
Introduction

17-363/17-663: Programming Language Pragmatics

Copyright © 2016 Elsevier, Jonathan Aldrich

Next edition: Scott & Aldrich!

Prof. Jonathan Aldrich

Introduction

• Language Design and Language
Implementation go together
– An implementor has to understand the

language
– A language designer has to understand

implementation issues
– A good programmer has to understand both!

Introduction

• Why are there so many programming
languages?
– evolution -- we've learned better ways of doing

things over time
– socio-economic factors: proprietary interests,

commercial advantage
– orientation toward special purposes
– orientation toward special hardware
– diverse ideas about what works well

(and what people like)

Introduction

• What makes a language successful?
– easy to learn (BASIC, Python, LOGO, Scheme)

– expressive, powerful (C++, Common Lisp, Scala, Rust)

– easy to implement (BASIC, Forth)

– possible to compile to very good (fast/small) code
(Fortran, C, Rust)

– backing of a powerful sponsor (C#, Ada, Swift)

– wide dissemination at minimal cost (Pascal, Java)

– market lock-in (JavaScript)

Introduction

• Why do we have programming languages?
What is a language for?
– way of thinking / way of expressing algorithms

– languages from the user's point of view

– abstraction of virtual machine -- way of
specifying what you want the hardware to do
without getting down into the bits

– languages from the implementor's point of view

Why study programming languages?

• Help you choose a language.
– C++ vs. Rust for systems programming
– Fortran vs. Julia for numerical computations
– Python vs. JavaScript for web applications
– Ada vs. C for embedded systems
– Common Lisp vs. Scheme vs. ML for symbolic

data manipulation
– Java vs. Scala for application servers

Why study programming languages?

• Make it easier to learn new languages
• Familiarity with related languages
• Understanding core concepts that reappear

• Use language/compiler ideas in your projects
• Almost every complex system has a language

somewhere!

• Learn how to reason rigorously
• PL has some of the best intellectual tools!

Why study programming languages?

• Help you make better use of whatever
language you use
– Specialized features

– unions, first-class functions, …

– Implementation costs
– Garbage collection, tail recursion

– Emulating missing features
– Recursion (with loops and stacks)

– First-class functions (with objects)…or vice versa!

Language Paradigms

How is this course different?

• Overall: emphasizes the interaction between
language design and implementation

• Vs. 15-410
• More focus on language design and theory; fulfills the

Logic & Languages elective, not the Systems elective

• Vs. 15-312
• “Pragmatic” focus – we study ideas and theory in the

context of industrial languages and their design choices

• Use of an educational proof assistant to make theory
both more approachable and rigorous

Course Staff

Prof. Jonathan Aldrich TA Anrui Liu

Course Administration

• Lectures 2x/week
• Active learning exercises in every class

• In person expectation
• If you can’t make it (COVID is not gone, but there may be

other reasons too), email me—we’ll get you a video &
exercises

• Textbook: Programming Language Pragmatics
• We’ll provide a PDF of the upcoming 5th edition

• Please do not share

• Recitation
• Lab-like, helpful for homework. Bring your laptop!

“How do I get an A?”

• 50% Homework –due Friday 11:59pm
• Build a compiler (5 coding assignments, plus a warmup this week)

• Implementation in Rust – good language for compilers & interesting to study

• Reason about languages (4 theory assignments)

• SASyLF educational theorem proving tool

• 20% - 2 midterm exams covering core concepts

• 25% Project
• Extend the compiler in some interesting way, or explore theory

• 5% Participation (assessed via in-class exercises)
• Can miss up to 2 sessions (lecture or recitation) w/o losing credit

Communication

• Website
• Schedule, syllabus, slides

• Piazza for announcements, communication
• Use Piazza as much as possible

• Make questions public if possible, so others can benefit!

• Canvas
• Assignments, grades

• Office hours TBA shortly (or just come by)

Read the Syllabus

A high level summary of some policies:

• Late work: 5 free late days
– 10% penalty per day after these are used up

– No credit more then 5 days late

– Special circumstances: contact the instructor

• Collaboration policy
– Your work must be your own

– 100% penalty for cheating

– Read full policy carefully

• No electronics in lecture
– But bring them to recitation!

CMU can be pretty intense

• A 12-credit course is expected to take ~12 hours a week.

• We aim to provide a rigorous but tractable course.
– More frequent assignments rather than big monoliths

– Two midterm exams to cover core material as you learn it

• Please keep us apprised of how much time the class is
actually taking and whether it is interfacing badly with
other courses.
– We have no way of knowing if you have three midterms in one

week.

– Sometimes, we misjudge assignment difficulty.

• If it’s 2 am and you’re panicking…put the homework
down, send us an email, and go to bed.

Executing programs

• Consider the following program
• In a simple imperative language, Hoare’s WHILE

• How do we run this sequence of characters?

y := x;
z := 1;
while y > 1 do

z := z * y;
y := y – 1

Programs as trees

• What if we organize it
as a tree in memory

• Now we can walk the tree
and execute it

y := x;
z := 1;
while y > 1 do

z := z * y;
y := y – 1

18

;

:= ;

y x := while

z 1 > ;

y 1 := :=

z * y -

z y y 1

Interpreters

• Interpreter runs at execution time
• Operates over the program as a data structure

• A simple and flexible approach—but slow
• We examine the program to determine what to

do, over and over again

Compilers

• A compiler translates the high-level source
program into an equivalent target program
(typically in machine language), and then
goes away:

An Overview of Compilation

• Phases of Compilation

Programming Language Pragmatics

• PL is an exciting field to study
• Interesting theory

• Important impact on practice

• Lots of applications

• Will help you become a better programmer

• For next time:
• Reading: PLP chapter 1

• Homework “zero” is out today, due Friday. Useful:
• Rust book chapters 1-6, esp. “Programming a Guessing Game”

https://doc.rust-lang.org/book

• x86 quick references
– Stanford https://web.stanford.edu/class/archive/cs/cs107/cs107.1196/guide/x86-64.html

– Brown https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf

