivalent?
struct person {
string name;
string address;
h
struct school {
string name;
string address;

)

* Some languages let you choose. E.g. in Ada:

type Score 1s integer; // structural equivalence; equiv to integer
type Fahrenheit 1s new integer; // name equivalence

type Celsius 1s new integer; // can’t assign Fahrenheit to Celsius

Type Checking

* Two major approaches: structural
equivalence and name equivalence

— Name equivalence 1s based on declarations
— Advantage: captures the programmer’s intent

— Typical in imperative & OO languages

— Structural equivalence 1s based on some notion
of meaning behind those declarations
— Advantage: more flexible
— Disadvantage: can “accidentally” equate types

— Common in functional languages (but they usually

have ways to support nominal equivalence also)

Type Checking

» Structural equivalence depends on simple
comparison of type descriptions substitute
out all names
— expand all the way to built-in types

* Original types are equivalent 1f the
expanded type descriptions are the same

 Coercion

— When an expression of one type 1s used 1n a
context where a different type 1s expected, one
normally gets a type error

— But what about
var a : 1nteger; b, ¢ : real;

Type Checking

e Coercion

— Many languages allow things like this, and
COERCE an expression to be of the proper type

— Coercion can be based just on types of
operands, or can take into account expected
type from surrounding context as well

Type Checking

* C has lots of coercion, too, but with simpler rules:
— all £1loats in expressions become doubles

— short, int, and char become int in
expressions

— 1f necessary, precision 1s removed when
assigning into LHS

Coercion Rules

['-e:int
['Fe~s float(e): real

coerce-real

I'Fe: real
['F (int)e ~ trunc(e) : int

convert-int

» Coercion and conversions can be added 1n an
elaboration pass within the compiler
—Elaboration makes implicit things explicit

* Coercions are inserted when subsumption 1s
used but the types have different representions

e Conversions are inserted where the user adds
casts

* Make sure you understand the difference
between
— type conversions (explicit)
— type coercions (1mplicit)
— 1n C and derived languages, the word 'cast' 1s
often used for conversions

2 ""-'_.'lr-_l "i

ELSEVIER

* Implementing a type checker with a symbol
table

ELSEVIER

Implementing Type Checkers

function typecheck expr(scope : Scope, a : AST) : Type if x 1s not found, get type will call

case a of error(‘‘variable not declared’’, a)
int_lit(n) : return integer and add x to scope with error_type,
real lit(r) : return real to avoid cascading messages
var(x) : return symbol table.get type(x, scope, a)

float(al) :
typ : Type := typecheck expr(scope, al)
if typ ¢ {integer, error type} then error(‘‘already a real’’, a)
return float
trunc(al) :
typ : Type := typecheck expr(scope, al)
if typ ¢ {real, error type} then error(‘‘already an integer’’, a)
return integer
bin_op(al, op, a2) :
typl : Type := typecheck expr(scope, al)
typ2 : Type := typecheck expr(scope, a2)
if typl = typ2 then return typl
else if typl = error_type then return typ2
else if typ2 = error_type then return typl

else error(‘ ‘mismatched types’’, a); return error_type

Implementing Type Checkers

function typecheck stmt(scope : Scope, a : AST) if x is already present and not of
case a of error_type, add will call error(‘“‘variable
int_decl(x, s) : already declared in scope”, a) and set
symbol table.add(x, integer, scope, a) the type of x to error_type if the two

typecheck stmt(scope, s) declarations differ
real decl(x, s) :...— analogous to int decl
assign(x, e, S) :
typ_expr = typecheck expr(scope, ¢€)
typ x :=symbol table.get type(x, scope, a) — see notes on get type on prior slide
if typ _expr/~typ x and type expr/~ error type and type x/~ error type
error(‘ ‘mismatched types’’)
typecheck stmt(scope, s)
read(x, s) :
typ x :=symbol table.get type(x, scope, a) — see notes on get type on prior slide
typecheck stmt(scope, s)
write(e, s) :
typecheck expr(scope, ¢)
typecheck stmt(scope, s)
null : return

