
Chapter 6: Control Flow
Programming Language Pragmatics, Fifth Edition
Michael L. Scott and Jonathan Aldrich

Copyright © 2024 by Jonathan Aldrich and Michael L. Scott

How to compile programs with control flow?

• How to represent Booleans
• Relevant x86-64 architecture & instructions
• How to compile:

• If statements
• Relational operators
• Loops

Representing Booleans

• C: no Boolean type
• 0 represents false
• any other integer represents true

• More strongly-typed languages (Java, Rust, ML, …)
• Boolean is a distinguished type
• common choice: 0 for false, 1 for true: similar to C

• Another choice: tagging. Example (for 32 bits):
• numbers represented by 31 bits, shifted left one bit

• so 5 would be 0000 0000 0000 0000 0000 0000 0000 1010

• low bit of 1 means a Boolean, the 2nd lowest bit which Boolean
• so true would be 0000 0000 0000 0000 0000 0000 0000 0011

• can test type at run time in dynamic languages

5 number
tag

boolean
tagtrue

x86 control flow architecture

• cmp v1, v2 computes v1-v2 and sets condition codes
• Kind of like sub, but does not change v1

• Note: sub does not change the condition codes, but subs does

• Here are the condition codes
• ZF: zero flag – set to 1 if v1 = v2
• SF: sign flag – set to 1 if result is negative
• OF: overflow flag – set to 1 when there is signed overflow (127+1 = -128)
• CF: carry flag – set to 1 when there is unsigned overflow (255+1 = 0)

• Generally easier to think in terms of greater than, equal, etc.
• See mnemonics on the next slide

*Note we are using NASM-style Intel syntax in this class, where destinations come first

x86 control flow architecture

• cmp v1, v2 computes v1-v2 and sets condition codes
• (without changing v1)

• These can be used by conditional instructions. Examples:
jmp label ; transfers control to label, no matter what
je label ; transfers control to label if equal (ZF = 1)
jne label ; transfers control to label if not equal (ZF = 0)
jg label ; transfers control to label if greater than (signed)
jge label ; transfers control to label if greater than or equal (signed)
ja label ; transfers control to label if above (unsigned)
jo label ; transfers control to label if overflow (signed)
cmove v1, v2 ; moves v2 to v1 if equal
...

*Note we are using NASM-style Intel syntax in this class, where destinations come first

How to compile if statements

expr ::= if <cond> then <expr1> else <expr2>

 {cond_instrs} ; leaves result in rax
 cmp rax, 0
 je else
 {then_instrs} ; leaves result in rax
 jmp end
else:
 {else_instrs} ; leaves result in rax
end:

What if we have nested if expressions?
if c1 then if c2 then e1 else e2 else e3

 {C1}
 cmp rax, 0
 je else
 {C2}
 cmp rax, 0
 je else
 {e1}
 jmp end
else:
 {e2}
end:
 jmp end
else:
 {e3}
end:

What’s the problem here?

How to compile if statements (fixed)

expr ::= if <cond> then <expr1> else <expr2>

 {cond_instrs} ; leaves result in rax
 cmp rax, 0
 je else0
 {then_instrs} ; leaves result in rax
 jmp end1
else0:
 {else_instrs} ; leaves result in rax
end1:

Add an index to make every label unique

Fixed version - nested if expressions
if c1 then if c2 then e1 else e2 else e3

 {C1}
 cmp rax, 0
 je else0
 {C2}
 cmp rax, 0
 je else2
 {e1}
 jmp end3
else2:
 {e2}
end3:
 jmp end1
else0:
 {e3}
end1:

How to compile relational operators

e1 = e2


{e1}
mov [rsp - {temp_offset}], rax ; move into temporary
{e2}
cmp rax, [rsp - {temp_offset}] ; compare to temporary
mov rbx, 1
mov rax, 0
cmove rax, rbx ; moves 1 into rax if equal

This approach is a bit wasteful when combined with if
if e1 = e2 then e3 else e4



 {e1}
 mov [rsp - {temp_offset}], rax
 {e2}
 cmp rax, [rsp - {temp_offset}]
 mov rbx, 1
 mov rax, 0
 cmove rax, rbx
 cmp rax, 0
 je else0
 {e3}
 jmp end1
else0:
 {e4}
end1:

Two comparisons
Two comparisons,

plus additional
shuffling

Can we do better? Let’s reconsider if

expr ::= if C then e3 else e4


 compile_conditional(C, “else0”)
 {e3}
 jmp end1
else0:
 {e4}
end1:

Idea: pass the else label to the
conditional compilation function

Can we do better? Let’s reconsider if

compile_conditional(e1 = e2, “else0”)


 {e1}
 mov [rsp - {temp_offset}], rax ; move into temporary
 {e2}
 cmp rax, [rsp - {temp_offset}] ; compare to temporary
 jne else0 ; jump to label if not equal

The solution is improved!
if e1 = e2 then e3 else e4



 {e1}
 mov [rsp - {temp_offset}], rax
 {e2}
 cmp rax, [rsp - {temp_offset}]
 mov rbx, 1
 mov rax, 0
 cmove rax, rbx
 cmp rax, 0
 je else0
 {e3}
 jmp end1
else0:
 {e4}
end1:

if e1 = e2 then e3 else e4


 {e1}
 mov [rsp - {temp_offset}], rax
 {e2}
 cmp rax, [rsp - {temp_offset}]

 jne else0
 {e3}
 jmp end1
else0:
 {e4}
end1:

How to compile loops

while C do e


loop0:
 compile_conditional(C, “end1”)
 {e}
 jmp loop0
end1:

Your turn: how to compile repeat until

repeat x := x+1 until x=10


You may assume that x is stored at x_offset from the stack pointer rsp.
Enter your answer at https://forms.gle/egN39zHoWRH1zDHD6 (or the QR code above) using
your Andrew ID as the email.

Note: you don’t have to
strictly follow the code
generation approach from
the last homework, just
write code that works

https://forms.gle/egN39zHoWRH1zDHD6

Don’t peek until you did the problem! Answer next…

Your turn: how to compile repeat until (SOLUTION)

repeat x := x+1 until x=10


loop0:
 mov ax, [rsp - {x_offset}]
 add ax, 1
 mov [rsp – {x_offset}], ax
 mov ax, [rsp - {x_offset}]
 cmp ax, 10
 jne loop0

Your solution might differ
a bit from this one

This part is basically
compile_conditional(x = 10, “loop0”)

General approach for repeat/until

repeat e until C


loop0:
 {e}
 compile_conditional(C, “loop0”)

	Chapter 6: Control Flow
	How to compile programs with control flow?
	Representing Booleans
	x86 control flow architecture
	x86 control flow architecture
	How to compile if statements
	What if we have nested if expressions?
	How to compile if statements (fixed)
	Fixed version - nested if expressions
	How to compile relational operators
	This approach is a bit wasteful when combined with if
	Can we do better? Let’s reconsider if
	Can we do better? Let’s reconsider if
	The solution is improved!
	How to compile loops
	Your turn: how to compile repeat until
	Don’t peek until you did the problem! Answer next…
	Your turn: how to compile repeat until (SOLUTION)
	General approach for repeat/until

