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How to compile programs with control flow?

• How to represent Booleans
• Relevant x86-64 architecture & instructions
• How to compile:

• If statements
• Relational operators
• Loops



Representing Booleans

• C: no Boolean type
• 0 represents false
• any other integer represents true

• More strongly-typed languages (Java, Rust, ML, …)
• Boolean is a distinguished type
• common choice: 0 for false, 1 for true: similar to C

• Another choice: tagging.  Example (for 32 bits):
• numbers represented by 31 bits, shifted left one bit

• so 5 would be 0000 0000 0000 0000 0000 0000 0000 1010

• low bit of 1 means a Boolean, the 2nd lowest bit which Boolean
• so true would be 0000 0000 0000 0000 0000 0000 0000 0011

• can test type at run time in dynamic languages

5 number
tag

boolean
tagtrue



x86 control flow architecture

• cmp v1, v2 computes v1-v2 and sets condition codes
• Kind of like sub, but does not change v1

• Note: sub does not change the condition codes, but subs does

• Here are the condition codes
• ZF: zero flag – set to 1 if v1 = v2
• SF: sign flag – set to 1 if result is negative
• OF: overflow flag – set to 1 when there is signed overflow (127+1 = -128)
• CF: carry flag – set to 1 when there is unsigned overflow (255+1 = 0)

• Generally easier to think in terms of greater than, equal, etc.
• See mnemonics on the next slide

*Note we are using NASM-style Intel syntax in this class, where destinations come first



x86 control flow architecture

• cmp v1, v2 computes v1-v2 and sets condition codes
• (without changing v1)

• These can be used by conditional instructions.  Examples:
jmp label  ; transfers control to label, no matter what
je label  ; transfers control to label if equal (ZF = 1)
jne label  ; transfers control to label if not equal (ZF = 0)
jg label  ; transfers control to label if greater than (signed)
jge label  ; transfers control to label if greater than or equal (signed)
ja label  ; transfers control to label if above (unsigned)
jo label  ; transfers control to label if overflow (signed)
cmove v1, v2 ; moves v2 to v1 if equal
...

*Note we are using NASM-style Intel syntax in this class, where destinations come first



How to compile if statements

expr ::= if <cond> then <expr1> else <expr2>

   {cond_instrs} ; leaves result in rax
   cmp rax, 0
   je else
   {then_instrs} ; leaves result in rax
   jmp end
else:
   {else_instrs} ; leaves result in rax
end:



What if we have nested if expressions?
if c1 then if c2 then e1 else e2 else e3

   {C1}
   cmp rax, 0
   je else
   {C2}
   cmp rax, 0
   je else
   {e1}
   jmp end
else:
   {e2}
end:
   jmp end
else:
   {e3}
end:

What’s the problem here?



How to compile if statements (fixed)

expr ::= if <cond> then <expr1> else <expr2>

   {cond_instrs} ; leaves result in rax
   cmp rax, 0
   je else0
   {then_instrs} ; leaves result in rax
   jmp end1
else0:
   {else_instrs} ; leaves result in rax
end1:

Add an index to make every label unique



Fixed version - nested if expressions
if c1 then if c2 then e1 else e2 else e3

   {C1}
   cmp rax, 0
   je else0
   {C2}
   cmp rax, 0
   je else2
   {e1}
   jmp end3
else2:
   {e2}
end3:
   jmp end1
else0:
   {e3}
end1:



How to compile relational operators

e1 = e2


{e1}
mov [rsp - {temp_offset}], rax ; move into temporary
{e2}
cmp rax, [rsp - {temp_offset}] ; compare to temporary
mov rbx, 1
mov rax, 0
cmove rax, rbx  ; moves 1 into rax if equal



This approach is a bit wasteful when combined with if
if e1 = e2 then e3 else e4



   {e1}
   mov [rsp - {temp_offset}], rax
   {e2}
   cmp rax, [rsp - {temp_offset}]
   mov rbx, 1
   mov rax, 0
   cmove rax, rbx 
   cmp rax, 0
   je else0
   {e3}
   jmp end1
else0:
   {e4}
end1:

Two comparisons
Two comparisons, 

plus additional 
shuffling



Can we do better?  Let’s reconsider if

expr ::= if C then e3 else e4


         compile_conditional(C, “else0”)
   {e3}
   jmp end1
else0:
   {e4}
end1:

Idea: pass the else label to the
conditional compilation function



Can we do better?  Let’s reconsider if

compile_conditional(e1 = e2, “else0”)


   {e1}
   mov [rsp - {temp_offset}], rax ; move into temporary
   {e2}
   cmp rax, [rsp - {temp_offset}] ; compare to temporary
   jne else0                      ; jump to label if not equal



The solution is improved!
if e1 = e2 then e3 else e4



   {e1}
   mov [rsp - {temp_offset}], rax
   {e2}
   cmp rax, [rsp - {temp_offset}]
   mov rbx, 1
   mov rax, 0
   cmove rax, rbx 
   cmp rax, 0
   je else0
   {e3}
   jmp end1
else0:
   {e4}
end1:

if e1 = e2 then e3 else e4


   {e1}
   mov [rsp - {temp_offset}], rax
   {e2}
   cmp rax, [rsp - {temp_offset}]

   jne else0
   {e3}
   jmp end1
else0:
   {e4}
end1:



How to compile loops

while C do e


loop0:
   compile_conditional(C, “end1”)
   {e}
   jmp loop0
end1:



Your turn: how to compile repeat until

repeat x := x+1 until x=10


You may assume that x is stored at x_offset from the stack pointer rsp.
Enter your answer at https://forms.gle/egN39zHoWRH1zDHD6 (or the QR code above) using 
your Andrew ID as the email.

Note: you don’t have to 
strictly follow the code 
generation approach from 
the last homework, just 
write code that works

https://forms.gle/egN39zHoWRH1zDHD6


Don’t peek until you did the problem!  Answer next…



Your turn: how to compile repeat until (SOLUTION)

repeat x := x+1 until x=10


loop0:
   mov ax, [rsp - {x_offset}]
   add ax, 1
   mov [rsp – {x_offset}], ax
   mov ax, [rsp - {x_offset}]
   cmp ax, 10
   jne loop0

Your solution might differ
a bit from this one

This part is basically 
compile_conditional(x = 10, “loop0”)



General approach for repeat/until

repeat e until C


loop0:
   {e}
   compile_conditional(C, “loop0”)
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